1
|
Dhori X, Gioiosa S, Gonfloni S. An integrated analysis of multiple datasets reveals novel gene signatures in human granulosa cells. Sci Data 2024; 11:972. [PMID: 39242561 PMCID: PMC11379948 DOI: 10.1038/s41597-024-03715-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 08/01/2024] [Indexed: 09/09/2024] Open
Abstract
Granulosa cells (GCs) play crucial roles in oocyte maturation. Through gap junctions and extracellular vesicles, they mediate the exchange of molecules such as microRNAs and messenger RNAs. Different ovarian cell types exhibit unique gene expression profiles, reflecting their specialized functions and stages. By combining RNA-seq data from various cell types forming the follicle, we aimed at capturing a wide range of expression patterns, offering insights into the functional diversity and complexity of the transcriptome regulation across GCs. Herein, we performed an integrated bioinformatics analysis of RNA sequencing datasets present in public databases, with a unique and standardized workflow., By combining the data from different studies, we successfully increased the robustness and reliability of our findings and discovered novel genes, miRNAs, and signaling pathways associated with GCs function and oocyte maturation. Moreover, our results provide a valuable resource for further wet-lab research on GCs biology and their impact on oocyte development and competence.
Collapse
Affiliation(s)
- Xhulio Dhori
- CINECA, Super Computing Applications and Innovation Department, Via dei Tizii 6B, 000185, Roma, Italy
- Department of Biology, University of Roma, via della Ricerca Scientifica 00133, Roma, Italy
| | - Silvia Gioiosa
- CINECA, Super Computing Applications and Innovation Department, Via dei Tizii 6B, 000185, Roma, Italy.
| | - Stefania Gonfloni
- Department of Biology, University of Roma, via della Ricerca Scientifica 00133, Roma, Italy.
| |
Collapse
|
2
|
Zhang W, Li K, Li S, Lv R, Ma J, Yin P, Li L, Sun N, Chen Y, Lu L, Li Y, Zhang Q, Yan H. High-throughput sequencing reveals hub genes for human early embryonic development arrest in vitro fertilization: a pilot study. Front Physiol 2023; 14:1279559. [PMID: 38033342 PMCID: PMC10684309 DOI: 10.3389/fphys.2023.1279559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/13/2023] [Indexed: 12/02/2023] Open
Abstract
Many clinical studies have shown that embryos of in vitro fertilization (IVF) are often prone to developmental arrest, which leads to recurrent failure of IVF treatment. Early embryonic arrest has always been an urgent clinical problem in assisted reproduction centers. However, the molecular mechanisms underlying early embryonic development arrest remain largely unknown. The objective of this study is to investigate potential candidate hub genes and key signaling pathways involved in early stages of embryonic development. RNA-seq analysis was performed on normal and arrest embryos to study the changes of gene expression during early embryonic development. A total of 520 genes exhibiting differential expression were identified, with 174 genes being upregulated and 346 genes being downregulated. Upregulated genes show enrichment in biosynthesis, cellular proliferation and differentiation, and epigenetic regulation. While downregulated genes exhibit enrichment in transcriptional activity, epigenetic regulation, cell cycle progression, cellular proliferation and ubiquitination. The STRING (search tool for the retravel of interacting genes/proteins) database was utilized to analyze protein-protein interactions among these genes, aiming to enhance comprehension of the potential role of these differentially expressed genes (DEGs). A total of 22 hub genes (highly connected genes) were identified among the DEGs using Cytoscape software. Of these, ERBB2 and VEGFA were upregulated, while the remaining 20 genes (CCNB1, CCNA2, DICER1, NOTCH1, UBE2B, UBE2N, PRMT5, UBE2D1, MAPK3, SOX9, UBE2C, UB2D2, EGF, ACTB, UBA52, SHH, KRAS, UBE2E1, ADAM17 and BRCA2) were downregulated. These hub genes are associated with crucial biological processes such as ubiquitination, cellular senescence, cell proliferation and differentiation, and cell cycle. Among these hub genes, CCNA2 and CCNB1 may be involved in controlling cell cycle, which are critical process in early embryonic development.
Collapse
Affiliation(s)
- Wuwen Zhang
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kai Li
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shifeng Li
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Rong Lv
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Ma
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Yin
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Li
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ningyu Sun
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanyuan Chen
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Lu
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yun Li
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qinhua Zhang
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Yan
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Shi S, Geng Z, Yu X, Hu B, Liu L, Chi Z, Qu L, Zhang M, Jin Y. Salidroside Supplementation Affects In Vitro Maturation and Preimplantation Embryonic Development by Promoting Meiotic Resumption. Genes (Basel) 2023; 14:1729. [PMID: 37761869 PMCID: PMC10530922 DOI: 10.3390/genes14091729] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023] Open
Abstract
Salidroside (Sal) possesses several pharmacological activities, such as antiaging, and anti-inflammatory, antioxidant, anticancer activities, and proliferation-promoting activities, but the effects of Sal on oocytes have rarely been reported. In the present study, we evaluated the beneficial effects of Sal, which is mainly found in the roots of Rhodiola. Porcine cumulus oocyte complexes were cultured in IVM medium supplemented (with 250 μmol/L) with Sal or not supplemented with Sal. The maturation rate in the Sal group increased from 88.34 ± 4.32% to 94.12 ± 2.29%, and the blastocyst rate in the Sal group increased from 30.35 ± 3.20% to 52.14 ± 7.32% compared with that in the control group. The experimental groups showed significant improvements in the cumulus expansion area. Sal reduced oocyte levels of reactive oxygen species (ROS) and enhanced intracellular GSH levels. Sal supplementation enhanced the mitochondrial membrane potential (MMP), ATP level, and mtDNA copy number, which shows that Sal enhances the cytoplasmic maturation of oocytes. Oocytes in the Sal group exhibited slowed apoptosis and reduced DNA breakage. Cell cycle signals and oocyte meiosis play important roles in oocyte maturation. The mRNA expressions of the MAPK pathway and MAPK phosphorylation increased significantly in the Sal group. The mRNA expression of the oocyte meiosis gene also increased significantly. These results show that Sal enhances the nuclear maturation of oocytes. Moreover, Sal increased the number of blastocyst cells, the proliferation of blastocysts, and the expressions of pluripotency genes. Sal down-regulated apoptosis-related genes and the apoptotic cell rate of blastocysts. In summary, our results demonstrate that Sal is helpful to improving the quality of porcine oocytes in vitro, and their subsequent embryonic development.
Collapse
Affiliation(s)
- Shuming Shi
- Jilin Provincial Key Laboratory of Animal Model, College of Animal Science, Jilin University, Changchun 130062, China; (S.S.); (Z.G.); (X.Y.); (L.L.); (Z.C.); (L.Q.)
| | - Zhaojun Geng
- Jilin Provincial Key Laboratory of Animal Model, College of Animal Science, Jilin University, Changchun 130062, China; (S.S.); (Z.G.); (X.Y.); (L.L.); (Z.C.); (L.Q.)
| | - Xianfeng Yu
- Jilin Provincial Key Laboratory of Animal Model, College of Animal Science, Jilin University, Changchun 130062, China; (S.S.); (Z.G.); (X.Y.); (L.L.); (Z.C.); (L.Q.)
| | - Bing Hu
- Animal Genome Editing Technology Innovation Center, College of Animal Science, Jilin University, Changchun 130062, China;
| | - Liying Liu
- Jilin Provincial Key Laboratory of Animal Model, College of Animal Science, Jilin University, Changchun 130062, China; (S.S.); (Z.G.); (X.Y.); (L.L.); (Z.C.); (L.Q.)
| | - Zhichao Chi
- Jilin Provincial Key Laboratory of Animal Model, College of Animal Science, Jilin University, Changchun 130062, China; (S.S.); (Z.G.); (X.Y.); (L.L.); (Z.C.); (L.Q.)
| | - Linyi Qu
- Jilin Provincial Key Laboratory of Animal Model, College of Animal Science, Jilin University, Changchun 130062, China; (S.S.); (Z.G.); (X.Y.); (L.L.); (Z.C.); (L.Q.)
| | - Mingjun Zhang
- Animal Genome Editing Technology Innovation Center, College of Animal Science, Jilin University, Changchun 130062, China;
| | - Yongxun Jin
- Jilin Provincial Key Laboratory of Animal Model, College of Animal Science, Jilin University, Changchun 130062, China; (S.S.); (Z.G.); (X.Y.); (L.L.); (Z.C.); (L.Q.)
| |
Collapse
|
4
|
Gu L, Li X, Zhu W, Shen Y, Wang Q, Liu W, Zhang J, Zhang H, Li J, Li Z, Liu Z, Li C, Wang H. Ultrasensitive proteomics depicted an in-depth landscape for the very early stage of mouse maternal-to-zygotic transition. J Pharm Anal 2023; 13:942-954. [PMID: 37719194 PMCID: PMC10499587 DOI: 10.1016/j.jpha.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 09/19/2023] Open
Abstract
Single-cell or low-input multi-omics techniques have revolutionized the study of pre-implantation embryo development. However, the single-cell or low-input proteomic research in this field is relatively underdeveloped because of the higher threshold of the starting material for mammalian embryo samples and the lack of hypersensitive proteome technology. In this study, a comprehensive solution of ultrasensitive proteome technology (CS-UPT) was developed for single-cell or low-input mouse oocyte/embryo samples. The deep coverage and high-throughput routes significantly reduced the starting material and were selected by investigators based on their demands. Using the deep coverage route, we provided the first large-scale snapshot of the very early stage of mouse maternal-to-zygotic transition, including almost 5,500 protein groups from 20 mouse oocytes or zygotes for each sample. Moreover, significant protein regulatory networks centered on transcription factors and kinases between the MII oocyte and 1-cell embryo provided rich insights into minor zygotic genome activation.
Collapse
Affiliation(s)
- Lei Gu
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xumiao Li
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wencheng Zhu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 200031, China
| | - Yi Shen
- Shanghai Applied Protein Technology Co., Ltd., Shanghai, 201100, China
| | - Qinqin Wang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wenjun Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Junfeng Zhang
- Shanghai Applied Protein Technology Co., Ltd., Shanghai, 201100, China
| | - Huiping Zhang
- Shanghai Applied Protein Technology Co., Ltd., Shanghai, 201100, China
| | - Jingquan Li
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ziyi Li
- Shanghai Applied Protein Technology Co., Ltd., Shanghai, 201100, China
| | - Zhen Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 200031, China
| | - Chen Li
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hui Wang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
5
|
Zuidema D, Jones A, Song WH, Zigo M, Sutovsky P. Identification of candidate mitochondrial inheritance determinants using the mammalian cell-free system. eLife 2023; 12:RP85596. [PMID: 37470242 PMCID: PMC10393022 DOI: 10.7554/elife.85596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023] Open
Abstract
The degradation of sperm-borne mitochondria after fertilization is a conserved event. This process known as post-fertilization sperm mitophagy, ensures exclusively maternal inheritance of the mitochondria-harbored mitochondrial DNA genome. This mitochondrial degradation is in part carried out by the ubiquitin-proteasome system. In mammals, ubiquitin-binding pro-autophagic receptors such as SQSTM1 and GABARAP have also been shown to contribute to sperm mitophagy. These systems work in concert to ensure the timely degradation of the sperm-borne mitochondria after fertilization. We hypothesize that other receptors, cofactors, and substrates are involved in post-fertilization mitophagy. Mass spectrometry was used in conjunction with a porcine cell-free system to identify other autophagic cofactors involved in post-fertilization sperm mitophagy. This porcine cell-free system is able to recapitulate early fertilization proteomic interactions. Altogether, 185 proteins were identified as statistically different between control and cell-free-treated spermatozoa. Six of these proteins were further investigated, including MVP, PSMG2, PSMA3, FUNDC2, SAMM50, and BAG5. These proteins were phenotyped using porcine in vitro fertilization, cell imaging, proteomics, and the porcine cell-free system. The present data confirms the involvement of known mitophagy determinants in the regulation of mitochondrial inheritance and provides a master list of candidate mitophagy co-factors to validate in the future hypothesis-driven studies.
Collapse
Affiliation(s)
- Dalen Zuidema
- Division of Animal Sciences, University of Missouri, Columbia, United States
| | - Alexis Jones
- Division of Animal Sciences, University of Missouri, Columbia, United States
| | - Won-Hee Song
- Division of Animal Sciences, University of Missouri, Columbia, United States
| | - Michal Zigo
- Division of Animal Sciences, University of Missouri, Columbia, United States
| | - Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, United States
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, United States
| |
Collapse
|
6
|
Li T, Ye Y, Wu P, Luo R, Zhang H, Zheng W. Proteasome β3 subunit (PSMB3) controls female reproduction by promoting ecdysteroidogenesis during sexual maturation in Bactrocera dorsalis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 157:103959. [PMID: 37172766 DOI: 10.1016/j.ibmb.2023.103959] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
Steroid hormone 20-hydroxyecdysone (20E) plays critical roles in reproductive development in dipterans and several other insect species. Ecdysteroidogenesis in the glands of larval or nymphal insects and other arthropods has been extensively studied, but that in the adult gonads remains largely unknown. Here we identified a proteasome β3 subunit (PSMB3) from a highly invasive pest Bactrocera dorsalis, and found that this gene was crucial for ecdysone production during female reproduction. PSMB3 was enriched in the ovary, and it was upregulated during sexual maturation. RNAi-mediated depletion of PSMB3 resulted in retarded ovarian development and decreased fecundity. Additionally, knockdown of PSMB3 reduced 20E titer in hemolymph of B. dorsalis. Molecularly, RNA sequencing and qPCR validation revealed that PSMB3 depletion suppressed the expression of 20E biosynthetic genes in the ovary and 20E responsive genes in the ovary and fat body. Furthermore, exogenous 20E rescued the inhibition of the ovarian development caused by PSMB3 depletion. Taken together, this study provides new insights into the adult reproductive development-related biological processes controlled by PSMB3, and proposed a potential eco-friendly control strategy against this notorious agricultural pest.
Collapse
Affiliation(s)
- Tianran Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yinhao Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Peng Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Rengang Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongyu Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weiwei Zheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
7
|
Feitosa WB, Morris PL. Post-ovulatory aging is associated with altered patterns for small ubiquitin-like modifier (SUMO) proteins and SUMO-specific proteases. FASEB J 2023; 37:e22816. [PMID: 36826436 DOI: 10.1096/fj.202200622r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/25/2023]
Abstract
Mammalian oocytes are ovulated arrested at metaphase of the second meiotic division. If they are not fertilized within a short period, the oocyte undergoes several progressive morphological, structural, and molecular changes during a process called oocyte aging. Herein, we focused on those functional events associated with proper cytoskeleton organization and those that correlate with spindle displacement and chromosome misalignment or scatter. Post-translational modifications by Small Ubiquitin-like Modifier (SUMO) proteins are involved in spindle organization and here we demonstrate that the SUMO pathway is involved in spindle morphology changes and chromosome movements during oocyte aging. SUMO-2/3 as well as the SUMO-specific proteases SENP-2 localization are affected by postovulatory aging in vitro. Consistent with these findings, UBC9 decreases during oocyte aging while differential ubiquitination patterns also correlate with in vitro oocyte aging. These results are consistent with postovulatory aging-related alterations in the posttranslational modifications of the spindle apparatus by SUMO and its SENP proteases. These findings are suggestive that such age-related changes in SUMOylation and the deSUMOylation of key target proteins in the spindle apparatus and kinetochore may be involved with spindle and chromosome alignment defects during mammalian oocyte postovulatory aging. Such findings may have implications for ART-related human oocyte aging in vitro regarding the activities of the SUMO pathway and fertilization success.
Collapse
Affiliation(s)
| | - Patricia L Morris
- Center for Biomedical Research, Population Council, New York, New York, USA.,The Rockefeller University, New York, New York, USA
| |
Collapse
|
8
|
Wu Y, Li M, Yang M. Post-Translational Modifications in Oocyte Maturation and Embryo Development. Front Cell Dev Biol 2021; 9:645318. [PMID: 34150752 PMCID: PMC8206635 DOI: 10.3389/fcell.2021.645318] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/15/2021] [Indexed: 12/27/2022] Open
Abstract
Mammalian oocyte maturation and embryo development are unique biological processes regulated by various modifications. Since de novo mRNA transcription is absent during oocyte meiosis, protein-level regulation, especially post-translational modification (PTM), is crucial. It is known that PTM plays key roles in diverse cellular events such as DNA damage response, chromosome condensation, and cytoskeletal organization during oocyte maturation and embryo development. However, most previous reviews on PTM in oocytes and embryos have only focused on studies of Xenopus laevis or Caenorhabditis elegans eggs. In this review, we will discuss the latest discoveries regarding PTM in mammalian oocytes maturation and embryo development, focusing on phosphorylation, ubiquitination, SUMOylation and Poly(ADP-ribosyl)ation (PARylation). Phosphorylation functions in chromosome condensation and spindle alignment by regulating histone H3, mitogen-activated protein kinases, and some other pathways during mammalian oocyte maturation. Ubiquitination is a three-step enzymatic cascade that facilitates the degradation of proteins, and numerous E3 ubiquitin ligases are involved in modifying substrates and thus regulating oocyte maturation, oocyte-sperm binding, and early embryo development. Through the reversible addition and removal of SUMO (small ubiquitin-related modifier) on lysine residues, SUMOylation affects the cell cycle and DNA damage response in oocytes. As an emerging PTM, PARlation has been shown to not only participate in DNA damage repair, but also mediate asymmetric division of oocyte meiosis. Each of these PTMs and external environments is versatile and contributes to distinct phases during oocyte maturation and embryo development.
Collapse
Affiliation(s)
- Yu Wu
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Mo Li
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Mo Yang
- Medical Center for Human Reproduction, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
He M, Zhang T, Yang Y, Wang C. Mechanisms of Oocyte Maturation and Related Epigenetic Regulation. Front Cell Dev Biol 2021; 9:654028. [PMID: 33842483 PMCID: PMC8025927 DOI: 10.3389/fcell.2021.654028] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022] Open
Abstract
Meiosis is the basis of sexual reproduction. In female mammals, meiosis of oocytes starts before birth and sustains at the dictyate stage of meiotic prophase I before gonadotropins-induced ovulation happens. Once meiosis gets started, the oocytes undergo the leptotene, zygotene, and pachytene stages, and then arrest at the dictyate stage. During each estrus cycle in mammals, or menstrual cycle in humans, a small portion of oocytes within preovulatory follicles may resume meiosis. It is crucial for females to supply high quality mature oocytes for sustaining fertility, which is generally achieved by fine-tuning oocyte meiotic arrest and resumption progression. Anything that disturbs the process may result in failure of oogenesis and seriously affect both the fertility and the health of females. Therefore, uncovering the regulatory network of oocyte meiosis progression illuminates not only how the foundations of mammalian reproduction are laid, but how mis-regulation of these steps result in infertility. In order to provide an overview of the recently uncovered cellular and molecular mechanism during oocyte maturation, especially epigenetic modification, the progress of the regulatory network of oocyte meiosis progression including meiosis arrest and meiosis resumption induced by gonadotropins is summarized. Then, advances in the epigenetic aspects, such as histone acetylation, phosphorylation, methylation, glycosylation, ubiquitination, and SUMOylation related to the quality of oocyte maturation are reviewed.
Collapse
Affiliation(s)
- Meina He
- Department of Biology, School of Basic Medical Science, Guizhou Medical University, Guiyang, China
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan, China
| | - Tuo Zhang
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan, China
| | - Yi Yang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan, China
| | - Chao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan, China
| |
Collapse
|
10
|
Li J, Zhou Y, Zhou Z, Lin C, Wei J, Qin Y, Xiang Z, Ma H, Zhang Y, Zhang Y, Yu Z. Comparative transcriptome analysis of three gonadal development stages reveals potential genes involved in gametogenesis of the fluted giant clam (Tridacna squamosa). BMC Genomics 2020; 21:872. [PMID: 33287701 PMCID: PMC7720611 DOI: 10.1186/s12864-020-07276-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Gonad development and differentiation is an essential function for all sexually reproducing species, and many aspects of these developmental processes are highly conserved among the metazoa. However, the mechanisms underlying gonad development and gametogenesis remain unclear in Tridacna squamosa, a large-size bivalve of great ecological value. They are protandrous simultaneous hermaphrodites, with the male gonad maturing first, eventually followed by the female gonads. In this study, nine gonad libraries representing resting, male and hermaphrodite stages in T. squamosa were performed to identify the molecular mechanisms. RESULTS Sixteen thousand four hundred ninety-one unigenes were annotated in the NCBI non-redundant protein database. Among the annotated unigenes, 5091 and 7328 unigenes were assigned to Gene Ontology categories and the Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway database, respectively. A total of 4763 differentially expressed genes (DEGs) were identified by comparing male to resting gonads, consisting of 3499 which were comparatively upregulated in males and 1264 which were downregulated in males. Six hundred-ninteen DEGs between male and hermaphroditic gonads were identified, with 518 DEGs more strongly expressed in hermaphrodites and 101 more strongly expressed in males. GO (Gene Ontology) and KEGG pathway analyses revealed that various biological functions and processes, including functions related to the endocrine system, oocyte meiosis, carbon metabolism, and the cell cycle, were involved in regulating gonadal development and gametogenesis in T. squamosa. Testis-specific serine/threonine kinases 1 (TSSK1), TSSK4, TSSK5, Doublesex- and mab-3-related transcription factor 1 (DMRT1), SOX, Sperm surface protein 17 (SP17) and other genes were involved in male gonadal development in Tridacna squamosal. Both spermatogenesis- (TSSK4, spermatogenesis-associated protein 17, spermatogenesis-associated protein 8, sperm motility kinase X, SP17) and oogenesis-related genes (zona pellucida protein, Forkhead Box L2, Vitellogenin, Vitellogenin receptor, 5-hydroxytryptamine, 5-hydroxytryptamine receptor) were simultaneously highly expressed in the hermaphroditic gonad to maintain the hermaphroditism of T. squamosa. CONCLUSION All these results from our study will facilitate better understanding of the molecular mechanisms underlying giant clam gonad development and gametogenesis, which can provided a base on obtaining excellent gametes during the seed production process for giant clams.
Collapse
Affiliation(s)
- Jun Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, 164 West Xingang Road, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301, China
- Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya, 572024, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yinyin Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, 164 West Xingang Road, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301, China
- Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya, 572024, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zihua Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, 164 West Xingang Road, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301, China
- Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya, 572024, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuanxu Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, 164 West Xingang Road, Guangzhou, 510301, China
| | - Jinkuan Wei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, 164 West Xingang Road, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301, China
- Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya, 572024, China
| | - Yanpin Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, 164 West Xingang Road, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301, China
- Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya, 572024, China
| | - Zhiming Xiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, 164 West Xingang Road, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301, China
- Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya, 572024, China
| | - Haitao Ma
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, 164 West Xingang Road, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301, China
- Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya, 572024, China
| | - Yang Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, 164 West Xingang Road, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301, China
- Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya, 572024, China
| | - Yuehuan Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, 164 West Xingang Road, Guangzhou, 510301, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301, China.
- Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya, 572024, China.
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Ziniu Yu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, 164 West Xingang Road, Guangzhou, 510301, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301, China.
- Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya, 572024, China.
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
11
|
Zhang J, Zhang YL, Zhao LW, Pi SB, Zhang SY, Tong C, Fan HY. The CRL4-DCAF13 ubiquitin E3 ligase supports oocyte meiotic resumption by targeting PTEN degradation. Cell Mol Life Sci 2020; 77:2181-2197. [PMID: 31492966 PMCID: PMC11105099 DOI: 10.1007/s00018-019-03280-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/31/2019] [Accepted: 08/12/2019] [Indexed: 12/21/2022]
Abstract
Cullin ring-finger ubiquitin ligase 4 (CRL4) has multiple functions in the maintenance of oocyte survival and meiotic cell cycle progression. DCAF13, a novel CRL4 adaptor, is essential for oocyte development. But the mechanisms by which CRL4-DCAF13 supports meiotic maturation remained unclear. In this study, we demonstrated that DCAF13 stimulates the meiotic resumption-coupled activation of protein synthesis in oocytes, partially by maintaining the activity of PI3K signaling pathway. CRL4-DCAF13 targets the polyubiquitination and degradation of PTEN, a lipid phosphatase that inhibits PI3K pathway as well as oocyte growth and maturation. Dcaf13 knockout in oocytes caused decreased CDK1 activity and impaired meiotic cell cycle progression and chromosome condensation defects. As a result, chromosomes fail to be aligned at the spindle equatorial plate, the spindle assembly checkpoint is activated, and most Dcaf13 null oocytes are arrested at the prometaphase I. The DCAF13-dependent PTEN degradation mechanism fits in as a missing link between CRL4 ubiquitin E3 ligase and PI3K pathway, both of which are crucial for translational activation during oocyte GV-MII transition.
Collapse
Affiliation(s)
- Jue Zhang
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 866 Yu Hang Tang Rd., Hangzhou, 310058, China
| | - Yin-Li Zhang
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province; Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Long-Wen Zhao
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 866 Yu Hang Tang Rd., Hangzhou, 310058, China
| | - Shuai-Bo Pi
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 866 Yu Hang Tang Rd., Hangzhou, 310058, China
| | - Song-Ying Zhang
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province; Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Chao Tong
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 866 Yu Hang Tang Rd., Hangzhou, 310058, China
| | - Heng-Yu Fan
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province; Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 866 Yu Hang Tang Rd., Hangzhou, 310058, China.
| |
Collapse
|
12
|
Expression of CPEB1 gene affects the cycle of ovarian granulosa cells from adult and young goats. ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2019.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
13
|
Review: Sperm-oocyte interactions and their implications for bull fertility, with emphasis on the ubiquitin-proteasome system. Animal 2018; 12:s121-s132. [PMID: 29477154 DOI: 10.1017/s1751731118000253] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Fertilization is an intricate cascade of events that irreversibly alter the participating male and female gamete and ultimately lead to the union of paternal and maternal genomes in the zygote. Fertilization starts with sperm capacitation within the oviductal sperm reservoir, followed by gamete recognition, sperm-zona pellucida interactions and sperm-oolemma adhesion and fusion, followed by sperm incorporation, oocyte activation, pronuclear development and embryo cleavage. At fertilization, bull spermatozoon loses its acrosome and plasma membrane components and contributes chromosomes, centriole, perinuclear theca proteins and regulatory RNAs to the zygote. While also incorporated in oocyte cytoplasm, structures of the sperm tail, including mitochondrial sheath, axoneme, fibrous sheath and outer dense fibers are degraded and recycled. The ability of some of these sperm contributed components to give rise to functional zygotic structures and properly induce embryonic development may vary between bulls, bearing on their reproductive performance, and on the fitness, health, fertility and production traits of their offspring. Proper functioning, recycling and remodeling of gamete structures at fertilization is aided by the ubiquitin-proteasome system (UPS), the universal substrate-specific protein recycling pathway present in bovine and other mammalian oocytes and spermatozoa. This review is focused on the aspects of UPS relevant to bovine fertilization and bull fertility.
Collapse
|
14
|
The Biological Role of Hyaluronan-Rich Oocyte-Cumulus Extracellular Matrix in Female Reproduction. Int J Mol Sci 2018; 19:ijms19010283. [PMID: 29346283 PMCID: PMC5796229 DOI: 10.3390/ijms19010283] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 12/16/2022] Open
Abstract
Fertilization of the mammalian oocyte requires interactions between spermatozoa and expanded cumulus extracellular matrix (ECM) that surrounds the oocyte. This review focuses on key molecules that play an important role in the formation of the cumulus ECM, generated by the oocyte-cumulus complex. In particular, the specific inhibitors (AG1478, lapatinib, indomethacin and MG132) and progesterone receptor antagonist (RU486) exerting their effects through the remodeling of the ECM of the cumulus cells surrounding the oocyte have been described. After gonadotropin stimulus, cumulus cells expand and form hyaluronan (HA)-rich cumulus ECM. In pigs, the proper structure of the cumulus ECM depends on the interaction between HA and serum-derived proteins of the inter-alpha-trypsin inhibitor (IαI) protein family. We have demonstrated the synthesis of HA by cumulus cells, and the presence of the IαI, tumor necrosis factor-alpha-induced protein 6 and pentraxin 3 in expanding oocyte-cumulus complexes (OCC). We have evaluated the covalent linkage of heavy chains of IαI proteins to HA, as the principal component of the expanded HA-rich cumulus ECM, in porcine OCC cultured in medium with specific inhibitors: AG1478 and lapatinib (both inhibitors of epidermal growth factor receptor tyrosine kinase activity); MG132 (a specific proteasomal inhibitor), indomethacin (cyclooxygenase inhibitor); and progesterone receptor antagonist (RU486). We have found that both RU486 and indomethacin does not disrupt the formation of the covalent linkage between the heavy chains of IαI to HA in the expanded OCC. In contrast, the inhibitors AG1478 and lapatinib prevent gonadotropin-induced cumulus expansion. Finally, the formation of oocyte-cumulus ECM relying on the covalent transfer of heavy chains of IαI molecules to HA has been inhibited in the presence of MG132.
Collapse
|
15
|
Adamkova K, Yi YJ, Petr J, Zalmanova T, Hoskova K, Jelinkova P, Moravec J, Kralickova M, Sutovsky M, Sutovsky P, Nevoral J. SIRT1-dependent modulation of methylation and acetylation of histone H3 on lysine 9 (H3K9) in the zygotic pronuclei improves porcine embryo development. J Anim Sci Biotechnol 2017; 8:83. [PMID: 29118980 PMCID: PMC5664433 DOI: 10.1186/s40104-017-0214-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/25/2017] [Indexed: 12/31/2022] Open
Abstract
Background The histone code is an established epigenetic regulator of early embryonic development in mammals. The lysine residue K9 of histone H3 (H3K9) is a prime target of SIRT1, a member of NAD+-dependent histone deacetylase family of enzymes targeting both histone and non-histone substrates. At present, little is known about SIRT1-modulation of H3K9 in zygotic pronuclei and its association with the success of preimplantation embryo development. Therefore, we evaluated the effect of SIRT1 activity on H3K9 methylation and acetylation in porcine zygotes and the significance of H3K9 modifications for early embryonic development. Results Our results show that SIRT1 activators resveratrol and BML-278 increased H3K9 methylation and suppressed H3K9 acetylation in both the paternal and maternal pronucleus. Inversely, SIRT1 inhibitors nicotinamide and sirtinol suppressed methylation and increased acetylation of pronuclear H3K9. Evaluation of early embryonic development confirmed positive effect of selective SIRT1 activation on blastocyst formation rate (5.2 ± 2.9% versus 32.9 ± 8.1% in vehicle control and BML-278 group, respectively; P ≤ 0.05). Stimulation of SIRT1 activity coincided with fluorometric signal intensity of ooplasmic ubiquitin ligase MDM2, a known substrate of SIRT1 and known limiting factor of epigenome remodeling. Conclusions We conclude that SIRT1 modulates zygotic histone code, obviously through direct deacetylation and via non-histone targets resulting in increased H3K9me3. These changes in zygotes lead to more successful pre-implantation embryonic development and, indeed, the specific SIRT1 activation due to BML-278 is beneficial for in vitro embryo production and blastocyst achievement.
Collapse
Affiliation(s)
- Katerina Adamkova
- Department of Veterinary Sciences, Faculty of Agriculture, Food and Natural Resources, Czech University of Life Sciences Prague, 6-Suchdol, Prague, Czech Republic
| | - Young-Joo Yi
- Division of Biotechnology, Safety, Environment and Life Science Institute, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, 54596 South Korea
| | - Jaroslav Petr
- Institute of Animal Science, 10-Uhrineves, Prague, Czech Republic
| | - Tereza Zalmanova
- Department of Veterinary Sciences, Faculty of Agriculture, Food and Natural Resources, Czech University of Life Sciences Prague, 6-Suchdol, Prague, Czech Republic.,Institute of Animal Science, 10-Uhrineves, Prague, Czech Republic
| | - Kristyna Hoskova
- Department of Veterinary Sciences, Faculty of Agriculture, Food and Natural Resources, Czech University of Life Sciences Prague, 6-Suchdol, Prague, Czech Republic.,Institute of Animal Science, 10-Uhrineves, Prague, Czech Republic
| | - Pavla Jelinkova
- Department of Veterinary Sciences, Faculty of Agriculture, Food and Natural Resources, Czech University of Life Sciences Prague, 6-Suchdol, Prague, Czech Republic
| | - Jiri Moravec
- Proteomic Laboratory, Biomedical Center of Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Milena Kralickova
- Laboratory of Reproductive Medicine of Biomedical Center, Charles University, Pilsen, Czech Republic.,Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Miriam Sutovsky
- Division of Animal Science, University of Missouri, Columbia, MO USA
| | - Peter Sutovsky
- Division of Animal Science, University of Missouri, Columbia, MO USA.,Departments of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO USA
| | - Jan Nevoral
- Department of Veterinary Sciences, Faculty of Agriculture, Food and Natural Resources, Czech University of Life Sciences Prague, 6-Suchdol, Prague, Czech Republic.,Laboratory of Reproductive Medicine of Biomedical Center, Charles University, Pilsen, Czech Republic.,Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
16
|
Wu Y, Lin J, Han B, Wang L, Chen Y, Liu M, Huang J. Proteomic profiling of follicle fluids after superstimulation in one-month-old lambs. Reprod Domest Anim 2017; 53:186-194. [DOI: 10.1111/rda.13091] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 09/09/2017] [Indexed: 02/03/2023]
Affiliation(s)
- Y Wu
- Xinjiang Academy of Animal Science; Biotechnology Research Institute; Xinjiang China
| | - J Lin
- Xinjiang Academy of Animal Science; Biotechnology Research Institute; Xinjiang China
| | - B Han
- Xinjiang Academy of Animal Science; Biotechnology Research Institute; Xinjiang China
| | - L Wang
- Xinjiang Academy of Animal Science; Biotechnology Research Institute; Xinjiang China
| | - Y Chen
- Xinjiang Academy of Animal Science; Biotechnology Research Institute; Xinjiang China
| | - M Liu
- Xinjiang Academy of Animal Science; Biotechnology Research Institute; Xinjiang China
| | - J Huang
- Xinjiang Academy of Animal Science; Biotechnology Research Institute; Xinjiang China
| |
Collapse
|
17
|
Liang S, Guo J, Choi JW, Kim NH, Cui XS. Effect and possible mechanisms of melatonin treatment on the quality and developmental potential of aged bovine oocytes. Reprod Fertil Dev 2017; 29:1821-1831. [DOI: 10.1071/rd16223] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 09/27/2016] [Indexed: 12/20/2022] Open
Abstract
After reaching the metaphase II (MII) stage, unfertilised oocytes undergo a time-dependent process of quality deterioration referred to as oocyte aging. The associated morphological and cellular changes lead to decreased oocyte developmental potential. This study investigated the effect of exogenous melatonin supplementation on in vitro aged bovine oocytes and explored its underlying mechanisms. The levels of cytoplasmic reactive oxygen species and DNA damage response in bovine oocytes increased during in vitro aging. Meanwhile, maturation promoting factor activity significantly decreased and the proportion of morphologically abnormal oocytes significantly increased. Melatonin supplementation significantly decreased quality deterioration in aged bovine MII oocytes (P < 0.05). Additionally, it decreased the frequency of aberrant spindle organisation and cortical granule release during oocyte aging (P < 0.05). In the melatonin-supplemented group, mitochondrial membrane potential and ATP production were significantly increased compared with control. Furthermore, melatonin treatment significantly increased the speed of development of bovine oocytes to the blastocyst stage after in vitro fertilisation and significantly decreased the apoptotic rate in the blastocysts (P < 0.05). The expression of Bax and Casp3 in the blastocysts was significantly reduced after treatment with melatonin, whereas expression of Bcl2 significantly increased (P < 0.05). In conclusion, these findings suggest that supplementation of aged bovine oocytes with exogenous melatonin improves oocyte quality, thereby enhancing the developmental capacity of early embryos.
Collapse
|
18
|
Nagyova E, Scsukova S, Nemcova L, Mlynarcikova A, Yi YJ, Sutovsky M, Sutovsky P. Inhibition of proteasomal proteolysis affects expression of extracellular matrix components and steroidogenesis in porcine oocyte-cumulus complexes. Domest Anim Endocrinol 2012; 42:50-62. [PMID: 22032857 DOI: 10.1016/j.domaniend.2011.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 09/07/2011] [Accepted: 09/10/2011] [Indexed: 12/25/2022]
Abstract
Porcine oocyte-cumulus complexes (OCCs) form an expanded cumulus extracellular matrix (ECM) in response to gonadotropins during meiotic maturation. Essential components of ECM are hyaluronan (HA), tumor necrosis factor α-induced protein 6 (TNFAIP6) and heavy chains (HC) of interalpha-trypsin inhibitor. To form expanded cumulus ECM, intermediate complexes (TNFAIP6-HC) must bind to HA to allow HC transfer onto HA. Protein turnover by the ubiquitin-proteasome pathway is poorly characterized in this process. It is known that the specific proteasomal inhibitor MG132 prevents cumulus expansion and formation of ECM. To determine whether inhibition of proteasomal proteolysis with MG132 affects cumulus cell steroidogenesis and expression of the cumulus expansion-related components (hyaluronan synthase type 2, HAS2, TNFAIP6) we cultured porcine OCCs and granulosa cells (GCs) in a medium supplemented with FSH/LH. Methods performed included real-time reverse transcription PCR, immunofluorescence and RIAs. The expression of TNFAIP6 and HAS2 transcripts increased significantly after the stimulation of OCCs and GCs with FSH/LH. In contrast, treatment with MG132 reduced the expression of TNFAIP6 and HAS2. Hyaluronan was detected with biotinylated HA-binding proteins within FSH/LH-stimulated expanded OCCs but not in those treated with MG132. Progesterone production, although increased almost three times after OCCs stimulation with FSH/LH, was significantly suppressed by MG132. The FSH/LH-stimulated a 40-fold increase in progesterone secretion by GCs was inhibited in the presence of MG132. In conclusion, MG132 affects progesterone secretion and expression of cumulus expansion-related components by cumulus and GCs, suggesting the requirement of ubiquitin-proteasome pathway-regulated protein turnover for formation of ECM during cumulus expansion in the preovulatory period in the pig.
Collapse
Affiliation(s)
- E Nagyova
- Academy of Sciences of the Czech Republic, Institute of Animal Physiology and Genetics, 27721 Libechov, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
19
|
You J, Kim J, Lee H, Hyun SH, Hansen PJ, Lee E. MG132 treatment during oocyte maturation improves embryonic development after somatic cell nuclear transfer and alters oocyte and embryo transcript abundance in pigs. Mol Reprod Dev 2011; 79:41-50. [PMID: 22083810 DOI: 10.1002/mrd.21402] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 10/05/2011] [Indexed: 11/08/2022]
Abstract
The objective of this study was to examine the effect of treating pig oocytes during in vitro maturation (IVM) with a proteasome inhibitor, MG132, on oocyte maturation and embryonic development. In one series of experiments, oocytes from medium-sized follicles (3-8 mm in diameter) were untreated (MCO) or treated with MG132 during 0-22 hr (M0-22) or 30-42 hr (M30-42) of IVM. There was no significant effect of MG132 on nuclear maturation or cytoplasmic maturation (as assessed by intracellular amounts of glutathione and p34cdc2 kinase activity). Blastocyst formation after parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT), however, was increased for M30-42 (65.2% and 27.7% for PA and SCNT, respectively) compared to MCO (42.6% and 13.6%, respectively) and M0-22 (45.3% and 19.5%, respectively; P<0.05). Expression of PCNA and ERK2 was increased in M30-42 for IVM oocytes while transcript abundance for POUF51, DNMT1, FGFR2, and PCNA was increased in M30-42 for 4-cell SCNT embryos. When oocytes derived from small follicles (<3 mm in diameter) were untreated (SCO) or treated with MG132 during 0-22 hr (S0-22), 30-42 hr (S30-42) of IVM, or 0-22 and 30-42 hr of IVM (S0-22/30-42), expression of POU5F1, DNMT1, FGFR2, and PCNA and blastocyst formation were increased for SCNT embryos derived from S30 to 42 (16.5%) and S0-22/30-42 oocytes (20.8%) as compared to embryos from SCO (8.7%) or S0-22 oocytes (8.8%; P<0.05). Results demonstrate that treatment of oocytes with MG132 during the later stage of IVM improves embryonic development and alters gene expression in pigs.
Collapse
Affiliation(s)
- Jinyoung You
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Korea
| | | | | | | | | | | |
Collapse
|
20
|
Proteasomal degradation of ubiquitinated proteins in oocyte meiosis and fertilization in mammals. Cell Tissue Res 2011; 346:1-9. [DOI: 10.1007/s00441-011-1235-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Accepted: 07/30/2011] [Indexed: 12/18/2022]
|
21
|
Scaife C, Mowlds P, Grassl J, Polden J, Daly CN, Wynne K, Dunn MJ, Clyne RK. 2-D DIGE analysis of the budding yeast pH 6-11 proteome in meiosis. Proteomics 2010; 10:4401-14. [DOI: 10.1002/pmic.201000376] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Le Bourhis D, Beaujean N, Ruffini S, Vignon X, Gall L. Nuclear Remodeling in Bovine Somatic Cell Nuclear Transfer Embryos Using MG132-Treated Recipient Oocytes. Cell Reprogram 2010; 12:729-38. [DOI: 10.1089/cell.2010.0035] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Daniel Le Bourhis
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy en Josas, France
- UNCEIA, Département R&D, Maisons-Alfort, France
| | - Nathalie Beaujean
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy en Josas, France
| | - Sylvie Ruffini
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy en Josas, France
| | - Xavier Vignon
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy en Josas, France
| | - Laurence Gall
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy en Josas, France
| |
Collapse
|
23
|
Assidi M, Montag M, Van der Ven K, Sirard MA. Biomarkers of human oocyte developmental competence expressed in cumulus cells before ICSI: a preliminary study. J Assist Reprod Genet 2010; 28:173-88. [PMID: 20953827 DOI: 10.1007/s10815-010-9491-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 09/28/2010] [Indexed: 02/06/2023] Open
Abstract
PURPOSE To identify reliable genomic biomarkers expressed in cumulus cells that accurately and non-invasively predict the oocyte developmental competence and reinforce the already used morphological criteria. METHODS Eight consenting patients were selected for ovarian stimulation and ICSI procedures. Cumulus-oocyte complexes were transvaginally punctured and individually selected based on both good morphological criteria and high zona pellucida birefringence. Following ICSI, two 3-day embryos per patient were transferred. Pregnancy outcome was recorded and proven implantation was thereafter confirmed. Differential gene expression was assessed using two microarray platforms. Further real-time PCR validation, Ingenuity pathways analysis and intra-patient analysis were performed on 17 selected candidates. RESULTS Seven genes were differentially (p ≤ 0.05) associated to successful pregnancy and implantation. These biomarkers could be used to predict the oocyte developmental competence. CONCLUSIONS These genomic markers are a powerful reinforcement of morphological approaches of oocyte selection. Their large-scale validation could increase pregnancy outcome and single embryo transfer efficiency.
Collapse
Affiliation(s)
- Mourad Assidi
- Centre de recherche en biologie de la reproduction, Département des Sciences Animales, Laval University, Ste-Foy, Québec, Canada, G1K 7P4
| | | | | | | |
Collapse
|
24
|
Shin SW, Tokoro M, Nishikawa S, Lee HH, Hatanaka Y, Nishihara T, Amano T, Anzai M, Kato H, Mitani T, Kishigami S, Saeki K, Hosoi Y, Iritani A, Matsumoto K. Inhibition of the ubiquitin-proteasome system leads to delay of the onset of ZGA gene expression. J Reprod Dev 2010; 56:655-63. [PMID: 20814167 DOI: 10.1262/jrd.10-104m] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In mammalian oocytes, the ubiquitin-proteasome system (UPS) is suggested to play important roles in oocyte meiosis resumption, spindle assembly, polar body emission and pronuclear formation by regulating cyclin B1 degradation. However, little is known about the direct relationship between zygotic gene activation (ZGA) and degradation of maternal proteins. Here, we investigated the role of the UPS in the onset of ZGA in early mouse embryos. First, we found degradation of cyclin B1 protein in fertilized oocytes at 1 hpi by western blot analysis and used these oocytes throughout this study. Subsequently, we determined optimal experimental conditions for transient inhibition of proteasomal activity by specific and reversible proteasomal inhibitor MG132 in the G1 phase of the first cell cycle. Under the selected optimal conditions, we subjected transient MG132-treated embryos to reverse transcription (RT)-PCR analysis of expression of four ZGA genes, i.e., the hsp70.1, MuERV-L, eif-1a and zscan4d genes. As a result, we found that onset of expression of the four examined ZGA genes was delayed in both normally developed 2-cell embryos and arrested 1-cell embryos. Our results indicate that proteasomal degradation of proteins by the UPS plays a pivotal role in the molecular mechanisms of ZGA in early mouse embryos.
Collapse
Affiliation(s)
- Seung-Wook Shin
- Division of Biological Science, Graduate School of Biology-Oriented Science and Technology, Wakayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
You J, Lee J, Kim J, Park J, Lee E. Post-fusion treatment with MG132 increases transcription factor expression in somatic cell nuclear transfer embryos in pigs. Mol Reprod Dev 2010; 77:149-57. [PMID: 19813265 DOI: 10.1002/mrd.21115] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The objective of this study was to examine the effect of post-fusion treatment of somatic cell nuclear transfer (SCNT) oocytes with the proteasomal inhibitor MG132 on maturation promoting factor (MPF) activity, nuclear remodeling, embryonic development, and gene expression of cloned pig embryos. Immediately after electrofusion, SCNT oocytes were treated with MG132 and/or caffeine for 2 hr, vanadate for 0.5 hr, or vanadate for 0.5 hr followed by MG132 for 1.5 hr. Of the MG132 concentrations tested (0-5 microM), the 1 microM concentration showed a higher rate of blastocyst formation (25.9%) than 0 (14.2%), 0.5 (16.9%), and 5 microM (16.9%). Post-fusion treatment with MG132, caffeine, and both MG132 and caffeine improved blastocyst formation (22.1%, 21.4%, and 24.4%, respectively), whereas vanadate treatment inhibited blastocyst formation (6.5%) compared to the control (11.1%). When examined 2 hr after fusion and 1 hr after activation, MPF activity remained at a higher (P < 0.05) level in SCNT oocytes that were treated post-fusion with caffeine and/or MG132, but it was decreased by vanadate. The rate of oocytes showing premature chromosome condensation was not altered by MG132 but was decreased by vanadate treatment. In addition, formation of single pronuclei was increased by MG132 compared to control and vanadate treatment. MG132-treated embryos showed increased expression of POU5F1, DPPA2, DPPA3, DPPA5, and NDP52l1 genes compared to control embryos. Our results demonstrate that post-fusion treatment of SCNT oocytes with MG132 prevents MPF degradation and increases expression of transcription factors in SCNT embryos, which are necessary for normal development of SCNT embryos.
Collapse
Affiliation(s)
- Jinyoung You
- School of Veterinary Medicine, Kangwon National University, Chunchon, Korea
| | | | | | | | | |
Collapse
|
26
|
Racedo SE, Branzini MC, Salamone D, Wójcik C, Rawe VY, Niemann H. Dynamics of microtubules, motor proteins and 20S proteasomes during bovine oocyte IVM. Reprod Fertil Dev 2009; 21:304-12. [DOI: 10.1071/rd08111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 08/15/2008] [Indexed: 11/23/2022] Open
Abstract
The present study investigated the distribution of cytoplasmic dynein, dynactin and 20S proteasomes in oocytes isolated from small (<2 mm) and large (2–8 mm) follicles during IVM. Immediately after chromatin condensation (germinal vesicle (GV) breakdown), dynactin was closely associated with the chromatin and interacted with tubulin at the MI and MII spindles in oocytes recovered from large follicles. Dynactin showed perinuclear concentration. Dynein was homogeneously distributed in the cytoplasm of GV oocytes in both groups and was associated with the chromatin at the MI and MII spindle. The 20S proteasomes were found predominantly in the nucleus at the GV stage and were associated with the chromatin up to the MII stage in both groups of oocytes. The use of sodium orthovanadate, an inhibitor or phosphatase and ATPase activity, and nocodazole, a known disruptor of microtubules, affected the localisation of proteasomes in the meiotic stages. The results demonstrate the distinct dynamics of molecular motors and proteasomes during bovine oocyte IVM, their possible relationship with the developmental competence of the oocyte and the link between microtubules, their associated molecular motors and the transport of proteasomes during bovine female meiosis.
Collapse
|
27
|
Wells D, Patrizio P. Gene expression profiling of human oocytes at different maturational stages and after in vitro maturation. Am J Obstet Gynecol 2008; 198:455.e1-9; discussion 455.e9-11. [PMID: 18395038 DOI: 10.1016/j.ajog.2007.12.030] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 11/09/2007] [Accepted: 12/21/2007] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The purpose of this study was to catalog genes expressed in human oocytes at germinal vesicle (GV) or metaphase II (MII) stage and to compare gene profiles between oocytes matured in vivo (in vivo-MII) and in vitro (IVM-MII). STUDY DESIGN University-based research utilizing unfertilized oocytes analyzed for > 29,000 genes with RNA amplification and microarray. RESULTS GV, in vivo-MII, and IVM-MII oocytes expressed 12,219, 9735, and 8510 genes, respectively. There was extensive overlap among the 3 groups, but also some significant differences. In particular, in vivo-MII and IVM-MII oocytes shared very similar patterns of gene expression. However, some immature patterns of expression, reminiscent of GVs, persisted in IVM-MIIs. CONCLUSION In vitro maturation is an attractive strategy for IVF treatment; however, current IVM methods produce oocytes that perform poorly in the context of IVF. Data from the current study suggest that although IVM-MII oocytes closely resemble in vivo-MII oocytes for cellular pathways related to nuclear maturity, several pathways associated with cytoplasmic functions continue to be expressed in an immature manner. Additionally, IVM-MII oocytes have differences in the expression of genes related to cellular storage and homeostasis. Differentially expressed genes/pathways provide clues for the optimization of IVM techniques.
Collapse
Affiliation(s)
- Dagan Wells
- Department of Obstetrics and Gynecology, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
28
|
Ito J, Shimada M, Hochi S, Hirabayashi M. Involvement of Ca2+-dependent proteasome in the degradation of both cyclin B1 and Mos during spontaneous activation of matured rat oocytes. Theriogenology 2007; 67:475-85. [PMID: 17027076 DOI: 10.1016/j.theriogenology.2006.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Accepted: 08/14/2006] [Indexed: 11/19/2022]
Abstract
In matured rat oocytes, spontaneous activation from the metaphase-II (MII) stage occurred after collection from the oviducts. It is well known that the mitogen-activated protein kinase (MAPK) pathway and p34(cdc2) kinase play an important role in the arrest at MII in other species. However, there is no information about the difference in these factors among strains of rats. In the present study, in spontaneously activated oocytes from the Wistar rat, the Mos protein level and the activity of MAPK kinase (MEK)/MAPK were decreased at 120 min (13.8, 25.7, and 19.3, respectively, P<0.05), whereas Sprague-Dawley (SD) oocytes, which were not spontaneously activated, had a high level of Mos protein and MEK/MAPK activity (75.9, 76.2, and 87.9, respectively, P<0.05). Phosphorylation of MAPK in the SD oocytes was significantly suppressed by MEK inhibitor, U0126 at 60 min; this treatment decreased p34(cdc2) kinase activity via cyclin B1 degradation in a time-dependent manner. The treatment with proteasome inhibitor, MG132 or Ca2+-chelator, BAPTA-AM, overcame the spontaneous degradation of both Mos and cyclin B1 in a dose-dependent manner in Wistar oocytes. More than 90% of Wistar oocytes treated with BAPTA-AM were arrested at MII until 120 min. In conclusion, SD oocytes carrying Mos/MEK/MAPK, maintained a high activity of p34(cdc2) kinase by stabilizing cyclin B1, thus involved in their meiotic arrest. In contrast, Wistar oocytes had a relatively low cytostatic factor activity; rapid decrease of Mos/MEK/MAPK failed to stabilize both cyclin B1 and Mos, and these oocytes were likely to spontaneously activate.
Collapse
Affiliation(s)
- Junya Ito
- Section of Molecular Genetics, Center for Brain Experiment, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan.
| | | | | | | |
Collapse
|
29
|
Prather RS, Sutovsky P, Green JA. Nuclear remodeling and reprogramming in transgenic pig production. Exp Biol Med (Maywood) 2005; 229:1120-6. [PMID: 15564438 DOI: 10.1177/153537020422901106] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The manufacture of pigs with modifications to specific chromosomal regions requires that the modification first be made in somatic cells. The modified cells can then be used as donors for nuclear transfer (NT) in an attempt to clone that cell into a newborn animal. Unfortunately the procedures are inefficient and sometimes lead to animals that are abnormal. The cause of these abnormalities is likely established during the first cell cycle after the NT. Either the donor cell was abnormal or the oocyte cytoplasm was unable to adequately remodel the donor nucleus such that it was structured similar to the pronucleus of a zygote. A better understanding of chromatin remodeling and subsequent developmental gene expression will provide clues as to how procedures can be modified to generate fertile animals more efficiently.
Collapse
Affiliation(s)
- Randall S Prather
- Department of Animal Science, University of Missouri at Columbia, Columbia, MO 65211-5300, USA.
| | | | | |
Collapse
|