1
|
Adnane M, Ahmed M, Chapwanya A. Advances in Molecular Biology and Immunology of Spermatozoa and Fertilization in Domestic Animals: Implications for Infertility and Assisted Reproduction. Curr Mol Med 2025; 25:167-186. [PMID: 39572916 DOI: 10.2174/0115665240306965240802075331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/25/2024] [Accepted: 06/13/2024] [Indexed: 04/11/2025]
Abstract
Unlocking the secrets of reproductive success in domestic animals requires a deep understanding of the molecular biology and immunology of spermatozoa, capacitation, fertilization, and conception. This review highlights the complex processes involved in spermatogenesis and sperm capacitation, including changes in membrane properties, signaling pathways, and the crucial acrosome reaction. The interaction with the zona pellucida in species-specific gamete recognition and binding is emphasized. The implications of fertilization defects for infertility and assisted reproduction are discussed, underscoring the challenges faced in breeding programs. The future directions for research in this field involve advancements in molecular techniques, understanding the immune regulation of spermatozoa, investigating environmental factors' impact, and integrating multi-omics approaches to enhance assisted reproduction techniques in domestic animals. This review contributes to our understanding of the intricate mechanisms underlying successful reproduction and provides insights into potential strategies for improving fertility outcomes in domestic animals.
Collapse
Affiliation(s)
- Mounir Adnane
- Department of Biomedicine, Institute of Veterinary Sciences, University Ibn Khaldoun of Tiaret, Tiaret 14000, Algeria
| | - Moussa Ahmed
- Department of Animal Health, Institute of Veterinary Sciences, University Ibn Khaldoun of Tiaret, Tiaret, 14000, Algeria
| | - Aspinas Chapwanya
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, Basseterre, 00265, Saint Kitts and Nevis
| |
Collapse
|
2
|
Chen YL, Li CY, Wang PH, Wang R, Zhuo X, Zhang Y, Wang SJ, Sun ZP, Chen JH, Cheng X, Zhang ZJ, Ren CH, Wang QJ. Comparative Proteomic Identification of Ram Sperm before and after In Vitro Capacitation. Animals (Basel) 2024; 14:2363. [PMID: 39199899 PMCID: PMC11350773 DOI: 10.3390/ani14162363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Ram sperm undergo a sequence of physiological and biochemical changes collectively termed as capacitation to perform oocyte fertilization. However, the protein changes induced by capacitation remain in need of further exploration. Thus, the present study investigated the comparative proteomic profiling in ram spermatozoa under non-capacitating (NC) and capacitating (CAP) conditions in vitro using a liquid chromatography-tandem mass spectrometry combined with tandem mass tag labeling strategy. As a results, 2050 proteins were identified and quantified; 348 of them were differentially abundant, with 280 of the proteins upregulated and 68 of the proteins downregulated between the CAP and NC spermatozoa, respectively. Functional enrichment analysis indicated that the differentially abundant proteins Prune Exopolyphosphatase 1, Galactose-1-Phosphate Uridylyltransferase, and ATP Citrate Lyase were strictly related to energy production and conversion, and Phosphoglycolate phosphatase, Glucosamine-6-Phosphate Deaminase 1 and 2 were related to metabolism, RNA processing, and vesicular transport pathways. Furthermore, the networks of protein-protein interaction indicated a strong interaction among these differential proteins in annotated pathways such as ubiquitin and transport metabolism. Our findings indicate that capacitation progress might be regulated through different pathways, providing insights into mechanisms involved in ram sperm capacitation and fertility.
Collapse
Affiliation(s)
- Ya-Le Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (P.-H.W.); (R.W.); (X.Z.); (S.-J.W.); (Z.-P.S.); (J.-H.C.); (X.C.); (Z.-J.Z.)
| | - Chun-Yan Li
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, China; (C.-Y.L.); (Y.Z.)
| | - Peng-Hui Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (P.-H.W.); (R.W.); (X.Z.); (S.-J.W.); (Z.-P.S.); (J.-H.C.); (X.C.); (Z.-J.Z.)
| | - Ru Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (P.-H.W.); (R.W.); (X.Z.); (S.-J.W.); (Z.-P.S.); (J.-H.C.); (X.C.); (Z.-J.Z.)
| | - Xian Zhuo
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (P.-H.W.); (R.W.); (X.Z.); (S.-J.W.); (Z.-P.S.); (J.-H.C.); (X.C.); (Z.-J.Z.)
| | - Yan Zhang
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, China; (C.-Y.L.); (Y.Z.)
| | - Shi-Jia Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (P.-H.W.); (R.W.); (X.Z.); (S.-J.W.); (Z.-P.S.); (J.-H.C.); (X.C.); (Z.-J.Z.)
| | - Zhi-Peng Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (P.-H.W.); (R.W.); (X.Z.); (S.-J.W.); (Z.-P.S.); (J.-H.C.); (X.C.); (Z.-J.Z.)
| | - Jia-Hong Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (P.-H.W.); (R.W.); (X.Z.); (S.-J.W.); (Z.-P.S.); (J.-H.C.); (X.C.); (Z.-J.Z.)
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Chuzhou 233200, China
| | - Xiao Cheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (P.-H.W.); (R.W.); (X.Z.); (S.-J.W.); (Z.-P.S.); (J.-H.C.); (X.C.); (Z.-J.Z.)
| | - Zi-Jun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (P.-H.W.); (R.W.); (X.Z.); (S.-J.W.); (Z.-P.S.); (J.-H.C.); (X.C.); (Z.-J.Z.)
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Chuzhou 233200, China
| | - Chun-Huan Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (P.-H.W.); (R.W.); (X.Z.); (S.-J.W.); (Z.-P.S.); (J.-H.C.); (X.C.); (Z.-J.Z.)
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Chuzhou 233200, China
| | - Qiang-Jun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (P.-H.W.); (R.W.); (X.Z.); (S.-J.W.); (Z.-P.S.); (J.-H.C.); (X.C.); (Z.-J.Z.)
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Chuzhou 233200, China
| |
Collapse
|
3
|
Zgórecka W, Kranc W, Blatkiewicz M, Kamiński K, Farzaneh M, Bryja A, Mozdziak P, Antosik P, Zabel M, Podhorska-Okołów M, Dzięgiel P, Kempisty B, Bukowska D. Long-Term In Vitro Culture Alters Gene Expression Pattern of Genes Involved in Ontological Groups Representing Cellular Processes. Int J Mol Sci 2024; 25:7109. [PMID: 39000215 PMCID: PMC11241590 DOI: 10.3390/ijms25137109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/19/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
The oviduct provides an optimal environment for the final preparation, transport, and survival of gametes, the fertilization process, and early embryonic development. Most of the studies on reproduction are based on in vitro cell culture models because of the cell's accessibility. It creates opportunities to explore the complexity of directly linked processes between cells. Previous studies showed a significant expression of genes responsible for cell differentiation, maturation, and development during long-term porcine oviduct epithelial cells (POECs) in vitro culture. This study aimed at establishing the transcriptomic profile and comprehensive characteristics of porcine oviduct epithelial cell in vitro cultures, to compare changes in gene expression over time and deliver information about the expression pattern of genes highlighted in specific GO groups. The oviduct cells were collected after 7, 15, and 30 days of in vitro cultivation. The transcriptomic profile of gene expression was compared to the control group (cells collected after the first day). The expression of COL1A2 and LOX was enhanced, while FGFBP1, SERPINB2, and OVGP1 were downregulated at all selected intervals of cell culture in comparison to the 24-h control (p-value < 0.05). Adding new detailed information to the reproductive biology field about the diversified transcriptome profile in POECs may create new future possibilities in infertility treatments, including assisted reproductive technique (ART) programmes, and may be a valuable tool to investigate the potential role of oviduct cells in post-ovulation events.
Collapse
Affiliation(s)
- Wiktoria Zgórecka
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Wiesława Kranc
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Małgorzata Blatkiewicz
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Kacper Kamiński
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Artur Bryja
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Paweł Antosik
- Department of Veterinary Surgery, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Maciej Zabel
- Division of Anatomy and Histology, University of Zielona Góra, 65-417 Zielona Góra, Poland
- Division of Histology and Embryology, Department of Human Morphology and Embryology Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Marzenna Podhorska-Okołów
- Division of Ultrastructural Research, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Bartosz Kempisty
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Physiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA
- Department of Veterinary Surgery, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
- Center of Assisted Reproduction, Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 602 00 Brno, Czech Republic
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| |
Collapse
|
4
|
Yoshida J, Tajika Y, Uchida K, Kuwahara M, Sano K, Suzuki T, Hondo E, Iida A. Membrane molecule bouncer regulates sperm binding activity in immature oocytes in the viviparous teleost species Poecilia reticulata (guppy). Dev Growth Differ 2024; 66:194-204. [PMID: 38302769 DOI: 10.1111/dgd.12914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
Generally, in vertebrates, the first step toward fertilization is the ovulation of mature oocytes, followed by their binding to sperm cells outside of the ovary. Exceptionally, the oocytes of poeciliid fish are fertilized by sperm cells within the follicle, and the developmental embryo is subsequently released into the ovarian lumen before delivery. In the present study, we aimed to identify the factor(s) responsible for intrafollicular fertilization in a viviparous teleost species, Poecilia reticulata (guppy). Sperm tracking analysis in this regard indicated that in this species, sperm cells reached immature oocytes including the germinal vesicle, and the insemination assay indicated that the immature oocytes robustly adhered to the sperm cells; similar binding was not observed in Danio rerio (zebrafish) and Oryzias latipes (medaka). We also identified the Ly6/uPAR protein bouncer as the factor responsible for the observed sperm binding activity of the immature oocytes in this species. The recombinant bouncer peptide acted as an inhibitory decoy for the sperm-oocyte binding in guppy. On the other hand, ectopic expression of guppy bouncer in zebrafish oocytes resulted in interspecific sperm-oocyte binding. These results argue that bouncer is responsible for sperm-immature oocyte binding. Our findings highlight the unique reproductive strategies of guppy fish and enhance our understanding of the diverse reproductive mechanisms in vertebrates.
Collapse
Affiliation(s)
- Junki Yoshida
- Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Tokai National Higher Education and Research System, Nagoya, Japan
| | - Yuki Tajika
- Department of Radiological Technology, School of Radiological Technology, Gunma Prefectural College of Health Science, Maebashi, Japan
| | - Kazuko Uchida
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya, Japan
| | - Makoto Kuwahara
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya, Japan
| | - Kaori Sano
- Department of Chemistry, Faculty of Science, Josai University, Sakado, Japan
| | - Takayuki Suzuki
- Graduate School of Science Department of Biology, Osaka Metropolitan University, Sugimoto, Osaka, Japan
| | - Eiichi Hondo
- Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Tokai National Higher Education and Research System, Nagoya, Japan
| | - Atsuo Iida
- Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Tokai National Higher Education and Research System, Nagoya, Japan
| |
Collapse
|
5
|
Yi S, Feng Y, Wang Y, Ma F. Sialylation: fate decision of mammalian sperm development, fertilization, and male fertility†. Biol Reprod 2023; 109:137-155. [PMID: 37379321 DOI: 10.1093/biolre/ioad067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023] Open
Abstract
Sperm development, maturation, and successful fertilization within the female reproductive tract are intricate and orderly processes that involve protein translation and post-translational modifications. Among these modifications, sialylation plays a crucial role. Any disruptions occurring throughout the sperm's life cycle can result in male infertility, yet our current understanding of this process remains limited. Conventional semen analysis often fails to diagnose some infertility cases associated with sperm sialylation, emphasizing the need to comprehend and investigate the characteristics of sperm sialylation. This review reanalyzes the significance of sialylation in sperm development and fertilization and evaluates the impact of sialylation damage on male fertility under pathological conditions. Sialylation serves a vital role in the life journey of sperm, providing a negatively charged glycocalyx and enriching the molecular structure of the sperm surface, which is beneficial to sperm reversible recognition and immune interaction. These characteristics are particularly crucial during sperm maturation and fertilization within the female reproductive tract. Moreover, enhancing the understanding of the mechanism underlying sperm sialylation can promote the development of relevant clinical indicators for infertility detection and treatment.
Collapse
Affiliation(s)
- Shiqi Yi
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying Feng
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Yan Wang
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fang Ma
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Gomez RA, Mercati D, Lupetti P, Fanciulli PP, Dallai R. Morphology of male and female reproductive systems in the ground beetle Apotomus and the peculiar sperm ultrastructure of A. rufus (P. Rossi, 1790) (Coleoptera, Carabidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2023; 72:101217. [PMID: 36327949 DOI: 10.1016/j.asd.2022.101217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Relatively few studies have focused on evolutionary losses of sexually selected male traits. We use light and electron microscopy to study the male and female reproductive anatomy of Apotomus ground beetles (Coleoptera, Carabidae), a lineage that we reconstruct as likely having lost sperm conjugation, a putative sexually selected trait. We pay particular attention to the structure of the testes and spermatheca. Both of these organs share a strikingly similar shape-consisting of long blind canals arranged into several concentric overlapping rings measuring approximately 18 mm and 19.5 mm in total length, respectively. The similarity of these structures suggests a positive evolutionary correlation between female and male genital organs. Males are characterized by unifollicular testes with numerous germ cysts, which contain 64 sperm cells each, and we record a novel occurrence of sperm cyst "looping", a spermatogenic innovation previously only known from some fruit fly and Tenebrionid beetle sperm. The sperm are very long (about 2.7 mm) and include an extraordinarily long helicoidal acrosome, a short nucleus, and a long flagellum. These findings confirm the structural peculiarity of sperm, testis, and female reproductive tract (FRT) of Apotomus species relative to other ground beetles, which could possibly be the result of shifts in sexual selection.
Collapse
Affiliation(s)
- R Antonio Gomez
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY, USA.
| | - David Mercati
- Department of Life Sciences, University of Siena, Italy.
| | - Pietro Lupetti
- Department of Life Sciences, University of Siena, Italy.
| | | | - Romano Dallai
- Department of Life Sciences, University of Siena, Italy.
| |
Collapse
|
7
|
Nabi D, Bosi D, Gupta N, Thaker N, Fissore R, Brayboy LM. Multidrug resistance transporter-1 dysfunction perturbs meiosis and Ca2+ homeostasis in oocytes. Reproduction 2023; 165:79-91. [PMID: 36215093 PMCID: PMC9782432 DOI: 10.1530/rep-22-0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022]
Abstract
In brief Oocyte quality remains the most important and unsolved issue in reproduction. Our data show that multidrug resistance transporters and oocyte mitochondria are involved in determining oocyte quality in a mouse model. Abstract Multidrug resistance transporter-1 (MDR-1) is a transmembrane ATP-dependent effluxer present in organs that transport a variety of xenobiotics and by-products. Previous findings by our group demonstrated that this transporter is also present in the oocyte mitochondrial membrane and that its mutation led to abnormal mitochondrial homeostasis. Considering the importance of these organelles in the female gamete, we assessed the impact of MDR-1 dysfunction on mouse oocyte quality, with a particular focus on the meiotic spindle organization, aneuploidies, Ca2+ homeostasis, ATP production and mtDNA mutations. Our results demonstrate that young Mdr1a mutant mice produce oocytes characterized by lower quality, with a significant delay in the germinal vesicle to germinal vesicle breakdown transition, an increased percentage of symmetric divisions, chromosome misalignments and a severely altered meiotic spindle shape compared to the wild types. Mutant oocytes exhibit 7000 more SNPs in the exomic DNA and twice the amount of mitochondrial DNA (mtDNA) SNPs compared to the wild-type ones. Ca2+ analysis revealed the inability of MDR-1 mutant oocytes to manage Ca2+ storage content and oscillations in response to several stimuli, and ATP quantification shows that mutant oocytes trend toward lower ATP levels compared to wild types. Finally, 1-year-old mutant ovaries express a lower amount of SIRT1, SIRT3, SIRT5, SIRT6 and SIRT7 compared to wild-type levels. These results together emphasize the importance of MDR-1 in mitochondrial physiology and highlight the influence of MDR-1 on oocyte quality and ovarian aging.
Collapse
Affiliation(s)
- Dalileh Nabi
- Department of Neuropediatrics Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Klinik für Pädiatrie m. S. Neurologie, Charité Campus Virchow Klinikum, Berlin, Germany
| | - Davide Bosi
- Department of Neuropediatrics Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Klinik für Pädiatrie m. S. Neurologie, Charité Campus Virchow Klinikum, Berlin, Germany
| | - Neha Gupta
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Nidhi Thaker
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Rafael Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Lynae M Brayboy
- Department of Neuropediatrics Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Klinik für Pädiatrie m. S. Neurologie, Charité Campus Virchow Klinikum, Berlin, Germany
- Department of Reproductive Biology, Bedford Research Foundation, Bedford, Massachusetts, USA
| |
Collapse
|
8
|
Ramirez-Diaz J, Cenadelli S, Bornaghi V, Bongioni G, Montedoro SM, Achilli A, Capelli C, Rincon JC, Milanesi M, Passamonti MM, Colli L, Barbato M, Williams JL, Marsan PA. Identification of genomic regions associated with total and progressive sperm motility in Italian Holstein bulls. J Dairy Sci 2023; 106:407-420. [PMID: 36400619 DOI: 10.3168/jds.2021-21700] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 08/10/2022] [Indexed: 11/17/2022]
Abstract
Sperm motility is directly related to the ability of sperm to move through the female reproductive tract to reach the ovum. Sperm motility is a complex trait that is influenced by environmental and genetic factors and is associated with male fertility, oocyte penetration rate, and reproductive success of cattle. In this study we carried out a GWAS in Italian Holstein bulls to identify candidate regions and genes associated with variations in progressive and total motility (PM and TM, respectively). After quality control, the final data set consisted of 5,960 records from 949 bulls having semen collected in 10 artificial insemination stations and genotyped at 412,737 SNPs (call rate >95%; minor allele frequency >5%). (Co)variance components were estimated using single trait mixed models, and associations between SNPs and phenotypes were assessed using a genomic BLUP approach. Ten windows that explained the greatest percentage of genetic variance were located on Bos taurus autosomes 1, 2, 4, 6, 7, 23, and 26 for TM and Bos taurus autosomes 1, 2, 4, 6, 8, 16, 23, and 26 for PM. A total of 150 genes for TM and 72 genes for PM were identified within these genomic regions. Gene Ontology enrichment analyses identified significant Gene Ontology terms involved with energy homeostasis, membrane functions, sperm-egg interactions, protection against oxidative stress, olfactory receptors, and immune system. There was significant enrichment of quantitative trait loci for fertility, calving ease, immune response, feed intake, and carcass weight within the candidate windows. These results contribute to understanding the architecture of the genetic control of sperm motility and may aid in the development of strategies to identify subfertile bulls and improve reproductive success.
Collapse
Affiliation(s)
- J Ramirez-Diaz
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy 29122; Institute of Agricultural Biology and Biotechnology (IBBA), Consiglio Nazionale di Ricerca, Milano, Italy.
| | - S Cenadelli
- Institute Lazzaro Spallanzani, Rivolta d'Adda (CR), Cremona, Italy
| | - V Bornaghi
- Institute Lazzaro Spallanzani, Rivolta d'Adda (CR), Cremona, Italy
| | - G Bongioni
- Institute Lazzaro Spallanzani, Rivolta d'Adda (CR), Cremona, Italy
| | - S M Montedoro
- Institute Lazzaro Spallanzani, Rivolta d'Adda (CR), Cremona, Italy
| | - A Achilli
- Department of Biology and Biotechnology, Università degli Studi di Pavia, Pavia, Italy
| | - C Capelli
- Department of Chemical, Life and Environmental Sustainability Sciences, Università degli Studi di Parma, Parma, Italy
| | - J C Rincon
- Department of Animal Science, Universidad Nacional de Colombia, Palmira, Valle del Cauca, Colombia
| | - M Milanesi
- Department for Innovation in Biological, Agri-food and Forestry Systems (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy
| | - M M Passamonti
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy 29122
| | - L Colli
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy 29122
| | - M Barbato
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy 29122
| | - J L Williams
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy 29122
| | - P Ajmone Marsan
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy 29122
| |
Collapse
|
9
|
Shankar G, Gagan TA, Kumari TRS, Marathe GK. Sperm storage by females across the animal phyla: A survey on the occurrence and biomolecules involved in sperm storage. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 340:283-297. [PMID: 36581603 DOI: 10.1002/jez.b.23189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/10/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022]
Abstract
Long-term sperm storage by females in various regions of the oviduct is documented across many invertebrate and vertebrate species. Although, many reports emphasize on the histology, histochemistry and ultrastructural features of sperm storage, very little is known about the mechanisms underlying the sperm storage. The current review documents the occurrence of sperm storage by females in a wide array of invertebrate and vertebrate species. This review also provides an insight on the presence of various molecular factors of the sperm storage tubules presumably responsible for the prolonged sperm storage with an emphasis on a model reptile, the Indian garden lizard, Calotes versicolor which contains a unique approximately 55-kDa protein in its utero-vaginal lavage and found to inhibit washed epididymal sperm motility in a concentration and time-dependent manner in a reversible fashion.
Collapse
Affiliation(s)
- Goutham Shankar
- Department of Studies in Biochemistry, University of Mysore, Mysore, Karnataka, India
| | - Thumbala A Gagan
- Department of Studies in Biochemistry, University of Mysore, Mysore, Karnataka, India.,Department of Zoology, St. Philomena's College, Bannimantap, Mysore, Karnataka, India
| | - Titus R S Kumari
- Department of Zoology, St. Philomena's College, Bannimantap, Mysore, Karnataka, India
| | - Gopal K Marathe
- Department of Studies in Biochemistry, University of Mysore, Mysore, Karnataka, India.,Department of Studies in Molecular Biology, University of Mysore, Mysore, Karnataka, India
| |
Collapse
|
10
|
Csöbönyeiová M, Varga I, Lapides L, Pavlíková L, Feitscherová C, Klein M. From a Passive Conduit to Highly Dynamic Organ. What are the Roles of Uterine Tube Epithelium in Reproduction? Physiol Res 2022. [DOI: 10.33549/physiolres.934954] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
It is well known that the mammalian uterine tube (UT) plays a crucial role in female fertility, where the most important events leading to successful fertilization and pre-implantation embryo development occur. The known functions of these small intra-abdominal organs are: an uptake and transport of oocytes; storage, transportation, and capacitation of spermatozoa, and finally fertilization and transport of the fertilized ovum and early embryo through the isthmus towards the uterotubal junction. The success of all these events depends on the interaction between the uterine tube epithelium (UTE) and gametes/embryo. Besides that, contemporary research revealed that the tubal epithelium provides essential nutritional support and the most suitable environment for early embryo development. Moreover, recent discoveries in molecular biology help understand the role of the epithelium at the cellular and molecular levels, highlighting the factors involved in regulating the UT signaling, that affects different steps in the fertilization process. According to the latest research, the extracellular vesicles, as a major component of tubal secretion, mediate the interaction between gametes/embryo and epithelium. This review aims to provide up-to-date knowledge on various aspects concerning tubal epithelium activity and its cross-talk with spermatozoa, oocytes and preimplantation embryo and how these interactions affect fertilization and early embryo development.
Collapse
Affiliation(s)
| | - I Varga
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Slovak Republic.
| | | | | | | | | |
Collapse
|
11
|
Phuphisut O, Poodeepiyasawat A, Yoonuan T, Watthanakulpanich D, Chotsiri P, Reamtong O, Mousley A, Gobert GN, Adisakwattana P. Transcriptome profiling of male and female Ascaris lumbricoides reproductive tissues. Parasit Vectors 2022; 15:477. [PMID: 36539906 PMCID: PMC9768952 DOI: 10.1186/s13071-022-05602-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Ascaris lumbricoides causes human ascariasis, the most prevalent helminth disease, infecting approximately 1 billion individuals globally. In 2019 the global disease burden was estimated to be 754,000 DALYs and resulted in 2090 deaths. In the absence of a vaccination strategy, treatment of ascariasis has relied on anthelminthic chemotherapy, but drug resistance is a concern. The propensity for reinfection is also a major challenge to disease control; female worms lay up to 200,000 eggs daily, which contaminate surrounding environments and remain viable for years, resulting in high transmission rates. Understanding the molecular mechanisms of reproductive processes, including control of egg production, spermatogenesis, oogenesis and embryogenesis, will drive the development of new drugs and/or vaccine targets for future ascariasis control. METHODS Transcriptome profiles of discrete reproductive and somatic tissue samples were generated from adult male and female worms using Illumina HiSeq with 2 × 150 bp paired-end sequencing. Male tissues included: testis germinal zone, testis part of vas deferens, seminal vesicle and somatic tissue. Female tissues included: ovary germinal zone, ovary part of the oviduct, uterus and somatic tissue. Differentially expressed genes (DEGs) were identified from the fragments per kilobases per million reads (FPKM) profiles. Hierarchical analysis was performed to identify tissue-specific genes. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were employed to identify significant terms and pathways for the DEGs. RESULTS DEGs involved in protein phosphorylation and adhesion molecules were indicated to play a crucial role in spermatogenesis and fertilization, respectively. Those genes associated with the G-protein-coupled receptor (GPCR) signaling pathway and small GTPase-mediated signal transduction pathway play an essential role in cytoskeleton organization during oogenesis. Additionally, DEGs associated with the SMA genes and TGF-β signaling pathway are crucial in adult female embryogenesis. Some genes associated with particular biological processes and pathways that were identified in this study have been linked to defects in germline development, embryogenesis and reproductive behavior. In the enriched KEGG pathway analysis, Hippo signaling, oxytocin signaling and tight junction pathways were identified to play a role in Ascaris male and female reproductive systems. CONCLUSIONS This study has provided comprehensive transcriptome profiles of discrete A. lumbricoides reproductive tissue samples, revealing the molecular basis of these functionally important tissues. The data generated from this study will provide fundamental knowledge on the reproductive biology of Ascaris and will inform future target identification for anti-ascariasis drugs and/or vaccines.
Collapse
Affiliation(s)
- Orawan Phuphisut
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Akkarin Poodeepiyasawat
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Tippayarat Yoonuan
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Dorn Watthanakulpanich
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Palang Chotsiri
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, 10400, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Angela Mousley
- School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Geoffrey N Gobert
- School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
12
|
Hooshmand SE, Yazdani H, Hulme C. Six‐Component Reactions and Beyond: The Nuts and Bolts. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Hossein Yazdani
- Independent researcher Independent Researcher Tehran IRAN (ISLAMIC REPUBLIC OF)
| | - Christopher Hulme
- The University of Arizona Department of Chemistry and Biochemistry Tucson UNITED STATES
| |
Collapse
|
13
|
Kubota S, Yamamoto Y, Kimura K. A Chinese Medicine, Tokishakuyakusan, Increases Bovine Oviductal Tonus <i>via</i> G Protein-Coupled Estrogen Receptor 1. Biol Pharm Bull 2022; 45:1133-1141. [DOI: 10.1248/bpb.b22-00201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Sayaka Kubota
- Department of Animal Production Science, Graduate School of Environmental and Life Science, Okayama University
| | - Yuki Yamamoto
- Department of Animal Production Science, Graduate School of Environmental and Life Science, Okayama University
| | - Koji Kimura
- Department of Animal Production Science, Graduate School of Environmental and Life Science, Okayama University
| |
Collapse
|
14
|
Pacheco HA, Rossoni A, Cecchinato A, Peñagaricano F. Deciphering the genetic basis of male fertility in Italian Brown Swiss dairy cattle. Sci Rep 2022; 12:10575. [PMID: 35732705 PMCID: PMC9217806 DOI: 10.1038/s41598-022-14889-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
Improving reproductive performance remains a major goal in dairy cattle worldwide. Service sire has been recognized as an important factor affecting herd fertility. The main objective of this study was to reveal the genetic basis of male fertility in Italian Brown Swiss dairy cattle. Dataset included 1102 Italian Brown Swiss bulls with sire conception rate records genotyped with 454k single nucleotide polymorphisms. The analysis included whole-genome scans and gene-set analyses to identify genomic regions, individual genes and genetic mechanisms affecting Brown Swiss bull fertility. One genomic region on BTA1 showed significant additive effects. This region harbors gene RABL3 which is implicated cell proliferation and motility. Two genomic regions, located on BTA6 and BTA26, showed marked non-additive effects. These regions harbor genes, such as WDR19 and ADGRA1, that are directly involved in male fertility, including sperm motility, acrosome reaction, and embryonic development. The gene-set analysis revealed functional terms related to cell adhesion, cellular signaling, cellular transport, immune system, and embryonic development. Remarkably, a gene-set analysis also including Holstein and Jersey data, revealed significant processes that are common to the three dairy breeds, including cell migration, cell-cell interaction, GTPase activity, and the immune function. Overall, this comprehensive study contributes to a better understanding of the genetic basis of male fertility in cattle. In addition, our findings may guide the development of novel genomic strategies for improving service sire fertility in Brown Swiss cattle.
Collapse
Affiliation(s)
- Hendyel A Pacheco
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Attilio Rossoni
- Italian Brown Breeders Association, Bussolengo, 37012, Verona, Italy
| | - Alessio Cecchinato
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020, Legnaro, Padua, Italy
| | - Francisco Peñagaricano
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
15
|
Kölle S. Sperm-oviduct interactions: Key factors for sperm survival and maintenance of sperm fertilizing capacity. Andrology 2022; 10:837-843. [PMID: 35340118 PMCID: PMC9321146 DOI: 10.1111/andr.13179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/24/2022] [Accepted: 03/10/2022] [Indexed: 11/28/2022]
Abstract
Background Although millions or even billions of sperm are deposited in the female genital tract, only very few sperm reach the oocyte, and only one single spermatozoon will successfully fertilize. During the journey of the sperm within the female genital tract, the interactions between spermatozoa and fallopian tube are critical for sperm selection, sperm survival, and maintenance of sperm fertilizing capacity. Results This review will provide a comprehensive overview of the latest findings regarding sperm transport and behavior of sperm within the oviduct, sperm selection in the oviduct, the formation of the sperm reservoir, and the release of sperm in the presence of the oocyte. It will primarily focus on recent novel insights on sperm‐oviduct interactions, which have been obtained by cutting‐edge technologies under in vivo or near in vivo conditions. Conclusions The comprehensive analysis of the findings to date will elucidate the complex molecular changes in the tubal epithelium, which are induced by the presence of the sperm and will highlight how the epithelial cells of this organ affect transport, behavior, and function of sperm. This knowledge is essential for scientists and clinicians involved in assisted reproductive technologies.
Collapse
Affiliation(s)
- Sabine Kölle
- School of Medicine, Health Sciences Centre, University College Dublin (UCD), Dublin, Ireland
| |
Collapse
|
16
|
Yuan S, Wang Z, Peng H, Ward SM, Hennig GW, Zheng H, Yan W. Oviductal motile cilia are essential for oocyte pickup but dispensable for sperm and embryo transport. Proc Natl Acad Sci U S A 2021; 118:e2102940118. [PMID: 34039711 PMCID: PMC8179221 DOI: 10.1073/pnas.2102940118] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Mammalian oviducts play an essential role in female fertility by picking up ovulated oocytes and transporting and nurturing gametes (sperm/oocytes) and early embryos. However, the relative contributions to these functions from various cell types within the oviduct remain controversial. The oviduct in mice deficient in two microRNA (miRNA) clusters (miR-34b/c and miR-449) lacks cilia, thus allowing us to define the physiological role of oviductal motile cilia. Here, we report that the infundibulum without functional motile cilia failed to pick up the ovulated oocytes. In the absence of functional motile cilia, sperm could still reach the ampulla region, and early embryos managed to migrate to the uterus, but the efficiency was reduced. Further transcriptomic analyses revealed that the five messenger ribonucleic acids (mRNAs) encoded by miR-34b/c and miR-449 function to stabilize a large number of mRNAs involved in cilium organization and assembly and that Tubb4b was one of their target genes. Our data demonstrate that motile cilia in the infundibulum are essential for oocyte pickup and thus, female fertility, whereas motile cilia in other parts of the oviduct facilitate gamete and embryo transport but are not absolutely required for female fertility.
Collapse
Affiliation(s)
- Shuiqiao Yuan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557;
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhuqing Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
- Sections of Metabolic Diseases and Translational Genomics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502
| | - Hongying Peng
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Grant W Hennig
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Huili Zheng
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
- Sections of Metabolic Diseases and Translational Genomics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557;
- Sections of Metabolic Diseases and Translational Genomics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| |
Collapse
|
17
|
Tomar AK, Rajak SK, Aslam Mk M, Chhikara N, Ojha SK, Nayak S, Chhillar S, Kumaresan A, Yadav S. Sub-fertility in crossbred bulls: Identification of proteomic alterations in spermatogenic cells using high throughput comparative proteomics approach. Theriogenology 2021; 169:65-75. [PMID: 33940217 DOI: 10.1016/j.theriogenology.2021.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/11/2021] [Accepted: 04/20/2021] [Indexed: 01/01/2023]
Abstract
The present study was carried out to compare the proteomic profiles of spermatogenic cells of crossbred and zebu cattle in an effort to understand the possible reasons for a higher incidence of sub-fertility in crossbred bulls. The spermatogenic cells collected from the testes of pre-pubertal (6 mo) and adult (24 mo) crossbred and zebu males through fine needle aspiration were proliferated in vitro, and proteomic profiling was done using a shotgun proteomics approach. The age- and species-specific variations in the expression level of proteins were identified in spermatogenic cells. The number of differentially expressed proteins (DEPs) identified in pre-pubertal zebu and crossbred was 546, while 579 DEPs were identified between adult zebu and crossbred bulls. Out of these, 194 DEPS were common to these groups and 40 DEPs displayed a fold change ≥2. However, only 20 proteins exhibited similar expression variation trends (upregulated or downregulated) among pre-pubertal as well as adult zebu and crossbred bulls. Out of these 20 DEPs, 13 proteins were upregulated, and 7 proteins were downregulated in spermatogenic cells of zebu compared to crossbred bulls. Among the upregulated proteins were RPLP2, PAXIP1, calumenin, prosaposin, GTF2F1, TMP2, ubiquitin conjugation factor E4A, COL1A2, vimentin, protein FAM13A, peripherin, GFPT2, and GRP78. Seven proteins that were downregulated in zebu bulls compared to crossbred included APOA1, G patch domain-containing protein 1, NAD P transhydrogenase mitochondrial, glutamyl aminopeptidase, synaptojanin 1 fragment, Arf GAP with SH3 domain ANK repeat and PH domain-containing protein 1, and protein transport protein sec16B. It was inferred that the proteins associated with sperm function and fertilization processes, such as calumenin, prosaposin, vimentin, GRP78, and APOA1 could be studied further to understand the precise cause of subfertility in crossbred bulls.
Collapse
Affiliation(s)
- Anil Kumar Tomar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Shailendra Kumar Rajak
- Theriogenology Laboratory, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Muhammad Aslam Mk
- Theriogenology Laboratory, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Nirmal Chhikara
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sanjay Kumar Ojha
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Samiksha Nayak
- Theriogenology Laboratory, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Shivani Chhillar
- Theriogenology Laboratory, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Arumugam Kumaresan
- Theriogenology Laboratory, ICAR-National Dairy Research Institute, Karnal, 132001, India.
| | - Savita Yadav
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
18
|
Walter J, Monthoux C, Fortes C, Grossmann J, Roschitzki B, Meili T, Riond B, Hofmann-Lehmann R, Naegeli H, Bleul U. The bovine cumulus proteome is influenced by maturation condition and maturational competence of the oocyte. Sci Rep 2020; 10:9880. [PMID: 32555221 PMCID: PMC7303117 DOI: 10.1038/s41598-020-66822-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/26/2020] [Indexed: 02/07/2023] Open
Abstract
In vitro maturation (IVM) of oocytes has still a negative impact on the developmental competence of oocytes. Therefore, this study analysed the cumulus proteome of individual cumulus-oocyte complexes (COCs) with and without maturational competence, matured under in vivo or in vitro conditions (n = 5 per group). A novel, ultrasensitive mass spectrometry (MS) based protein profiling approach, using label-free quantification, was applied. The detected cumulus proteome included 2226 quantifiable proteins and was highly influenced by the maturation condition (479 differentially expressed proteins) as well as maturational competence of the corresponding oocyte (424 differentially expressed proteins). Enrichment analysis showed an overrepresentation of the complement and coagulation cascades (CCC), ECM-receptor interaction and steroid biosynthesis in cumulus of COCs that matured successfully under in vivo conditions. Verification of the origin of CCC proteins was achieved through detection of C3 secretion into the maturation medium, with significantly increasing concentrations from 12 (48.4 ng/ml) to 24 hours (68 ng/ml: p < 0.001). In relation, concentrations in follicular fluid, reflecting the in vivo situation, were >100x higher. In summary, this study identified important pathways that are impaired in IVM cumulus, as well as potential markers of the maturational competence of oocytes.
Collapse
Affiliation(s)
- J Walter
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| | - C Monthoux
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - C Fortes
- Functional Genomics Centre Zurich, University and ETH Zurich, Zurich, Switzerland
| | - J Grossmann
- Functional Genomics Centre Zurich, University and ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, (SIB), Zurich, Switzerland
| | - B Roschitzki
- Functional Genomics Centre Zurich, University and ETH Zurich, Zurich, Switzerland
| | - T Meili
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - B Riond
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - R Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - H Naegeli
- Institute of Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - U Bleul
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Naseri R, Navabi SJ, Samimi Z, Mishra AP, Nigam M, Chandra H, Olatunde A, Tijjani H, Morais-Urano RP, Farzaei MH. Targeting Glycoproteins as a therapeutic strategy for diabetes mellitus and its complications. Daru 2020; 28:333-358. [PMID: 32006343 PMCID: PMC7095136 DOI: 10.1007/s40199-020-00327-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/10/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Glycoproteins are organic compounds formed from proteins and carbohydrates, which are found in many parts of the living systems including the cell membranes. Furthermore, impaired metabolism of glycoprotein components plays the main role in the pathogenesis of diabetes mellitus. The aim of this study is to investigate the influence of glycoprotein levels in the treatment of diabetes mellitus. METHODS All relevant papers in the English language were compiled by searching electronic databases, including Scopus, PubMed and Cochrane library. The keywords of glycoprotein, diabetes mellitus, glycan, glycosylation, and inhibitor were searched until January 2019. RESULTS Glycoproteins are pivotal elements in the regulation of cell proliferation, growth, maturation and signaling pathways. Moreover, they are involved in drug binding, drug transportation, efflux of chemicals and stability of therapeutic proteins. These functions, structure, composition, linkages, biosynthesis, significance and biological effects are discussed as related to their use as a therapeutic strategy for the treatment of diabetes mellitus and its complications. CONCLUSIONS The findings revealed several chemical and natural compounds have significant beneficial effects on glycoprotein metabolism. The comprehension of glycoprotein structure and functions are very essential and inevitable to enhance the knowledge of glycoengineering for glycoprotein-based therapeutics as may be required for the treatment of diabetes mellitus and its associated complications. Graphical abstract.
Collapse
Affiliation(s)
- Rozita Naseri
- Internal Medicine Department, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Jafar Navabi
- Internal Medicine Department, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zeinab Samimi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Abhay Prakash Mishra
- Department of Pharmaceutical Chemistry, Hemwati Nandan Bahuguna Garhwal (A Central) University, Srinagar Garhwal, Uttarakhand, 246174, India.
| | - Manisha Nigam
- Department of Biochemistry, Hemwati Nandan Bahuguna Garhwal University, Srinagar Garhwal, Uttarakhand, 246174, India
| | - Harish Chandra
- Department of Microbiology, Gurukul Kangri Vishwavidhyalya, Haridwar, Uttarakhand, 249404, India
| | - Ahmed Olatunde
- Department of Biochemistry, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - Habibu Tijjani
- Natural Product Research Laboratory, Department of Biochemistry, Bauchi State University, Gadau, Nigeria
| | - Raquel P Morais-Urano
- Instituto de Química de São Carlos, Universidade de São Paulo, 13560-970, São Carlos, SP, Brasil
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
20
|
Liu Y, Wang Y, Dai W, Huang W, Li Y, Liu H. Palladium-Catalysed C(sp 3 )-H Glycosylation for the Synthesis of C-Alkyl Glycoamino Acids. Angew Chem Int Ed Engl 2020; 59:3491-3494. [PMID: 31901005 DOI: 10.1002/anie.201914184] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/14/2019] [Indexed: 12/17/2022]
Abstract
We have developed a highly efficient and practical approach for palladium-catalyzed trifluoroacetate-promoted N-quinolylcarboxamide-directed glycosylation of inert β-C(sp3 )-H bonds of N-phthaloyl α-amino acids with glycals under mild conditions. For the first time, C(sp3 )-H activation for glycosylation was achieved to build C-alkyl glycosides. This method facilitates the synthesis of various β-substituted C-alkyl glycoamino acids and offers a tool for glycopeptide synthesis.
Collapse
Affiliation(s)
- Yichu Liu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China.,Key Laboratory of Receptor Research, Shanghai, Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Yibing Wang
- Key Laboratory of Receptor Research, Shanghai, Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Wenhao Dai
- Key Laboratory of Receptor Research, Shanghai, Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Wei Huang
- Key Laboratory of Receptor Research, Shanghai, Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Yingxia Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Hong Liu
- Key Laboratory of Receptor Research, Shanghai, Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
21
|
Liu Y, Wang Y, Dai W, Huang W, Li Y, Liu H. Palladium‐Catalysed C(sp
3
)−H Glycosylation for the Synthesis of C‐Alkyl Glycoamino Acids. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yichu Liu
- Department of Medicinal ChemistrySchool of PharmacyFudan University Shanghai 201203 China
- Key Laboratory of Receptor Research, ShanghaiInstitute of Materia MedicaChinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| | - Yibing Wang
- Key Laboratory of Receptor Research, ShanghaiInstitute of Materia MedicaChinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| | - Wenhao Dai
- Key Laboratory of Receptor Research, ShanghaiInstitute of Materia MedicaChinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| | - Wei Huang
- Key Laboratory of Receptor Research, ShanghaiInstitute of Materia MedicaChinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| | - Yingxia Li
- Department of Medicinal ChemistrySchool of PharmacyFudan University Shanghai 201203 China
| | - Hong Liu
- Key Laboratory of Receptor Research, ShanghaiInstitute of Materia MedicaChinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| |
Collapse
|
22
|
D'Occhio MJ, Campanile G, Zicarelli L, Visintin JA, Baruselli PS. Adhesion molecules in gamete transport, fertilization, early embryonic development, and implantation-role in establishing a pregnancy in cattle: A review. Mol Reprod Dev 2020; 87:206-222. [PMID: 31944459 DOI: 10.1002/mrd.23312] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022]
Abstract
Cell-cell adhesion molecules have critically important roles in the early events of reproduction including gamete transport, sperm-oocyte interaction, embryonic development, and implantation. Major adhesion molecules involved in reproduction include cadherins, integrins, and disintegrin and metalloprotease domain-containing (ADAM) proteins. ADAMs on the surface of sperm adhere to integrins on the oocyte in the initial stages of sperm-oocyte interaction and fusion. Cadherins act in early embryos to organize the inner cell mass and trophectoderm. The trophoblast and uterine endometrial epithelium variously express cadherins, integrins, trophinin, and selectin, which achieve apposition and attachment between the elongating conceptus and uterine epithelium before implantation. An overview of the major cell-cell adhesion molecules is presented and this is followed by examples of how adhesion molecules help shape early reproductive events. The argument is made that a deeper understanding of adhesion molecules and reproduction will inform new strategies that improve embryo survival and increase the efficiency of natural mating and assisted breeding in cattle.
Collapse
Affiliation(s)
- Michael J D'Occhio
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Luigi Zicarelli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - José A Visintin
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Pietro S Baruselli
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
23
|
Walter J, Huwiler F, Fortes C, Grossmann J, Roschitzki B, Hu J, Naegeli H, Laczko E, Bleul U. Analysis of the equine "cumulome" reveals major metabolic aberrations after maturation in vitro. BMC Genomics 2019; 20:588. [PMID: 31315563 PMCID: PMC6637639 DOI: 10.1186/s12864-019-5836-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 05/23/2019] [Indexed: 12/12/2022] Open
Abstract
Background Maturation of oocytes under in vitro conditions (IVM) results in impaired developmental competence compared to oocytes matured in vivo. As oocytes are closely coupled to their cumulus complex, elucidating aberrations in cumulus metabolism in vitro is important to bridge the gap towards more physiological maturation conditions. The aim of this study was to analyze the equine “cumulome” in a novel combination of proteomic (nano-HPLC MS/MS) and metabolomic (UPLC-nanoESI-MS) profiling of single cumulus complexes of metaphase II oocytes matured either in vivo (n = 8) or in vitro (n = 7). Results A total of 1811 quantifiable proteins and 906 metabolic compounds were identified. The proteome contained 216 differentially expressed proteins (p ≤ 0.05; FC ≥ 2; 95 decreased and 121 increased in vitro), and the metabolome contained 108 metabolites with significantly different abundance (p ≤ 0.05; FC ≥ 2; 24 decreased and 84 increased in vitro). The in vitro “cumulome” was summarized in the following 10 metabolic groups (containing 78 proteins and 21 metabolites): (1) oxygen supply, (2) glucose metabolism, (3) fatty acid metabolism, (4) oxidative phosphorylation, (5) amino acid metabolism, (6) purine and pyrimidine metabolism, (7) steroid metabolism, (8) extracellular matrix, (9) complement cascade and (10) coagulation cascade. The KEGG pathway “complement and coagulation cascades” (ID4610; n = 21) was significantly overrepresented after in vitro maturation. The findings indicate that the in vitro condition especially affects central metabolism and extracellular matrix composition. Important candidates for the metabolic group oxygen supply were underrepresented after maturation in vitro. Additionally, a shift towards glycolysis was detected in glucose metabolism. Therefore, under in vitro conditions, cumulus cells seem to preferentially consume excess available glucose to meet their energy requirements. Proteins involved in biosynthetic processes for fatty acids, cholesterol, amino acids, and purines exhibited higher abundances after maturation in vitro. Conclusion This study revealed the marked impact of maturation conditions on the “cumulome” of individual cumulus oocyte complexes. Under the studied in vitro milieu, cumulus cells seem to compensate for a lack of important substrates by shifting to aerobic glycolysis. These findings will help to adapt culture media towards more physiological conditions for oocyte maturation. Electronic supplementary material The online version of this article (10.1186/s12864-019-5836-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jasmin Walter
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland.
| | - Fabian Huwiler
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland
| | - Claudia Fortes
- Functional Genomics Center Zurich, University and ETH Zurich, 8057, Zurich, Switzerland
| | - Jonas Grossmann
- Functional Genomics Center Zurich, University and ETH Zurich, 8057, Zurich, Switzerland
| | - Bernd Roschitzki
- Functional Genomics Center Zurich, University and ETH Zurich, 8057, Zurich, Switzerland
| | - Junmin Hu
- Functional Genomics Center Zurich, University and ETH Zurich, 8057, Zurich, Switzerland
| | - Hanspeter Naegeli
- Institute of Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland
| | - Endre Laczko
- Functional Genomics Center Zurich, University and ETH Zurich, 8057, Zurich, Switzerland
| | - Ulrich Bleul
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland
| |
Collapse
|
24
|
Timklay W, Magerd S, Sato C, Somrit M, Watthammawut A, Senarai T, Weerachatyanukul W, Kitajima K, Asuvapongpatana S. N-linked mannose glycoconjugates on shrimp thrombospondin, pmTSP-II, and their involvement in the sperm acrosome reaction. Mol Reprod Dev 2019; 86:440-449. [PMID: 30740837 DOI: 10.1002/mrd.23122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/22/2022]
Abstract
Glycoconjugates in egg extracellular matrices are known to serve several functions in reproductive processes. Here, the presence of N-linked mannose (Man) glycoconjugates on shrimp thrombospondin ( pmTSP-II) and their physiological functions were investigated in the black tiger shrimp Penaeus monodon. A molecular analysis of pmTSP-II demonstrated anchorage sites for N-linked glycans in both the chitin-binding and TSP3 domains. The presence of Man residues was verified by concanavalin A lectin histochemistry on the purified fraction of pmTSP-II (250 kDa with protease inhibitor). The function of the Man glycoconjugates was evident by the Con A interference with the pmTSP-II-induced acrosome reaction (AR) as well as by the ability to recover the induction of the AR by the inclusion of Mans in the treatment mixture. In addition, the recombinant proteins of the three signature pmTSP-II domains expressed in E. coli (lacking glycosylation) and mannosidase-treated pmTSP-II showed a minimal ability to initiate the AR response. Together, these results provide evidence of the pivotal role that Man-linked pmTSP-II plays in modulating the shrimp sperm AR, a novel role for a TSP family protein in shrimp reproductive biology.
Collapse
Affiliation(s)
- Wauranittha Timklay
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Sirilug Magerd
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Basic Medical Science, Faculty of Medicine Vajira Hospital, Navamindratiraj University, Bangkok, Thailand
| | - Chihiro Sato
- Bioscience and Biotechnology Center & Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Monsicha Somrit
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Atthaboon Watthammawut
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
| | - Thanyaporn Senarai
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Ken Kitajima
- Bioscience and Biotechnology Center & Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | |
Collapse
|
25
|
Genes involved in angiogenesis and circulatory system development are differentially expressed in porcine epithelial oviductal cells during long-term primary in vitro culture – a transcriptomic study. ACTA ACUST UNITED AC 2019. [DOI: 10.2478/acb-2018-0026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Abstract
An oviduct is an essential organ for gamete transport, oocyte maturation, fertilization, spermatozoon capacitation and early embryo development. The epithelium plays an important role in oviduct functioning. The products of secretory cells provide an optimal environment and influence gamete activities and embryonic development. The oviduct physiology changes during the female cycle, thus, the ratio of the secreted molecules in the oviduct fluid differs between phases. In this study, a differential gene expression in porcine oviduct epithelial cells was examined during the long-term primary in vitro culture. The microarray expression analysis revealed 2552 genes, 1537 of which were upregulated and 995 were downregulated after 7 days of culture, with subsequent changes in expression during 30 day-long culture. The obtained genes were classified into 8 GO BP terms, connected with angiogenesis and circulatory system development, extracted by DAVID software. Among all genes, 10 most up-regulated and 10 most down-regulated genes were selected for further investigation. Interactions between genes were indicated by STRING software and REACTOME FIViz application to the Cytoscape 3.6.0 software. Most of the genes belonged to more than one ontology group. Although studied genes are mostly responsible for angiogenesis and circulatory system development, they can also be found to be expressed in processes connected with fertilization and early embryo development. The latter function is focused on more, considering the fact that these genes were expressed in epithelial cells of the fallopian tube which is largely responsible for reproductive processes.
Collapse
|
26
|
Yang F, Guan J, Li R, Li X, Niu J, Shang R, Qi J, Wang X. miR-1388 regulates the expression of nectin2l in Paralichthys olivaceus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 28:9-16. [DOI: 10.1016/j.cbd.2018.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 01/10/2023]
|
27
|
Akram Z, Jalali S, Kalsoom O, Batool S, Shami SA. A study on the effects of arsenic toxicity on oviduct histomorphology in the female rat. J Histotechnol 2018. [DOI: 10.1080/01478885.2018.1484330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Zertashia Akram
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Samina Jalali
- Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ommia Kalsoom
- Department of Zoology, Hazara University, Mansehra, Pakistan
| | - Sajida Batool
- Department of Zoology, University of Sargodha, Sargodha, Pakistan
| | - Sajjad Aslam Shami
- Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
28
|
Komor R, Pastuch-Gawolek G, Krol E, Szeja W. Synthesis and Preliminary Evaluation of Biological Activity of Glycoconjugates Analogues of Acyclic Uridine Derivatives. Molecules 2018; 23:molecules23082017. [PMID: 30104510 PMCID: PMC6222857 DOI: 10.3390/molecules23082017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/09/2018] [Accepted: 08/11/2018] [Indexed: 12/16/2022] Open
Abstract
Herein we present the methodology for obtaining glycosyltransferase inhibitors, analogues of natural enzyme substrates of donor-type: UDP-glucose and UDP-galactose. The synthesis concerned glycoconjugates, nucleoside analogues containing an acyclic ribose mimetic linked to a uracil moiety in their structure. The biological activity of the synthesised compounds was determined on the basis of their ability to inhibit the model enzyme action of β-1,4-galactosyltransferase from bovine milk. The obtained results allowed to expand and supplement the existing library of synthetic compounds that are able to regulate the biological activity of enzymes from the GT class.
Collapse
Affiliation(s)
- Roman Komor
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland.
| | - Gabriela Pastuch-Gawolek
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland.
- Biotechnology Center, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland.
| | - Ewelina Krol
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.
| | - Wieslaw Szeja
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland.
| |
Collapse
|
29
|
Radefeld K, Papp S, Havlicek V, Morrell JM, Brem G, Besenfelder U. Endoscopy-mediated intratubal insemination in the cow - Development of a novel minimally invasive AI technique. Theriogenology 2018; 115:117-123. [PMID: 29751229 DOI: 10.1016/j.theriogenology.2018.04.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 10/17/2022]
Abstract
Conventionally inseminated spermatozoa suffer a dramatic reduction in numbers during their long journey until fertilization. In addition sperm survival seems to be strongly affected by the reconstitution of the female reproductive tract in the post partum period. The purpose of this study was to develop a novel AI technique for cattle that allows the deposition of spermatozoa directly into the ampulla in the immediate vicinity of the fertilization site. This new reproductive biotechnique was investigated with focus on semen origin, sperm dosage, semen preparation and time of insemination. Finally, a first practical application was carried out by inseminating superovulated heifers with sex-sorted semen. In total, 49 Simmental heifers were used for 65 intratubal inseminations (ITI) with single ovulation and 8 ITIs after superovulation, respectively. Insemination into the oviduct was performed under epidural anesthesia via transvaginal endoscopy using a curved glass capillary loaded with semen. Two days later the oviduct and the adjacent uterine horn were endoscopically flushed and embryos or unfertilized oocytes were collected for determination of fertilization success. Across all experimental groups, tubal insemination successfully resulted in the collection of embryos; however, first tubal AI attempts and ITIs close to ovulation led to low recovery rates. In total, 109 complexes were flushed from ITIs in superstimulated heifers (n = 8) using sex sorted semen, of which 24 (22%) were at the embryo stage. In conclusion, it was shown that intratubal insemination can be successfully used for semen deposition, thus bypassing the lower female genital tract. Factors such as time of insemination, semen processing and semen quantity for superovulatory use should be further investigated.
Collapse
Affiliation(s)
- Karina Radefeld
- Reproduction Centre Wieselburg, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Rottenhauser Straße 32, 3250, Wieselburg, Austria
| | - Sophie Papp
- Reproduction Centre Wieselburg, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Rottenhauser Straße 32, 3250, Wieselburg, Austria
| | - Vitezslav Havlicek
- Reproduction Centre Wieselburg, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Rottenhauser Straße 32, 3250, Wieselburg, Austria; Department of Agrobiotechnology, Institute of Biotechnology in Animal Production, IFA-Tulln, 3430, Tulln, Austria
| | - Jane M Morrell
- Department of Clinical Science, Swedish University of Agricultural Science, P.O. Box 7070, SE-750 07 Uppsala, Sweden
| | - Gottfried Brem
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Urban Besenfelder
- Reproduction Centre Wieselburg, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Rottenhauser Straße 32, 3250, Wieselburg, Austria; Department of Agrobiotechnology, Institute of Biotechnology in Animal Production, IFA-Tulln, 3430, Tulln, Austria.
| |
Collapse
|
30
|
Osycka‐Salut CE, Castellano L, Fornes D, Beltrame JS, Alonso CA, Jawerbaum A, Franchi A, Díaz ES, Perez Martinez S. Fibronectin From Oviductal Cells Fluctuates During the Estrous Cycle and Contributes to Sperm–Oviduct Interaction in Cattle. J Cell Biochem 2017; 118:4095-4108. [DOI: 10.1002/jcb.26067] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 04/14/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Claudia E. Osycka‐Salut
- Laboratorio de Biotecnologías Reproductivas y Mejoramiento Genético Animal (IIB‐INTECH Dr. Rodolfo UgaldeCONICET/UNSAM)Buenos AiresArgentina
- Laboratorio de Biología de la Reproducción en Mamíferos(CEFYBO‐CONICET/UBA)Buenos AiresArgentina
| | - Luciana Castellano
- Laboratorio de Biología de la Reproducción en Mamíferos(CEFYBO‐CONICET/UBA)Buenos AiresArgentina
| | - Daiana Fornes
- Laboratorio de Reproducción y Metabolismo(CEFYBO‐CONICET/UBA)Buenos AiresArgentina
| | - Jimena S. Beltrame
- Laboratorio de Fisiología y Farmacología de la Reproducción(CEFYBO‐CONICET/UBA)Buenos AiresArgentina
| | - Carlos A.I. Alonso
- Laboratorio de Biología de la Reproducción en Mamíferos(CEFYBO‐CONICET/UBA)Buenos AiresArgentina
| | - Alicia Jawerbaum
- Laboratorio de Reproducción y Metabolismo(CEFYBO‐CONICET/UBA)Buenos AiresArgentina
| | - Ana Franchi
- Laboratorio de Fisiopatología de la Preñez y el Parto(CEFYBO‐CONICET/UBA)Buenos AiresArgentina
| | - Emilce S. Díaz
- Laboratorio de Biología de la ReproducciónFacultad de Ciencias de la SaludUniversidad de AntofagastaAntofagastaChile
| | - Silvina Perez Martinez
- Laboratorio de Biología de la Reproducción en Mamíferos(CEFYBO‐CONICET/UBA)Buenos AiresArgentina
| |
Collapse
|
31
|
Analyses of apoptosis and DNA damage in bovine cumulus cells after in vitro maturation with different copper concentrations: consequences on early embryo development. ZYGOTE 2017; 24:869-879. [PMID: 27805544 DOI: 10.1017/s0967199416000204] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aim of this study was to investigate the influence of copper (Cu) during in vitro maturation (IVM) on apoptosis and DNA integrity of cumulus cells (CC); and oocyte viability. Also, the role of CC in the transport of Cu during IVM was evaluated on oocyte developmental capacity. Damage of DNA was higher in CC matured without Cu (0 µg/dl Cu, P < 0.01) with respect to cells treated with Cu for cumulus-oocyte complexes (COCs) exposed to 0, 20, 40, or 60 µg/dl Cu). The percentage of apoptotic cells was higher in CC matured without Cu than in CC matured with Cu. Cumulus expansion and viability of CC did not show differences in COC treated with 0, 20, 40, or 60 µg/dl Cu during IVM. After in vitro fertilization (IVF), cleavage rates were higher in COC and DO + CC (denuded oocytes + CC) with or without Cu than in DO. Independently of CC presence (COC, DO + CC or DO) the blastocyst rates were higher when 60 µg/dl Cu was added to IVM medium compared to medium alone. These results indicate that Cu supplementation to IVM medium: (i) decreased DNA damage and apoptosis in CC; (ii) did not modify oocyte viability and cumulus expansion; and (iii) improved subsequent embryo development up to blastocyst stage regardless of CC presence during IVM.
Collapse
|
32
|
Maternal-embryo interaction in the bovine oviduct: Evidence from in vivo and in vitro studies. Theriogenology 2016; 86:443-50. [DOI: 10.1016/j.theriogenology.2016.04.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/10/2015] [Accepted: 03/14/2016] [Indexed: 11/20/2022]
|
33
|
Kölle S. Transport, Distribution and Elimination of Mammalian Sperm Following Natural Mating and Insemination. Reprod Domest Anim 2016; 50 Suppl 3:2-6. [PMID: 26382022 DOI: 10.1111/rda.12576] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/14/2015] [Indexed: 01/10/2023]
Abstract
The integrity of transport, distribution and elimination of sperm in the female genital tract plays a pivotal role for successful reproduction in mammals. At coitus, millions or billions of sperm are deposited either into the anterior vagina (human, primates), the cervix (most mammalian species) or the uterus (pig). In most species, the first anatomical barrier is the cervix, where spermatozoa with poor morphology and motility are filtered out by sticking to the cervical mucus. The second anatomical barrier is the uterotubal junction (UTJ) with its tortuous and narrow lumen. Finally, only a few thousand sperm enter the oviduct and less than 100 sperm reach the site of fertilization. As soon as the sperm enter the oviduct, they form a sperm reservoir enabling them to stay vital and maintain fertilizing capacity for 3-4 days (cow, horse) up to several months (bats). After ovulation, mammalian sperm show hyperactivation which allows them to detach from the tubal epithelium and migrate to the site of fertilization. This review will focus on recent insights of sperm transport, sperm storage and sperm-oviduct interaction in mammals which have been gained by live cell imaging in cows and mice under near in vivo conditions. Detailed knowledge of the biology of spermatozoa within the female genital tract creates the basis for new therapeutic concepts for male subfertility and infertility - an essential prerequisite to increase success rates in assisted reproduction.
Collapse
Affiliation(s)
- S Kölle
- Health Sciences Centre, UCD School of Medicine & Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
34
|
Curtis JE. The Mechanics of Ovulation Depend on an Incredibly Soft and Sugar-Rich Extracellular Matrix. Biophys J 2016; 110:2566-2567. [PMID: 27332115 DOI: 10.1016/j.bpj.2016.04.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 04/29/2016] [Indexed: 10/21/2022] Open
Affiliation(s)
- Jennifer E Curtis
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia.
| |
Collapse
|
35
|
Tosti E, Ménézo Y. Gamete activation: basic knowledge and clinical applications. Hum Reprod Update 2016; 22:420-39. [PMID: 27278231 PMCID: PMC4917743 DOI: 10.1093/humupd/dmw014] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 04/01/2016] [Indexed: 01/07/2023] Open
Abstract
Background The first clues to the process of gamete activation date back to nearly 60 years ago. The mutual activation of gametes is a crucial event during fertilization. In the testis and ovaries, spermatozoa and oocytes are in a state of meiotic and metabolic quiescence and require reciprocal signals in order to undergo functional changes that lead to competence for fertilization. First, the oocyte activates sperm by triggering motility, chemoattraction, binding and the acrosome reaction, culminating with the fusion of the two plasma membranes. At the end of this cascade of events, collectively known as sperm capacitation, sperm-induced oocyte activation occurs, generating electrical, morphological and metabolic modifications in the oocyte. Objective and rationale The aim of this review is to provide the current state of knowledge regarding the entire process of gamete activation in selected specific animal models that have contributed to our understanding of fertilization in mammals, including humans. Here we describe in detail the reciprocal induction of the two activation processes, the molecules involved and the mechanisms of cell interaction and signal transduction that ultimately result in successful embryo development and creation of a new individual. Search methods We carried out a literature survey with no restrictions on publication date (from the early 1950s to March 2016) using PubMed/Medline, Google Scholar and Web of Knowledge by utilizing common keywords applied in the field of fertilization and embryo development. We also screened the complete list of references published in the most recent research articles and relevant reviews published in English (both animal and human studies) on the topics investigated. Outcomes Literature on the principal animal models demonstrates that gamete activation is a pre-requisite for successful fertilization, and is a process common to all species studied to date. We provide a detailed description of the dramatic changes in gamete morphology and behavior, the regulatory molecules triggering gamete activation and the intracellular ions and second messengers involved in active metabolic pathways in different species. Recent scientific advances suggest that artificial gamete activation may represent a novel technique to improve human IVF outcomes, but this approach requires caution. Wider implications Although controversial, manipulation of gamete activation represents a promising tool for ameliorating the fertilization rate in assisted reproductive technologies. A better knowledge of mechanisms that transform the quiescent oocyte into a pluripotent cell may also provide new insights for the clinical use of stem cells.
Collapse
Affiliation(s)
- Elisabetta Tosti
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples 80121, Italy
| | - Yves Ménézo
- London Fertility Associates, 104 Harley Street, London WIG7JD, UK
| |
Collapse
|
36
|
Hedrih A, Banić M. The effect of friction and impact angle on the spermatozoa-oocyte local contact dynamics. J Theor Biol 2016; 393:32-42. [PMID: 26780648 DOI: 10.1016/j.jtbi.2015.12.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 11/17/2015] [Accepted: 12/17/2015] [Indexed: 01/08/2023]
Abstract
Although a large proportion of biomolecules involved in spermatozoa-oocyte interaction has been discovered so far, many details of fertilization mechanism remain unknown. Both biochemical and biomechanical components exist in the fertilization process. Mammalian sperm evolved a ZP (zona pelucida) thrust reduction penetration strategy probably in response to the ZP resilient elasticity. Using a biomechanical approach and FEM analysis, local contact stress, ZP deformations during impact and attempt of sperm head penetration relative to different sperm impact angles (SIA) were studied. The sperm-oocyte contact was defined as non-linear frictional contact. A transient structural analysis at 37°C revealed that, from the mechanical standpoint there are SIA that are more favorable for possible ZP penetration due to larger equivalent stress of ZP. An "slip-stick" resembling effect was identified for almost all examined SIA. The sperm head-ZP contact area increases as SIA decreases. Favorable ZP-stress state for sperm penetration regarding SIA are discussed.
Collapse
Affiliation(s)
- Andjelka Hedrih
- Department for Bio-Medical Science, State University of Novi Pazar, Vuka Karadzica bb, 36 300 Novi Pazar, Serbia.
| | - Milan Banić
- Department for Mechanical Design, Development and Engineering, Mechanical Engineering Faculty, University of Nis, Aleksandra Medvedeva 14, 18000 Nis, Serbia
| |
Collapse
|
37
|
Carvalho N, Vannucci F, D‘Angelo M, Gallupo A, Melo G, Souza R, Nichi M, Gimenes L, Sä Filho M, Martiz C, Castriccini E, Baruselli P. Oocytes transport across the oviduct of Murrah and Nelore cows. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2007.s2.649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Aston KI, Uren PJ, Jenkins TG, Horsager A, Cairns BR, Smith AD, Carrell DT. Aberrant sperm DNA methylation predicts male fertility status and embryo quality. Fertil Steril 2015; 104:1388-97.e1-5. [PMID: 26361204 DOI: 10.1016/j.fertnstert.2015.08.019] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/29/2015] [Accepted: 08/18/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To evaluate whether male fertility status and/or embryo quality during in vitro fertilization (IVF) therapy can be predicted based on genomewide sperm deoxyribonucleic acid (DNA) methylation patterns. DESIGN Retrospective cohort study. SETTING University-based fertility center. PATIENT(S) Participants were 127 men undergoing IVF treatment (where any major female factor cause of infertility had been ruled out), and 54 normozoospermic, fertile men. The IVF patients were stratified into 2 groups: patients who had generally good embryogenesis and a positive pregnancy (n = 55), and patients with generally poor embryogenesis (n = 72; 42 positive and 30 negative pregnancies) after IVF. INTERVENTION(S) Genomewide sperm DNA methylation analysis was performed to measure methylation at >485,000 sites across the genome. MAIN OUTCOME MEASURE(S) A comparison was made of DNA methylation patterns of IVF patients vs. normozoospermic, fertile men. RESULT(S) Predictive models proved to be highly accurate in classifying male fertility status (fertile or infertile), with 82% sensitivity, and 99% positive predictive value. Hierarchic clustering identified clusters enriched for IVF patient samples and for poor-quality-embryo samples. Models built to identify samples within these groups, from neat samples, achieved positive predictive value ≥ 94% while identifying >one fifth of all IVF patient and poor-quality-embryo samples in each case. Using density gradient prepared samples, the same approach recovered 46% of poor-quality-embryo samples with no false positives. CONCLUSION(S) Sperm DNA methylation patterns differ significantly and consistently for infertile vs. fertile, normozoospermic men. In addition, DNA methylation patterns may be predictive of embryo quality during IVF.
Collapse
Affiliation(s)
- Kenneth I Aston
- Department of Surgery, University of Utah Andrology and IVF Laboratories, University of Utah School of Medicine, Salt Lake City, Utah
| | - Philip J Uren
- Molecular and Computational Biology, University of Southern California, Los Angeles, California
| | - Timothy G Jenkins
- Department of Surgery, University of Utah Andrology and IVF Laboratories, University of Utah School of Medicine, Salt Lake City, Utah
| | | | - Bradley R Cairns
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah; Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Andrew D Smith
- Molecular and Computational Biology, University of Southern California, Los Angeles, California
| | - Douglas T Carrell
- Department of Surgery, University of Utah Andrology and IVF Laboratories, University of Utah School of Medicine, Salt Lake City, Utah; Department of Obstetrics and Gynecology and Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah.
| |
Collapse
|
39
|
Vazquez-Levin MH, Marín-Briggiler CI, Caballero JN, Veiga MF. Epithelial and neural cadherin expression in the mammalian reproductive tract and gametes and their participation in fertilization-related events. Dev Biol 2015; 401:2-16. [DOI: 10.1016/j.ydbio.2014.12.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 12/23/2014] [Accepted: 12/28/2014] [Indexed: 01/10/2023]
|
40
|
Sugimoto Y, Inazumi T, Tsuchiya S. Roles of prostaglandin receptors in female reproduction. J Biochem 2014; 157:73-80. [PMID: 25480981 DOI: 10.1093/jb/mvu081] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Prostaglandins (PGs) have long been known to play roles in various processes of female reproduction; however, the molecular mechanisms therein remained unsolved until recently. This review summarizes the recent progress towards understanding the molecular mechanisms underlying PG actions in fertilization and parturition. A series of studies using EP2-deficient mice demonstrated that after ovulation chemokine signalling in the cumulus cells stimulates integrin activation and cumulus extracellular matrix (ECM) assembly through the RhoA/ROCK/actomyosin pathway, although excessive chemokine signalling disturbs sperm penetration. PGE2-EP2 signalling suppresses such a chemokine signalling and stimulates cumulus ECM disassembly, which contributes to successful fertilization. A series of studies using FP-deficient mice revealed that PGF(2α)-FP signalling induces parturition at least by terminating progesterone production; however, some other EP signals are likely to be involved in parturition by inducing myometrial contraction. Therefore, it should be clarified as to which EP and/or FP receptor signals are physiologically essential for myometrial contraction and successful parturition.
Collapse
Affiliation(s)
- Yukihiko Sugimoto
- Department of Pharmaceutical Biochemistry, Kumamoto University Graduate School of Pharmaceutical Sciences, Oe-Honmachi, Kumamoto 862-0973, Japan and CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan Department of Pharmaceutical Biochemistry, Kumamoto University Graduate School of Pharmaceutical Sciences, Oe-Honmachi, Kumamoto 862-0973, Japan and CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Tomoaki Inazumi
- Department of Pharmaceutical Biochemistry, Kumamoto University Graduate School of Pharmaceutical Sciences, Oe-Honmachi, Kumamoto 862-0973, Japan and CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Soken Tsuchiya
- Department of Pharmaceutical Biochemistry, Kumamoto University Graduate School of Pharmaceutical Sciences, Oe-Honmachi, Kumamoto 862-0973, Japan and CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan Department of Pharmaceutical Biochemistry, Kumamoto University Graduate School of Pharmaceutical Sciences, Oe-Honmachi, Kumamoto 862-0973, Japan and CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
| |
Collapse
|
41
|
A novel technique for oviduct occlusion to generate live births from cryopreserved rabbit oocytes after in vivo fertilisation. Anim Reprod Sci 2014; 148:197-204. [DOI: 10.1016/j.anireprosci.2014.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 06/03/2014] [Accepted: 06/19/2014] [Indexed: 11/19/2022]
|
42
|
Klinovska K, Sebkova N, Dvorakova-Hortova K. Sperm-egg fusion: a molecular enigma of mammalian reproduction. Int J Mol Sci 2014; 15:10652-68. [PMID: 24933635 PMCID: PMC4100174 DOI: 10.3390/ijms150610652] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/13/2014] [Accepted: 05/30/2014] [Indexed: 12/14/2022] Open
Abstract
The mechanism of gamete fusion remains largely unknown on a molecular level despite its indisputable significance. Only a few of the molecules required for membrane interaction are known, among them IZUMO1, which is present on sperm, tetraspanin CD9, which is present on the egg, and the newly found oolema protein named Juno. A concept of a large multiprotein complex on both membranes forming fusion machinery has recently emerged. The Juno and IZUMO1, up to present, is the only known extracellular receptor pair in the process of fertilization, thus, facilitating the essential binding of gametes. However, neither IZUMO1 nor Juno appears to be the fusogenic protein. At the same time, the tetraspanin is expected to play a role in organizing the egg membrane order and to interact laterally with other factors. This review summarizes, to present, the known molecules involved in the process of sperm-egg fusion. The complexity and expected redundancy of the involved factors makes the process an intricate and still poorly understood mechanism, which is difficult to comprehend in its full distinction.
Collapse
Affiliation(s)
- Karolina Klinovska
- BIOCEV Group, Department of Zoology, Charles University in Prague, Vinicna 7, Prague 2 128 44, Czech Republic.
| | - Natasa Sebkova
- BIOCEV Group, Department of Zoology, Charles University in Prague, Vinicna 7, Prague 2 128 44, Czech Republic.
| | - Katerina Dvorakova-Hortova
- BIOCEV Group, Department of Zoology, Charles University in Prague, Vinicna 7, Prague 2 128 44, Czech Republic.
| |
Collapse
|
43
|
Abstract
Fertilization is the process by which eggs and spermatozoa interact, achieve mutual recognition, and fuse to create a zygote, which then develops to form a new individual, thus allowing for the continuity of a species. Despite numerous studies on mammalian fertilization, the molecular mechanisms underpinning the fertilization event remain largely unknown. However, as I summarize here, recent work using both gene-manipulated animals and in vitro studies has begun to elucidate essential sperm and egg molecules and to establish predictive models of successful fertilization.
Collapse
Affiliation(s)
- Masaru Okabe
- Center for Genetic Analysis for Biological Responses Research Institute for Microbial Diseases Osaka University, Yamadaoka 3-1, Suita, Osaka 565-0871, Japan
| |
Collapse
|
44
|
Wang G, Wu Y, Zhou T, Guo Y, Zheng B, Wang J, Bi Y, Liu F, Zhou Z, Guo X, Sha J. Mapping of the N-Linked Glycoproteome of Human Spermatozoa. J Proteome Res 2013; 12:5750-9. [DOI: 10.1021/pr400753f] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gaigai Wang
- State Key Laboratory of Reproductive
Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Yibo Wu
- State Key Laboratory of Reproductive
Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Tao Zhou
- State Key Laboratory of Reproductive
Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive
Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Bo Zheng
- State Key Laboratory of Reproductive
Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Jing Wang
- State Key Laboratory of Reproductive
Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Ye Bi
- State Key Laboratory of Reproductive
Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Fangjuan Liu
- State Key Laboratory of Reproductive
Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Zuomin Zhou
- State Key Laboratory of Reproductive
Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive
Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Jiahao Sha
- State Key Laboratory of Reproductive
Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
45
|
Drew S, Leigh C, Breed WG. Spermatozoa of the old endemic rodents of Australia - the possible functional significance of their ventral processes. Reprod Fertil Dev 2013; 26:1183-7. [PMID: 24138753 DOI: 10.1071/rd13162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 09/13/2013] [Indexed: 11/23/2022] Open
Abstract
Spermatozoa of the plains mouse (Pseudomys australis), like those of most Australian old endemic rodents, contain, in addition to an apical hook, two further processes that extend from the upper concave surface of the head, the ventral processes. This study shows that these processes contain thiol-rich cytoskeletal proteins, which presumably help to maintain their rigidity during sperm transport, together with the overlying cell membrane having abundant intramembranous proteins. To determine the possible functional significance of these processes, an in vitro study of spermatozoon-zona binding was undertaken. The findings suggest that initial sperm binding occurs by way of the cell membrane over the acrosome of the apical hook and that, subsequently, the lateral surfaces of the ventral processes also become tightly bound to the zona matrix. These ventral processes may therefore have evolved to increase sperm adhesion to the outer zona surface and/or to enhance stabilisation of the spermatozoon at the time of zona binding and initial penetration of the egg coat.
Collapse
Affiliation(s)
- Simon Drew
- Discipline of Anatomy and Pathology, School of Medical Sciences, Faculty of Heath Sciences, The University of Adelaide, SA 5005, Australia
| | - Chris Leigh
- Discipline of Anatomy and Pathology, School of Medical Sciences, Faculty of Heath Sciences, The University of Adelaide, SA 5005, Australia
| | - William G Breed
- Discipline of Anatomy and Pathology, School of Medical Sciences, Faculty of Heath Sciences, The University of Adelaide, SA 5005, Australia
| |
Collapse
|
46
|
Chen S, Einspanier R, Schoen J. In vitro mimicking of estrous cycle stages in porcine oviduct epithelium cells: estradiol and progesterone regulate differentiation, gene expression, and cellular function. Biol Reprod 2013; 89:54. [PMID: 23904510 DOI: 10.1095/biolreprod.113.108829] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Throughout the estrous cycle the oviduct epithelium undergoes dramatic morphological and functional changes. To elucidate cyclic cellular events and associated regulation mechanisms of 17beta estradiol (E2) and progesterone (P4), we mimicked estrous cycle stages in vitro using a culture system of primary porcine oviduct epithelium cells (POEC). Cells were polarized in an air/liquid interface and then treated with E2 and P4 for physiological time periods: In experiment 1, high concentration of P4 with low concentration of E2 for 10 days resembled diestrus; in experiment 2, following the previous diestrus, sequential high E2 with low P4 for 2.5 days represented estrus. Histomorphometry and electron microscopy showed cyclic changes in cellular height, cell population, and cilia density under the influence of hormone stimulation. Transepithelial electrical resistance was high in simulated diestrus but reduced in estrus. Thus, E2 and P4 affect cellular polarity, transformation of ciliated and secretory cells, as well as electrical conductivity of oviduct epithelium. Simulation of diestrus led to significant decrease in expression of hormone receptors (PGR and ESR1) and other epithelial markers (MUC16, OVGP1, and HSP90B1), while sequential simulated estrus caused an increase in these markers. The hormonal regulation of some marker genes was clearly time-dependent. Furthermore, POEC showed increased sperm-binding capacity in simulated estrus. In this study, we also present a novel approach based on the AndroVision software, which can be routinely utilized as a parameter for ciliary activity, and for the first time, we showed fluid movement patterns along the epithelium lining in vitro.
Collapse
Affiliation(s)
- Shuai Chen
- Institute of Veterinary Biochemistry, Department of Veterinary Medicine, Freie Universitaet Berlin, Berlin, Germany
| | | | | |
Collapse
|
47
|
Yániz JL, Carretero T, Recreo P, Arceiz E, Santolaria P. Three-Dimensional Architecture of the Ovine Oviductal Mucosa. Anat Histol Embryol 2013; 43:331-40. [DOI: 10.1111/ahe.12078] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 06/09/2013] [Indexed: 11/29/2022]
Affiliation(s)
- J. L. Yániz
- Instituto Universitario de Ciencias Ambientales de Aragón (IUCA); Universidad de Zaragoza; Ctra Cuarte S/N 22071 Huesca Spain
| | - T. Carretero
- Instituto Universitario de Ciencias Ambientales de Aragón (IUCA); Universidad de Zaragoza; Ctra Cuarte S/N 22071 Huesca Spain
| | - P. Recreo
- Instituto Universitario de Ciencias Ambientales de Aragón (IUCA); Universidad de Zaragoza; Ctra Cuarte S/N 22071 Huesca Spain
| | - E. Arceiz
- Instituto Universitario de Ciencias Ambientales de Aragón (IUCA); Universidad de Zaragoza; Ctra Cuarte S/N 22071 Huesca Spain
| | - P. Santolaria
- Instituto Universitario de Ciencias Ambientales de Aragón (IUCA); Universidad de Zaragoza; Ctra Cuarte S/N 22071 Huesca Spain
| |
Collapse
|
48
|
Marín-Juez R, Viñas J, Mechaly AS, Planas JV, Piferrer F. Stage-specific gene expression during spermatogenesis in the Senegalese sole (Solea senegalensis), a fish with semi-cystic type of spermatogenesis, as assessed by laser capture microdissection and absolute quantitative PCR. Gen Comp Endocrinol 2013; 188:242-50. [PMID: 23631904 DOI: 10.1016/j.ygcen.2013.04.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 04/05/2013] [Accepted: 04/10/2013] [Indexed: 11/26/2022]
Abstract
Spermatogenesis is a complex process where hormonal signals regulate the interaction of different cell types in a tight spatial and temporal fashion. The Senegalese sole (Solea senegalensis) is a marine flatfish that, in contrast to many fish, exhibits a semi-cystic, asynchronous pattern of spermatogenesis progression. This pattern is characterized by the release of spermatids into the tubule lumen, where they transform into spermatozoa. In this study, we used laser capture microdissection (LCM) to isolate cells from cysts containing spermatogonia, spermatocytes, spermatids or spermatozoa in order to investigate developmental patterns of gene expression. Furthermore, we also analyzed the stage-specific expression of the same set of genes throughout spermatogenesis (early-mid, late and maturing spermatogenic stages) in tissue fragments of the Senegalese sole testis. Genes analyzed by absolute qPCR in cysts isolated by LCM and stage-specific testis samples included genes involved in steroid synthesis and action (3β-hsd, 17β-hsd, 20β-hsd, star, star-like, progesterone receptor), gonadotropin action (fshr, lhr), the kisspeptin system (kiss2, kiss2r) and other genes important for the production of mature gametes (zona pellucida 2.2, claudin and clusterin). Our results show that, in general, steroidogenesis-related genes tended to increase with spermatogenesis progression and that 3β-hsd and 20β-hsd were expressed in germ cells but 17β-hsd was not. Our results also show that fshr is expressed in most testicular cell types, including germ cells. In contrast, lhr is expressed only in late spermatogenesis and is not expressed in any of the germ cell types examined, indicating that, in contrast to fshr, lhr may be primarily expressed in non-germinal cells (e.g. Leydig cells). Furthermore, kisspeptin and its receptor were expressed in all germ cell types examined and, as expected, gamete maturation-related genes were more expressed in mature stages. These results illustrate that key factors that participate in the hormonal regulation of spermatogenesis in the Senegalese sole testis show complex cell type- and stage-specific patterns of gene expression.
Collapse
Affiliation(s)
- Rubén Marín-Juez
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona i Institut de Biomedicina de la Universitat de Barcelona (IBUB), Avgda. Diagonal, 643, 08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
49
|
Kozlovsky P, Gefen A. Sperm penetration to the zona pellucida of an oocyte: a computational model incorporating acrosome reaction. Comput Methods Biomech Biomed Engin 2013; 16:1106-11. [PMID: 23477851 DOI: 10.1080/10255842.2013.768618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
For fertilisation to occur, a spermatozoon needs to cross the zona pellucida (ZP), which is a glycoprotein layer surrounding the oocyte. Crossing the ZP requires an acrosome reaction (AR) where enzymes released from the spermatozoon head locally digest and soften the ZP so that the spermatozoon can penetrate deeper. Here, a biomechanical sperm-oocyte interaction model that considers the AR using the finite element method was formulated. This modelling is used to determine which of the following factors directly contribute to the crossing of the ZP: local ZP softening by AR, sperm head shape, ZP hardening elsewhere than in the AR site, ZP thickness and sperm hyperactivation (more flagellar beating). It has been found that an AR softening the ZP to over one-tenth of its basal stiffness is important for successful sperm penetration, and that 'sharper' heads have a biomechanical advantage in penetrating deeper. The approach is promising for understanding this exciting stage of reproduction.
Collapse
Affiliation(s)
- Pavel Kozlovsky
- a Department of Biomedical Engineering , Faculty of Engineering, Tel Aviv University , Tel Aviv , 69978 , Israel
| | | |
Collapse
|
50
|
Coy P, García-Vázquez FA, Visconti PE, Avilés M. Roles of the oviduct in mammalian fertilization. Reproduction 2012; 144:649-60. [PMID: 23028122 DOI: 10.1530/rep-12-0279] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The oviduct or Fallopian tube is the anatomical region where every new life begins in mammalian species. After a long journey, the spermatozoa meet the oocyte in the specific site of the oviduct named ampulla and fertilization takes place. The successful fertilization depends on several biological processes that occur in the oviduct some hours before this rendezvous and affect both gametes. Estrogen and progesterone, released from the ovary, orchestrate a series of changes by genomic and nongenomic pathways in the oviductal epithelium affecting gene expression, proteome, and secretion of its cells into the fluid bathing the oviductal lumen. In addition, new regulatory molecules are being discovered playing important roles in oviductal physiology and fertilization. The present review tries to describe these processes, building a comprehensive map of the physiology of the oviduct, to better understand the importance of this organ in reproduction. With this purpose, gamete transport, sperm and oocyte changes in the oviductal environment, and other interactions between gametes and oviduct are discussed in light of recent publications in the field.
Collapse
Affiliation(s)
- P Coy
- Department of Physiology, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum, Campus de Espinardo, Murcia 30071, Spain.
| | | | | | | |
Collapse
|