1
|
Vlasenok M, Margasyuk S, Pervouchine DD. Transcriptome sequencing suggests that pre-mRNA splicing counteracts widespread intronic cleavage and polyadenylation. NAR Genom Bioinform 2023; 5:lqad051. [PMID: 37260513 PMCID: PMC10227441 DOI: 10.1093/nargab/lqad051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 06/02/2023] Open
Abstract
Alternative splicing (AS) and alternative polyadenylation (APA) are two crucial steps in the post-transcriptional regulation of eukaryotic gene expression. Protocols capturing and sequencing RNA 3'-ends have uncovered widespread intronic polyadenylation (IPA) in normal and disease conditions, where it is currently attributed to stochastic variations in the pre-mRNA processing. Here, we took advantage of the massive amount of RNA-seq data generated by the Genotype Tissue Expression project (GTEx) to simultaneously identify and match tissue-specific expression of intronic polyadenylation sites with tissue-specific splicing. A combination of computational methods including the analysis of short reads with non-templated adenines revealed that APA events are more abundant in introns than in exons. While the rate of IPA in composite terminal exons and skipped terminal exons expectedly correlates with splicing, we observed a considerable fraction of IPA events that lack AS support and attributed them to spliced polyadenylated introns (SPI). We hypothesize that SPIs represent transient byproducts of a dynamic coupling between APA and AS, in which the spliceosome removes the intron while it is being cleaved and polyadenylated. These findings indicate that cotranscriptional pre-mRNA splicing could serve as a rescue mechanism to suppress premature transcription termination at intronic polyadenylation sites.
Collapse
Affiliation(s)
- Maria Vlasenok
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Bulvar 30, Moscow 121205, Russia
| | - Sergey Margasyuk
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Bulvar 30, Moscow 121205, Russia
| | - Dmitri D Pervouchine
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Bulvar 30, Moscow 121205, Russia
| |
Collapse
|
2
|
Epidermal progenitors suppress GRHL3-mediated differentiation through intronic polyadenylation promoted by CPSF-HNRNPA3 collaboration. Nat Commun 2021; 12:448. [PMID: 33469008 PMCID: PMC7815847 DOI: 10.1038/s41467-020-20674-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 12/11/2020] [Indexed: 01/29/2023] Open
Abstract
In self-renewing somatic tissue such as skin epidermis, terminal differentiation genes must be suppressed in progenitors to sustain regenerative capacity. Here we show that hundreds of intronic polyadenylation (IpA) sites are differentially used during keratinocyte differentiation, which is accompanied by downregulation of the Cleavage and Polyadenylation Specificity Factor (CPSF) complex. Sustained CPSF expression in undifferentiated keratinocytes requires the contribution from the transcription factor MYC. In keratinocytes cultured in undifferentiation condition, CSPF knockdown induces premature differentiation and partially affects dynamically used IpA sites. These sites include an IpA site located in the first intron of the differentiation activator GRHL3. CRISPR knockout of GRHL3 IpA increased full-length GRHL3 mRNA expression. Using a targeted genetic screen, we identify that HNRNPA3 interacts with CPSF and enhances GRHL3 IpA. Our data suggest a model where the interaction between CPSF and RNA-binding proteins, such as HNRNPA3, promotes site-specific IpA and suppresses premature differentiation in progenitors.
Collapse
|
3
|
Ambrose RL, Brice AM, Caputo AT, Alexander MR, Tribolet L, Liu YC, Adams TE, Bean AG, Stewart CR. Molecular characterisation of ILRUN, a novel inhibitor of proinflammatory and antimicrobial cytokines. Heliyon 2020; 6:e04115. [PMID: 32518853 PMCID: PMC7270589 DOI: 10.1016/j.heliyon.2020.e04115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/28/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022] Open
Abstract
Regulation of type-I interferon (IFN) production is essential to the balance between antimicrobial defence and autoimmune disorders. The human protein-coding gene ILRUN (inflammation and lipid regulator with UBA-like and NBR1-like domains, previously C6orf106) was recently characterised as an inhibitor of antiviral and proinflammatory cytokine (interferon-alpha/beta and tumor necrosis factor alpha) transcription. Currently there is a paucity of information about the molecular characteristics of ILRUN, despite it being associated with several diseases including virus infection, coronary artery disease, obesity and cancer. Here, we characterise ILRUN as a highly phylogenetically conserved protein containing UBA-like and a NBR1-like domains that are both essential for inhibition of type-I interferon and tumor necrosis factor alpha) transcription in human cells. We also solved the crystal structure of the NBR1-like domain, providing insights into its potential role in ILRUN function. This study provides critical information for future investigations into the role of ILRUN in health and disease.
Collapse
Affiliation(s)
- Rebecca L. Ambrose
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, Geelong, Victoria, 3220, Australia
| | - Aaron M. Brice
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, Geelong, Victoria, 3220, Australia
| | | | - Marina R. Alexander
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, Geelong, Victoria, 3220, Australia
| | - Leon Tribolet
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, Geelong, Victoria, 3220, Australia
| | - Yu Chih Liu
- CSIRO Manufacturing, Parkville, Victoria, 3010, Australia
| | | | - Andrew G.D. Bean
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, Geelong, Victoria, 3220, Australia
| | - Cameron R. Stewart
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, Geelong, Victoria, 3220, Australia
| |
Collapse
|
4
|
MacDonald CC. Tissue-specific mechanisms of alternative polyadenylation: Testis, brain, and beyond (2018 update). WILEY INTERDISCIPLINARY REVIEWS. RNA 2019; 10:e1526. [PMID: 30816016 PMCID: PMC6617714 DOI: 10.1002/wrna.1526] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/05/2018] [Accepted: 01/14/2019] [Indexed: 12/21/2022]
Abstract
Alternative polyadenylation (APA) is how genes choose different sites for 3' end formation for mRNAs during transcription. APA often occurs in a tissue- or developmental stage-specific manner that can significantly affect gene activity by changing the protein product generated, the stability of the transcript, its localization within the cell, or its translatability. Despite the important regulatory effects that APA has on tissue-specific gene expression, only a few examples have been characterized mechanistically. In this 2018 update to our 2010 review, we examine mechanisms for the control of APA and update our understanding of the older mechanisms since 2010. We once postulated the existence of tissue-specific factors in APA. However, while a few tissue-specific polyadenylation factors are known, the emerging conclusion is that the majority of APA is accomplished by altering levels of core polyadenylation proteins. Examples of those core proteins include CSTF2, CPSF1, and subunits of mammalian cleavage factor I. But despite support for these mechanisms, no one has yet documented any of these proteins changing in either a tissue-specific or developmental manner. Given the profound effect that APA can have on gene expression and human health, improved understanding of tissue-specific APA could lead to numerous advances in gene activity control. This article is categorized under: RNA Processing > 3' End Processing RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Clinton C. MacDonald
- Department of Cell Biology & BiochemistryTexas Tech University Health Sciences CenterLubbockTexas
| |
Collapse
|
5
|
Widespread intronic polyadenylation diversifies immune cell transcriptomes. Nat Commun 2018; 9:1716. [PMID: 29712909 PMCID: PMC5928244 DOI: 10.1038/s41467-018-04112-z] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 04/05/2018] [Indexed: 01/08/2023] Open
Abstract
Alternative cleavage and polyadenylation (ApA) is known to alter untranslated region (3'UTR) length but can also recognize intronic polyadenylation (IpA) signals to generate transcripts that lose part or all of the coding region. We analyzed 46 3'-seq and RNA-seq profiles from normal human tissues, primary immune cells, and multiple myeloma (MM) samples and created an atlas of 4927 high-confidence IpA events represented in these cell types. IpA isoforms are widely expressed in immune cells, differentially used during B-cell development or in different cellular environments, and can generate truncated proteins lacking C-terminal functional domains. This can mimic ectodomain shedding through loss of transmembrane domains or alter the binding specificity of proteins with DNA-binding or protein-protein interaction domains. MM cells display a striking loss of IpA isoforms expressed in plasma cells, associated with shorter progression-free survival and impacting key genes in MM biology and response to lenalidomide.
Collapse
|
6
|
He Y, Zuo Q, Edwards J, Zhao K, Lei J, Cai W, Nie Q, Li B, Song J. DNA Methylation and Regulatory Elements during Chicken Germline Stem Cell Differentiation. Stem Cell Reports 2018; 10:1793-1806. [PMID: 29681542 PMCID: PMC5989647 DOI: 10.1016/j.stemcr.2018.03.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 01/01/2023] Open
Abstract
The production of germ cells in vitro would open important new avenues for stem biology and human medicine, but the mechanisms of germ cell differentiation are not well understood. The chicken, as a great model for embryology and development, was used in this study to help us explore its regulatory mechanisms. In this study, we reported a comprehensive genome-wide DNA methylation landscape in chicken germ cells, and transcriptomic dynamics was also presented. By uncovering DNA methylation patterns on individual genes, some genes accurately modulated by DNA methylation were found to be associated with cancers and virus infection, e.g., AKT1 and CTNNB1. Chicken-unique markers were also discovered for identifying male germ cells. Importantly, integrated epigenetic mechanisms were explored during male germ cell differentiation, which provides deep insight into the epigenetic processes associated with male germ cell differentiation and possibly improves treatment options to male infertility in animals and humans. The mechanisms of stem cell differentiation were explored using the chick embryo model The orchestrated stem cell differentiation involves multiple epigenetic events The unique markers in chick embryo were discovered for identifying male germ cells
Collapse
Affiliation(s)
- Yanghua He
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Qisheng Zuo
- College of Animal Science and Technology, Yangzhou University, Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, Yangzhou 225009, People's Republic of China
| | - John Edwards
- Center for Pharmacogenomics, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8220, St. Louis, MO 63110, USA
| | - Keji Zhao
- Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinzhi Lei
- Zhou Peiyuan Center for Applied Mathematics, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Wentao Cai
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD 20742, USA; Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, CA 92697-3875, USA
| | - Bichun Li
- College of Animal Science and Technology, Yangzhou University, Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, Yangzhou 225009, People's Republic of China.
| | - Jiuzhou Song
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
7
|
The Cstf2t Polyadenylation Gene Plays a Sex-Specific Role in Learning Behaviors in Mice. PLoS One 2016; 11:e0165976. [PMID: 27812195 PMCID: PMC5094787 DOI: 10.1371/journal.pone.0165976] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/20/2016] [Indexed: 11/19/2022] Open
Abstract
Polyadenylation is an essential mechanism for the processing of mRNA 3′ ends. CstF-64 (the 64,000 Mr subunit of the cleavage stimulation factor; gene symbol Cstf2) is an RNA-binding protein that regulates mRNA polyadenylation site usage. We discovered a paralogous form of CstF-64 called τCstF-64 (Cstf2t). The Cstf2t gene is conserved in all eutherian mammals including mice and humans, but the τCstF-64 protein is expressed only in a subset of mammalian tissues, mostly testis and brain. Male mice that lack Cstf2t (Cstf2t-/- mice) experience disruption of spermatogenesis and are infertile, although female fertility is unaffected. However, a role for τCstF-64 in the brain has not yet been determined. Given the importance of RNA polyadenylation and splicing in neuronal gene expression, we chose to test the hypothesis that τCstF-64 is important for brain function. Male and female 185-day old wild type and Cstf2t-/- mice were examined for motor function, general activity, learning, and memory using rotarod, open field activity, 8-arm radial arm maze, and Morris water maze tasks. Male wild type and Cstf2t-/- mice did not show differences in learning and memory. However, female Cstf2t-/- mice showed significantly better retention of learned maze tasks than did female wild type mice. These results suggest that τCstf-64 is important in memory function in female mice. Interestingly, male Cstf2t-/- mice displayed less thigmotactic behavior than did wild type mice, suggesting that Cstf2t may play a role in anxiety in males. Taken together, our studies highlight the importance of mRNA processing in cognition and behavior as well as their established functions in reproduction.
Collapse
|
8
|
Licatalosi DD. Roles of RNA-binding Proteins and Post-transcriptional Regulation in Driving Male Germ Cell Development in the Mouse. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 907:123-51. [PMID: 27256385 DOI: 10.1007/978-3-319-29073-7_6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tissue development and homeostasis are dependent on highly regulated gene expression programs in which cell-specific combinations of regulatory factors determine which genes are expressed and the post-transcriptional fate of the resulting RNA transcripts. Post-transcriptional regulation of gene expression by RNA-binding proteins has critical roles in tissue development-allowing individual genes to generate multiple RNA and protein products, and the timing, location, and abundance of protein synthesis to be finely controlled. Extensive post-transcriptional regulation occurs during mammalian gametogenesis, including high levels of alternative mRNA expression, stage-specific expression of mRNA variants, broad translational repression, and stage-specific activation of mRNA translation. In this chapter, an overview of the roles of RNA-binding proteins and the importance of post-transcriptional regulation in male germ cell development in the mouse is presented.
Collapse
Affiliation(s)
- Donny D Licatalosi
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
9
|
Kazantseva J, Tints K, Neuman T, Palm K. TAF4 controls differentiation of human neural progenitor cells through hTAF4-TAFH activity. J Mol Neurosci 2014; 55:160-166. [PMID: 24696168 DOI: 10.1007/s12031-014-0295-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/23/2014] [Indexed: 12/13/2022]
Abstract
Expression of general transcription factor and co-activator TAF4 varies during development and in the processes of cell differentiation with suggested connection to neurodegenerative diseases. Here, we show that expression of TAF4 alternative splice variants is different in various regions of the human brain, substantiating the role of alternative splicing of TAF4 in the regulation of neural development and brain function. Most of the described splicing events affect the TAFH homology domain of TAF4 (hTAF4-TAFH). Besides, differentiated towards neural lineages, normal human neural progenitors (NHNPs) lose canonical full-length TAF4 isoform. To study the effects of hTAF4-TAFH splicing on neuronal differentiation, we used RNAi approach to target hTAF4-TAFH-encoding domain in NHNPs. Results show that inactivation of hTAF4-TAFH domain accelerates differentiation of human neural progenitor cells. Conversely, enhanced expression of TAF4 suppresses differentiation and keeps neural progenitor cells in a stem cell-like state. Finally, we provide data on the involvement of TP53 and noncanonical WNT signaling pathways in mediating effects of TAF4 on neuronal differentiation. Overall, our data suggest that specific isoforms of TAF4 may selectively and efficiently control neurogenesis.
Collapse
Affiliation(s)
| | - Kairit Tints
- Protobios LLC, Mäealuse 4, Tallinn, 12618, Estonia
| | | | - Kaia Palm
- Protobios LLC, Mäealuse 4, Tallinn, 12618, Estonia. .,The Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, Tallinn, 12618, Estonia.
| |
Collapse
|
10
|
Berkovits BD, Wang L, Guarnieri P, Wolgemuth DJ. The testis-specific double bromodomain-containing protein BRDT forms a complex with multiple spliceosome components and is required for mRNA splicing and 3'-UTR truncation in round spermatids. Nucleic Acids Res 2012; 40:7162-75. [PMID: 22570411 PMCID: PMC3424537 DOI: 10.1093/nar/gks342] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 04/05/2012] [Accepted: 04/10/2012] [Indexed: 12/02/2022] Open
Abstract
Members of the BET (bromodomain and extra terminal motif) family of proteins have been shown to be chromatin-interacting regulators of transcription. We previously generated a mutation in the testis-specific mammalian BET gene Brdt (bromodomain, testis-specific) that yields protein lacking the first bromodomain (BRDT(ΔBD1)) and observed disrupted spermiogenesis and male sterility. To determine whether BRDT(ΔBD1) protein results in altered transcription, we analyzed the transcriptomes of control versus Brdt(ΔBD1/ΔBD1) round spermatids. Over 400 genes showed statistically significant differential expression, and among the up-regulated genes, there was an enrichment of RNA splicing genes. Over 60% of these splicing genes had transcripts that lacked truncation of their 3'-untranslated region (UTR) typical of round spermatids. We selected four of these genes to characterize: Srsf2, Ddx5, Hnrnpk and Tardbp. The 3'-UTRs of Srsf2, Ddx5 and Hnrnpk mRNAs were longer in mutant round spermatids and resulted in reduced protein levels. Tardbp was transcriptionally up-regulated and a splicing shift toward the longer variant was observed. All four splicing proteins were found to complex with BRDT in control and mutant testes. We thus suggest that, along with modulating transcription, BRDT modulates gene expression as part of the splicing machinery. These modulations alter 3'-UTR processing in round spermatids; importantly, the BD1 is essential for these functions.
Collapse
Affiliation(s)
- Binyamin D. Berkovits
- Department of Genetics and Development, Biomedical Informatics Shared Resources, Bioinformatics Division, The Herbert Irving Comprehensive Cancer Center, The Institute of Human Nutrition and Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY 10032, USA
| | - Li Wang
- Department of Genetics and Development, Biomedical Informatics Shared Resources, Bioinformatics Division, The Herbert Irving Comprehensive Cancer Center, The Institute of Human Nutrition and Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY 10032, USA
| | - Paolo Guarnieri
- Department of Genetics and Development, Biomedical Informatics Shared Resources, Bioinformatics Division, The Herbert Irving Comprehensive Cancer Center, The Institute of Human Nutrition and Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY 10032, USA
| | - Debra J. Wolgemuth
- Department of Genetics and Development, Biomedical Informatics Shared Resources, Bioinformatics Division, The Herbert Irving Comprehensive Cancer Center, The Institute of Human Nutrition and Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
11
|
MacDonald CC, McMahon KW. Tissue-specific mechanisms of alternative polyadenylation: testis, brain, and beyond. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 1:494-501. [PMID: 21956945 DOI: 10.1002/wrna.29] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Changing the position of the poly(A) tail in an mRNA--alternative polyadenylation--is an important mechanism to increase the diversity of gene expression, especially in metazoans. Alternative polyadenylation often occurs in a tissue- or developmental stage-specific manner and can significantly affect gene activity by changing the protein product generated, the stability of the transcript, its localization, or its translatability. Despite the important regulatory effects that alternative polyadenylation have on gene expression, only a sparse few examples have been mechanistically characterized. Here, we review the known mechanisms for the control of alternative polyadenylation, catalog the tissues that demonstrate a propensity for alternative polyadenylation, and focus on the proteins that are known to regulate alternative polyadenylation in specific tissues. We conclude that the field of alternative polyadenylation remains in its infancy, with possibilities for future investigation on the horizon. Given the profound effect alternative polyadenylation can have on gene expression and human health, improved understanding of alternative polyadenylation could lead to numerous advances in control of gene activity.
Collapse
Affiliation(s)
- Clinton C MacDonald
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6540, USA.
| | | |
Collapse
|
12
|
Abstract
Bilayer synthesis during membrane biogenesis involves the concerted assembly of multiple lipid species, requiring coordination of the level of lipid synthesis, uptake, turnover, and subcellular distribution. In this review, we discuss some of the salient conclusions regarding the coordination of lipid synthesis that have emerged from work in mammalian and yeast cells. The principal instruments of global control are a small number of transcription factors that target a wide range of genes encoding enzymes that operate in a given metabolic pathway. Critical in mammalian cells are sterol regulatory element binding proteins (SREBPs) that stimulate expression of genes for the uptake and synthesis of cholesterol and fatty acids. From work with Saccharomyces cerevisiae, much has been learned about glycerophospholipid and ergosterol regulation through Ino2p/Ino4p and Upc2p transcription factors, respectively. Lipid supply is fine-tuned through a multitude of negative feedback circuits initiated by both end products and intermediates of lipid synthesis pathways. Moreover, there is evidence that the diversity of membrane lipids is maintained through cross-regulatory effects, whereby classes of lipids activate the activity of enzymes operating in another metabolic branch.
Collapse
Affiliation(s)
- Axel Nohturfft
- Molecular and Metabolic Signalling Centre, Division of Basic Medical Sciences, St. George's University of London, London, SW17 0RE United Kingdom.
| | | |
Collapse
|
13
|
Chatterjee S, Szustakowski JD, Nanguneri NR, Mickanin C, Labow MA, Nohturfft A, Dev KK, Sivasankaran R. Identification of novel genes and pathways regulating SREBP transcriptional activity. PLoS One 2009; 4:e5197. [PMID: 19381295 PMCID: PMC2668173 DOI: 10.1371/journal.pone.0005197] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 02/05/2009] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Lipid metabolism in mammals is orchestrated by a family of transcription factors called sterol regulatory element-binding proteins (SREBPs) that control the expression of genes required for the uptake and synthesis of cholesterol, fatty acids, and triglycerides. SREBPs are thus essential for insulin-induced lipogenesis and for cellular membrane homeostasis and biogenesis. Although multiple players have been identified that control the expression and activation of SREBPs, gaps remain in our understanding of how SREBPs are coordinated with other physiological pathways. METHODOLOGY To identify novel regulators of SREBPs, we performed a genome-wide cDNA over-expression screen to identify proteins that might modulate the transcription of a luciferase gene driven from an SREBP-specific promoter. The results were verified through secondary biological assays and expression data were analyzed by a novel application of the Gene Set Enrichment Analysis (GSEA) method. CONCLUSIONS/SIGNIFICANCE We screened 10,000 different cDNAs and identified a number of genes and pathways that have previously not been implicated in SREBP control and cellular cholesterol homeostasis. These findings further our understanding of lipid biology and should lead to new insights into lipid associated disorders.
Collapse
Affiliation(s)
- Sandipan Chatterjee
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Joseph D. Szustakowski
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Nirmala R. Nanguneri
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Craig Mickanin
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Mark A. Labow
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Axel Nohturfft
- Division of Basic Medical Sciences, St. George's University of London, London, United Kingdom
| | - Kumlesh K. Dev
- Department of Anatomy, University College Cork, Cork, Ireland
- * E-mail: (KKD); (RS)
| | - Rajeev Sivasankaran
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
- * E-mail: (KKD); (RS)
| |
Collapse
|
14
|
Kleene KC, Bagarova J. Comparative genomics reveals gene-specific and shared regulatory sequences in the spermatid-expressed mammalian Odf1, Prm1, Prm2, Tnp1, and Tnp2 genes. Genomics 2008; 92:101-6. [PMID: 18562159 DOI: 10.1016/j.ygeno.2008.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2008] [Revised: 04/06/2008] [Accepted: 05/01/2008] [Indexed: 01/19/2023]
Abstract
The comparative genomics of the Odf1, Prm1, Prm2, Tnp1, and Tnp2 genes in 13-21 diverse mammalian species reveals striking similarities and differences in the sequences that probably function in the transcriptional and translational regulation of gene expression in haploid spermatogenic cells, spermatids. The 5' flanking regions contain putative TATA boxes and cAMP-response elements (CREs), but the TATA boxes and CREs exhibit gene-specific sequences, and an overwhelming majority of CREs differ from the consensus sequence. The 5' and 3' UTRs contain highly conserved gene-specific sequences including canonical and noncanonical poly(A) signals and a suboptimal context for the Tnp2 translation initiation codon. The conservation of the 5' UTR is unexpected because mRNA translation in spermatids is thought to be regulated primarily by the 3' UTR. Finally, all of the genes contain a single intron, implying that retroposons are rarely created from mRNAs that are expressed in spermatids.
Collapse
Affiliation(s)
- Kenneth C Kleene
- Department of Biology, University of Massachusetts at Boston, Boston, MA 02125, USA.
| | | |
Collapse
|
15
|
Sartini BL, Wang H, Wang W, Millette CF, Kilpatrick DL. Pre-Messenger RNA Cleavage Factor I (CFIm): Potential Role in Alternative Polyadenylation During Spermatogenesis1. Biol Reprod 2008; 78:472-82. [DOI: 10.1095/biolreprod.107.064774] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|