1
|
Chai R, Xiao C, Yang Z, Du W, Lv K, Zhang J, Yang X. Identification of genes associated with sperm storage capacity in hens at different times after insemination by RNA-seq and Ribo-seq. BMC Genomics 2024; 25:554. [PMID: 38831306 PMCID: PMC11145833 DOI: 10.1186/s12864-024-10472-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 05/29/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Sperm storage capacity (SSC) determines the duration of fertility in hens and is an important reproduction trait that cannot be ignored in production. Currently, the genetic mechanism of SSC is still unclear in hens. Therefore, to explore the genetic basis of SSC, we analyzed the uterus-vagina junction (UVJ) of hens with different SSC at different times after insemination by RNA-seq and Ribo-seq. RESULTS Our results showed that 589, 596, and 527 differentially expressed genes (DEGs), 730, 783, and 324 differentially translated genes (DTGs), and 804, 625, and 467 differential translation efficiency genes (DTEGs) were detected on the 5th, 10th, and 15th days after insemination, respectively. In transcription levels, we found that the differences of SSC at different times after insemination were mainly reflected in the transmission of information between cells, the composition of intercellular adhesion complexes, the regulation of ion channels, the regulation of cellular physiological activities, the composition of cells, and the composition of cell membranes. In translation efficiency (TE) levels, the differences of SSC were mainly related to the physiological and metabolic activities in the cell, the composition of the organelle membrane, the physiological activities of oxidation, cell components, and cell growth processes. According to pathway analysis, SSC was related to neuroactive ligand-receptor interaction, histidine metabolism, and PPAR signaling pathway at the transcriptional level and glutathione metabolism, oxidative phosphorylation, calcium signaling pathway, cell adhesion molecules, galactose metabolism, and Wnt signaling pathway at the TE level. We screened candidate genes affecting SSC at transcriptional levels (COL4A4, MUC6, MCHR2, TACR1, AVPR1A, COL1A1, HK2, RB1, VIPR2, HMGCS2) and TE levels(COL4A4, MUC6, CYCS, NDUFA13, CYTB, RRM2, CAMK4, HRH2, LCT, GCK, GALT). Among them, COL4A4 and MUC6 were the key candidate genes differing in transcription, translation, and translation efficiency. CONCLUSIONS Our study used the combined analysis of RNA-seq and Ribo-seq for the first time to investigate the SSC and reveal the physiological processes associated with SSC. The key candidate genes affecting SSC were screened, and the theoretical basis was provided for the analysis of the molecular regulation mechanism of SSC.
Collapse
Affiliation(s)
- Ruitang Chai
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Cong Xiao
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Zhuliang Yang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Wenya Du
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Ke Lv
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Jiayi Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Xiurong Yang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China.
| |
Collapse
|
2
|
Pang WK, Son JH, Ryu DY, Rahman MS, Park YJ, Pang MG. Heat shock protein family D member 1 in boar spermatozoa is strongly related to the litter size of inseminated sows. J Anim Sci Biotechnol 2022; 13:42. [PMID: 35422006 PMCID: PMC9012035 DOI: 10.1186/s40104-022-00689-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/07/2022] [Indexed: 11/29/2022] Open
Abstract
Background Sperm quality evaluation is the logical first step in increasing field fertility. Spermatozoa contain cytoplasmic organelles and biomolecules known as sperm-intrinsic factors, which play key roles in sperm maturation, sperm-oocyte fusion, and embryo development. In particular, sperm membrane proteins [e.g., arginine vasopressin receptor 2, beta-actin, prohibitin, and heat shock protein family D member 1 (HSPD1)] and RNA could be used as functional indicators of male fertility. We sought to clarify the effects of differential mRNA expression of selected genes on several fertilisation parameters, including sperm motility, motion kinematics, capacitation, and litter size, in a porcine model. Results Our results demonstrated that HSPD1 expression was significantly correlated with male fertility, as measured by the litter size of inseminated sows. The expression of HSPD1 mRNA was linked to sperm motility and other motion kinematic characteristics. Furthermore, HSPD1 had a 66.7% overall accuracy in detecting male fertility, and the high-litter size group which was selected with the HSPD1 marker had a 1.34 greater litter size than the low-litter size group. Conclusions Our findings indicate that HSPD1 might be a helpful biomarker for superior boar selection for artificial insemination, which could boost field fertility. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00689-0.
Collapse
|
3
|
Desmopressin Suppresses Gonadotropin-Induced Spermatogenesis in Patients With Pituitary Stalk Interruption Syndrome: A Retrospective, Single-Center Cohort Study. Endocr Pract 2020; 27:124-130. [PMID: 33563411 DOI: 10.1016/j.eprac.2020.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 08/06/2020] [Accepted: 08/31/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To explore the influence of desmopressin on gonadotropin-induced spermatogenesis in patients with pituitary stalk interruption syndrome (PSIS). METHODS A single-center retrospective cohort study was conducted. All patients with PSIS had both gonadotropin and growth hormone (GH) deficiency. Patients were divided into desmopressin and nondesmopressin groups. The desmopressin and nondesmopressin groups were defined by the presence or absence of central diabetes insipidus, which determined whether the patient received desmopressin or not. RESULTS The average age of gonadotropin therapy was 24.3 and 26.1 in the desmopressin and nondesmopressin groups, respectively. The rate of successful spermatogenesis in the 2 groups was 31.58% and 77.27%, respectively. The period for first sperm appearance was 13.62 ± 5.95 and 13.48 ± 6.69 months, respectively. A multivariable Cox proportional hazards model found that the adjusted hazard ratio for desmopressin was 0.260, indicating a "possible" detrimental effect of desmopressin on spermatogenesis. Central diabetes insipidus would be expected to show a similar detrimental effect. The spermatogenesis rate decreased with increased dosage of desmopressin. In the nondesmopressin group, the rate of spermatogenesis was similar between the GH group and the non-GH subgroup. The GH group had higher sperm count and concentration than the non-GH group. CONCLUSION A minority of patients with PSIS had mild diabetes insipidus and received desmopressin therapy. The spermatogenesis rate decreased with increasing desmopressin dosage. In addition, GH supplementation did not affect the spermatogenesis rate.
Collapse
|
4
|
Gao DD, Wang LL, Xu JW, Qiu ZE, Zhu YX, Zhang YL, Zhou WL. Cellular mechanism underlying oxytocin-stimulated Cl - secretion in rat cauda epididymal epithelium. Am J Physiol Cell Physiol 2020; 319:C630-C640. [PMID: 32726160 DOI: 10.1152/ajpcell.00397.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The neurohypophyseal hormone oxytocin (OT) plays critical roles in lactation and parturition, while its function in male reproduction system is largely unknown. This study aims to investigate the effect of OT on regulating transepithelial ion transport in rat cauda epididymal epithelium. With the use of RT-PCR, Western blot, and immunohistochemical analysis, we found that OT receptor (OTR) was expressed and localized at the basal membrane of rat cauda epididymal epithelium. The short-circuit current (Isc) measurement showed that basolateral application of OT to the primary cultured rat cauda epididymal epithelial cells elicited an increase in Isc, which was abrogated by pretreating the epithelial cells with CFTRinh-172, a blocker of cystic fibrosis transmembrane conductance regulator (CFTR). Pretreatment with the prostaglandin H synthase inhibitors indomethacin and piroxicam, or the nonselective antagonists of prostaglandin E2 (PGE2) receptor EP2 or EP4, AH-6809, and AH-23848, significantly attenuated OT-stimulated Isc response. Furthermore, the generation of PGE2 was measured using enzyme-linked immunosorbent assay, demonstrating that OT induced a substantial increase in PGE2 release from primary cultured rat cauda epididymal epithelial cells. In conclusion, activation of OTR by OT triggered PGE2 release, resulting in CFTR-dependent Cl- secretion through paracrine/autocrine pathways in rat cauda epididymal epithelium.
Collapse
Affiliation(s)
- Dong-Dong Gao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Sport and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Long-Long Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jia-Wen Xu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhuo-Er Qiu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yun-Xin Zhu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yi-Lin Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wen-Liang Zhou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Touré A. Importance of SLC26 Transmembrane Anion Exchangers in Sperm Post-testicular Maturation and Fertilization Potential. Front Cell Dev Biol 2019; 7:230. [PMID: 31681763 PMCID: PMC6813192 DOI: 10.3389/fcell.2019.00230] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/26/2019] [Indexed: 12/17/2022] Open
Abstract
In mammals, sperm cells produced within the testis are structurally differentiated but remain immotile and are unable to fertilize the oocyte unless they undergo a series of maturation events during their transit in the male and female genital tracts. This post-testicular functional maturation is known to rely on the micro-environment of both male and female genital tracts, and is tightly controlled by the pH of their luminal milieus. In particular, within the epididymis, the establishment of a low bicarbonate (HCO3–) concentration contributes to luminal acidification, which is necessary for sperm maturation and subsequent storage in a quiescent state. Following ejaculation, sperm is exposed to the basic pH of the female genital tract and bicarbonate (HCO3–), calcium (Ca2+), and chloride (Cl–) influxes induce biochemical and electrophysiological changes to the sperm cells (cytoplasmic alkalinization, increased cAMP concentration, and protein phosphorylation cascades), which are indispensable for the acquisition of fertilization potential, a process called capacitation. Solute carrier 26 (SLC26) members are conserved membranous proteins that mediate the transport of various anions across the plasma membrane of epithelial cells and constitute important regulators of pH and HCO3– concentration. Most SLC26 members were shown to physically interact and cooperate with the cystic fibrosis transmembrane conductance regulator channel (CFTR) in various epithelia, mainly by stimulating its Cl– channel activity. Among SLC26 members, the function of SLC26A3, A6, and A8 were particularly investigated in the male genital tract and the sperm cells. In this review, we will focus on SLC26s contributions to ionic- and pH-dependent processes during sperm post-testicular maturation. We will specify the current knowledge regarding their functions, based on data from the literature generated by means of in vitro and in vivo studies in knock-out mouse models together with genetic studies of infertile patients. We will also discuss the limits of those studies, the current research gaps and identify some key points for potential developments in this field.
Collapse
Affiliation(s)
- Aminata Touré
- INSERM U1016, Centre National de la Recherche Scientifique, UMR 8104, Institut Cochin, Université de Paris, Paris, France
| |
Collapse
|
6
|
Vasopressin regulates hypothalamic GnRH synthesis: Histomorphological evidence in hypothalamus and biological effects in GT1-7 cells. Life Sci 2019; 227:166-174. [PMID: 31026452 DOI: 10.1016/j.lfs.2019.04.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/17/2019] [Accepted: 04/22/2019] [Indexed: 01/03/2023]
Abstract
AIMS To investigate the direct histomorphological clues and observe the biological effects of VP acting on gonadotropin-releasing hormone (GnRH) secretion. MAIN METHODS Immunofluorescence was conducted to investigate the expressions of GnRH and VP in experimental left varicocele (ELV) rats and ELV repair rats. The colocalization of GnRH and VP was observed by electron microscopy immunohistochemistry. The protein-protein interaction between GnRH and VP was tested by co-immunoprecipitation (co-IP) and the proximity ligation assay (PLA). The effects of intracellular and extracellular VP on GnRH and relative transcription factors (Oct-1, Otx2, Pbx1b and DREAM) were respectively evaluated in VP overexpressed and VP treated GT1-7 cells. KEY FINDINGS Both hypothalamic GnRH and VP decreased in ELV rats and recovered by ELV repair. The overlapped immunolocalizations of GnRH and VP mainly distributed in the lateral part of the arcuate nucleus (ArcL) and median eminence (ME) with a Manders' overlap coefficient of 0.743 ± 0.117. Immunoreactive substances of GnRH and VP existed in the same and adjacent terminals. VP overexpression did not cause any significant effects on the expressions of GnRH and Oct-1, as well as GnRH promoter activity. While 50-200 pg/ml VP treatments increased GnRH mRNA levels in a dose- and time-dependent manner in GT1-7 cells. Additionally, 200 pg/ml VP triggered a marked promotion of expressions of GnRH, Oct-1, Oxt2 Pbx1b and DREAM, as well as GnRH promoter activity (P < 0.05). SIGNIFICANCE The results reveal the colocalization and interaction of VP and GnRH, which will be conducive to explain the effects and mechanisms of VP acting on reproduction.
Collapse
|
7
|
Prapaiwan N, Manee-In S, Moonarmart W, Srisuwatanasagul S. The expressions in oxytocin and sex steroid receptors in the reproductive tissues of normal and unilateral cryptorchid dogs. Theriogenology 2017; 100:59-65. [PMID: 28708534 DOI: 10.1016/j.theriogenology.2017.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 05/30/2017] [Accepted: 06/02/2017] [Indexed: 12/14/2022]
Abstract
In males, oxytocin is involved with various physiological functions, such as reproductive tract contractility and testicular steroidogenesis. Due to the relationship between sex steroid hormones, oxytocin receptor (OTR) expression and cryptorchidism pathogenesis, this study aimed to investigate the mRNA expression and the localization of OTR in relation to sex steroid receptors in the male reproductive tract of both normal and unilateral abdominal cryptorchid dogs using quantitative PCR and immunohistochemistry. Male dogs were divided into two groups of normal and cryptorchid dogs. Samples from each cryptorchid dog were separated into two subgroups: scrotal and abdominal subgroups. The results showed that a lower percentage of positive OTR immunostaining in the testis and epididymis was observed in the cryptorchid group compared to the normal group. Within the cryptorchid group, the mRNA expression and the localization of OTR in the testis and epididymis of the abdominal subgroup was less than that of the scrotal subgroup. Moreover, the localization of OTR and estrogen receptor beta (ERβ) in reproductive tissues was positively correlated only in the normal group and not in the cryptorchid group. In conclusion, this study proposed that OTR expression, as well as the correlation between the OTR and ERβ in reproductive tissues of male dogs, can be disturbed by cryptorchidism. Furthermore, the OTR, ERβ and their correlation may be involved with the pathogenesis of cryptorchidism. Therefore, the study of gene knockout models to confirm the effect of OTR and sex steroid receptors on canine cryptorchidism should be of interest for further investigation.
Collapse
Affiliation(s)
- N Prapaiwan
- Department of Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - S Manee-In
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - W Moonarmart
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - S Srisuwatanasagul
- Department of Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
8
|
González-Arto M, Aguilar D, Gaspar-Torrubia E, Gallego M, Carvajal-Serna M, Herrera-Marcos LV, Serrano-Blesa E, Hamilton TRDS, Pérez-Pé R, Muiño-Blanco T, Cebrián-Pérez JA, Casao A. Melatonin MT₁ and MT₂ Receptors in the Ram Reproductive Tract. Int J Mol Sci 2017; 18:ijms18030662. [PMID: 28335493 PMCID: PMC5372674 DOI: 10.3390/ijms18030662] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/10/2017] [Accepted: 03/15/2017] [Indexed: 12/15/2022] Open
Abstract
Some melatonin functions in mammals are exerted through MT1 and MT2 receptors. However, there are no reports of their presence in the reproductive tract of the ram, a seasonal species. Thus, we have investigated their existence in the ram testis, epididymis, accessory glands and ductus deferens. Real-time polymerase chain reaction (qPCR) revealed higher levels of m-RNA for both receptors in the testis, ampulla, seminal vesicles, and vas deferens, than in the other organs of the reproductive tract (p < 0.05). Western blot analyses showed protein bands compatible with the MT1 in the testis and cauda epididymis, and for the MT2 in the cauda epididymis and deferent duct. Immunohistochemistry analyses revealed the presence of MT1 receptors in spermatogonias, spermatocytes, and spermatids, and MT2 receptors in the newly-formed spermatozoa in the testis, whereas both receptors were located in the epithelial cells of the ampulla, seminal vesicles, and ductus deferens. Indirect immunofluorescence showed significant differences in the immunolocation of both receptors in spermatozoa during their transit in the epididymis. In conclusion, it was demonstrated that melatonin receptors are present in the ram reproductive tract. These results open the way for new studies on the molecular mechanism of melatonin and the biological significance of its receptors.
Collapse
Affiliation(s)
- Marta González-Arto
- Grupo Biología y Fisiología de la Reproducción, Instituto de Investigación de Ciencias Ambientales de Aragón (IUCA), Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain.
| | - David Aguilar
- Grupo Biología y Fisiología de la Reproducción, Instituto de Investigación de Ciencias Ambientales de Aragón (IUCA), Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain.
| | - Elena Gaspar-Torrubia
- Grupo Biología y Fisiología de la Reproducción, Instituto de Investigación de Ciencias Ambientales de Aragón (IUCA), Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain.
| | - Margarita Gallego
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain.
| | - Melissa Carvajal-Serna
- Departamento de Producción Animal, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, 11001 Bogotá, Colombia.
| | - Luis V Herrera-Marcos
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, 50013 Zaragoza, Spain.
| | - Edith Serrano-Blesa
- Grupo Biología y Fisiología de la Reproducción, Instituto de Investigación de Ciencias Ambientales de Aragón (IUCA), Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain.
| | - Thais Rose Dos Santos Hamilton
- Dpto. de Reprodução Animal, da Faculdade de Medicina Veterinaria e Zootecnia, da Universidade de São Paulo, 05508 270 São Paulo, Brazil.
| | - Rosaura Pérez-Pé
- Grupo Biología y Fisiología de la Reproducción, Instituto de Investigación de Ciencias Ambientales de Aragón (IUCA), Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain.
| | - Teresa Muiño-Blanco
- Grupo Biología y Fisiología de la Reproducción, Instituto de Investigación de Ciencias Ambientales de Aragón (IUCA), Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain.
| | - José A Cebrián-Pérez
- Grupo Biología y Fisiología de la Reproducción, Instituto de Investigación de Ciencias Ambientales de Aragón (IUCA), Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain.
| | - Adriana Casao
- Grupo Biología y Fisiología de la Reproducción, Instituto de Investigación de Ciencias Ambientales de Aragón (IUCA), Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain.
| |
Collapse
|
9
|
Breton S, Ruan YC, Park YJ, Kim B. Regulation of epithelial function, differentiation, and remodeling in the epididymis. Asian J Androl 2016; 18:3-9. [PMID: 26585699 PMCID: PMC4736353 DOI: 10.4103/1008-682x.165946] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The epididymis is a single convoluted tubule lined by a pseudostratified epithelium. Specialized epididymal epithelial cells, the so-called principal, basal, narrow, and clear cells, establish a unique luminal environment for the maturation and storage of spermatozoa. The epididymis is functionally and structurally divided into several segments and sub-segments that create regionally distinct luminal environments. This organ is immature at birth, and epithelial cells acquire their fully differentiated phenotype during an extended postnatal period, but the factors involved in this complex process remain incompletely characterized. In the adult epididymis, the establishment of an acidic luminal pH and low bicarbonate concentration in the epididymis contributes to preventing premature activation of spermatozoa during their maturation and storage. Clear cells are proton-secreting cells throughout the epididymis, but principal cells have distinct acid/base transport properties, depending on their localization within the epididymis. Basal cells are located in all epididymal segments, but they have a distinct morphology depending on the segment and species examined. How this structural plasticity of basal cells is regulated is discussed here. Also, the role of luminal factors and androgens in the regulation of epithelial cells is reviewed in relation to their respective localization in the proximal versus distal regions of the epididymis. Finally, we describe a novel role for CFTR in tubulogenesis and epithelial cell differentiation.
Collapse
Affiliation(s)
- Sylvie Breton
- Center for Systems Biology, Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital, Boston, MA 02114 and Harvard Medical School, Boston, MA 02115, USA,
| | | | | | | |
Collapse
|
10
|
Kwon WS, Oh SA, Kim YJ, Rahman MS, Park YJ, Pang MG. Proteomic approaches for profiling negative fertility markers in inferior boar spermatozoa. Sci Rep 2015; 5:13821. [PMID: 26348888 PMCID: PMC4562270 DOI: 10.1038/srep13821] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/05/2015] [Indexed: 12/02/2022] Open
Abstract
The ability to predict male fertility is of paramount importance for animal breeding industries and for human reproduction. Conventional semen analysis generally provides information on the quantitative parameters of spermatozoa, but yields no information concerning its functional competence. Proteomics have identified candidates for male fertility biomarkers, but no studies have clearly identified the relationship between the proteome and sperm fertility. Therefore, we performed a proteomic analysis to investigate small and large litter size boar spermatozoa and identify proteins related to male fertility. In this study, 20 proteins showed differential expression levels in small and large litter size groups. Nineteen of these proteins exhibited decreased expression in large litter size samples and increased expression in the small litter group. Interestingly, only one protein was highly expressed in the large litter size spermatozoa. We then identified signaling pathways associated with the differentially expressed protein markers. Glutathione S-transferase Mu3 and glutathione peroxidase 4 were related to the glutathione metabolic pathway and arginine vasopressin receptor 2 was linked to vasopressin R2/STAT. In summary, this is the first study to consider negative fertility biomarkers, and the identified proteins could potentially be used as biomarkers for the detection of inferior male fertility.
Collapse
Affiliation(s)
- Woo-Sung Kwon
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Korea
| | - Shin-Ae Oh
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Korea
| | - Ye-Ji Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Korea
| | - Md Saidur Rahman
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Korea
| | - Yoo-Jin Park
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Korea
| | - Myung-Geol Pang
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Korea
| |
Collapse
|
11
|
Luk ACS, Gao H, Xiao S, Liao J, Wang D, Tu J, Rennert OM, Chan WY, Lee TL. GermlncRNA: a unique catalogue of long non-coding RNAs and associated regulations in male germ cell development. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2015; 2015:bav044. [PMID: 25982314 PMCID: PMC4433719 DOI: 10.1093/database/bav044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/15/2015] [Indexed: 12/16/2022]
Abstract
Spermatogenic failure is a major cause of male infertility, which affects millions of couples worldwide. Recent discovery of long non-coding RNAs (lncRNAs) as critical regulators in normal and disease development provides new clues for delineating the molecular regulation in male germ cell development. However, few functional lncRNAs have been characterized to date. A major limitation in studying lncRNA in male germ cell development is the absence of germ cell-specific lncRNA annotation. Current lncRNA annotations are assembled by transcriptome data from heterogeneous tissue sources; specific germ cell transcript information of various developmental stages is therefore under-represented, which may lead to biased prediction or fail to identity important germ cell-specific lncRNAs. GermlncRNA provides the first comprehensive web-based and open-access lncRNA catalogue for three key male germ cell stages, including type A spermatogonia, pachytene spermatocytes and round spermatids. This information has been developed by integrating male germ transcriptome resources derived from RNA-Seq, tiling microarray and GermSAGE. Characterizations on lncRNA-associated regulatory features, potential coding gene and microRNA targets are also provided. Search results from GermlncRNA can be exported to Galaxy for downstream analysis or downloaded locally. Taken together, GermlncRNA offers a new avenue to better understand the role of lncRNAs and associated targets during spermatogenesis. Database URL: http://germlncrna.cbiit.cuhk.edu.hk/
Collapse
Affiliation(s)
- Alfred Chun-Shui Luk
- Reproduction, Development and Endocrinology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong-Shandong University (CUHK-SDU) Joint Laboratory on Reproductive Genetics and CUHK-BGI Innovation Institute of Trans-Omics, The Chinese University of Hong Kong, Shatin, Hong Kong, China, GigaScience, Beijing Genomics Institute-Hong Kong (BGI-HK) Research Institute, 16 Dai Fu Street, Tai Po Industrial Estate, Hong Kong, China, Beijing Genomics Institute-Shenzhen (BGI-SZ), Beishan Industrial Zone, Yantian District, Shenzhen, China and The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA Reproduction, Development and Endocrinology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong-Shandong University (CUHK-SDU) Joint Laboratory on Reproductive Genetics and CUHK-BGI Innovation Institute of Trans-Omics, The Chinese University of Hong Kong, Shatin, Hong Kong, China, GigaScience, Beijing Genomics Institute-Hong Kong (BGI-HK) Research Institute, 16 Dai Fu Street, Tai Po Industrial Estate, Hong Kong, China, Beijing Genomics Institute-Shenzhen (BGI-SZ), Beishan Industrial Zone, Yantian District, Shenzhen, China and The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Huayan Gao
- Reproduction, Development and Endocrinology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong-Shandong University (CUHK-SDU) Joint Laboratory on Reproductive Genetics and CUHK-BGI Innovation Institute of Trans-Omics, The Chinese University of Hong Kong, Shatin, Hong Kong, China, GigaScience, Beijing Genomics Institute-Hong Kong (BGI-HK) Research Institute, 16 Dai Fu Street, Tai Po Industrial Estate, Hong Kong, China, Beijing Genomics Institute-Shenzhen (BGI-SZ), Beishan Industrial Zone, Yantian District, Shenzhen, China and The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA Reproduction, Development and Endocrinology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong-Shandong University (CUHK-SDU) Joint Laboratory on Reproductive Genetics and CUHK-BGI Innovation Institute of Trans-Omics, The Chinese University of Hong Kong, Shatin, Hong Kong, China, GigaScience, Beijing Genomics Institute-Hong Kong (BGI-HK) Research Institute, 16 Dai Fu Street, Tai Po Industrial Estate, Hong Kong, China, Beijing Genomics Institute-Shenzhen (BGI-SZ), Beishan Industrial Zone, Yantian District, Shenzhen, China and The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Sizhe Xiao
- Reproduction, Development and Endocrinology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong-Shandong University (CUHK-SDU) Joint Laboratory on Reproductive Genetics and CUHK-BGI Innovation Institute of Trans-Omics, The Chinese University of Hong Kong, Shatin, Hong Kong, China, GigaScience, Beijing Genomics Institute-Hong Kong (BGI-HK) Research Institute, 16 Dai Fu Street, Tai Po Industrial Estate, Hong Kong, China, Beijing Genomics Institute-Shenzhen (BGI-SZ), Beishan Industrial Zone, Yantian District, Shenzhen, China and The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Jinyue Liao
- Reproduction, Development and Endocrinology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong-Shandong University (CUHK-SDU) Joint Laboratory on Reproductive Genetics and CUHK-BGI Innovation Institute of Trans-Omics, The Chinese University of Hong Kong, Shatin, Hong Kong, China, GigaScience, Beijing Genomics Institute-Hong Kong (BGI-HK) Research Institute, 16 Dai Fu Street, Tai Po Industrial Estate, Hong Kong, China, Beijing Genomics Institute-Shenzhen (BGI-SZ), Beishan Industrial Zone, Yantian District, Shenzhen, China and The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA Reproduction, Development and Endocrinology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong-Shandong University (CUHK-SDU) Joint Laboratory on Reproductive Genetics and CUHK-BGI Innovation Institute of Trans-Omics, The Chinese University of Hong Kong, Shatin, Hong Kong, China, GigaScience, Beijing Genomics Institute-Hong Kong (BGI-HK) Research Institute, 16 Dai Fu Street, Tai Po Industrial Estate, Hong Kong, China, Beijing Genomics Institute-Shenzhen (BGI-SZ), Beishan Industrial Zone, Yantian District, Shenzhen, China and The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Daxi Wang
- Reproduction, Development and Endocrinology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong-Shandong University (CUHK-SDU) Joint Laboratory on Reproductive Genetics and CUHK-BGI Innovation Institute of Trans-Omics, The Chinese University of Hong Kong, Shatin, Hong Kong, China, GigaScience, Beijing Genomics Institute-Hong Kong (BGI-HK) Research Institute, 16 Dai Fu Street, Tai Po Industrial Estate, Hong Kong, China, Beijing Genomics Institute-Shenzhen (BGI-SZ), Beishan Industrial Zone, Yantian District, Shenzhen, China and The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Jiajie Tu
- Reproduction, Development and Endocrinology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong-Shandong University (CUHK-SDU) Joint Laboratory on Reproductive Genetics and CUHK-BGI Innovation Institute of Trans-Omics, The Chinese University of Hong Kong, Shatin, Hong Kong, China, GigaScience, Beijing Genomics Institute-Hong Kong (BGI-HK) Research Institute, 16 Dai Fu Street, Tai Po Industrial Estate, Hong Kong, China, Beijing Genomics Institute-Shenzhen (BGI-SZ), Beishan Industrial Zone, Yantian District, Shenzhen, China and The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA Reproduction, Development and Endocrinology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong-Shandong University (CUHK-SDU) Joint Laboratory on Reproductive Genetics and CUHK-BGI Innovation Institute of Trans-Omics, The Chinese University of Hong Kong, Shatin, Hong Kong, China, GigaScience, Beijing Genomics Institute-Hong Kong (BGI-HK) Research Institute, 16 Dai Fu Street, Tai Po Industrial Estate, Hong Kong, China, Beijing Genomics Institute-Shenzhen (BGI-SZ), Beishan Industrial Zone, Yantian District, Shenzhen, China and The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Owen M Rennert
- Reproduction, Development and Endocrinology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong-Shandong University (CUHK-SDU) Joint Laboratory on Reproductive Genetics and CUHK-BGI Innovation Institute of Trans-Omics, The Chinese University of Hong Kong, Shatin, Hong Kong, China, GigaScience, Beijing Genomics Institute-Hong Kong (BGI-HK) Research Institute, 16 Dai Fu Street, Tai Po Industrial Estate, Hong Kong, China, Beijing Genomics Institute-Shenzhen (BGI-SZ), Beishan Industrial Zone, Yantian District, Shenzhen, China and The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Wai-Yee Chan
- Reproduction, Development and Endocrinology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong-Shandong University (CUHK-SDU) Joint Laboratory on Reproductive Genetics and CUHK-BGI Innovation Institute of Trans-Omics, The Chinese University of Hong Kong, Shatin, Hong Kong, China, GigaScience, Beijing Genomics Institute-Hong Kong (BGI-HK) Research Institute, 16 Dai Fu Street, Tai Po Industrial Estate, Hong Kong, China, Beijing Genomics Institute-Shenzhen (BGI-SZ), Beishan Industrial Zone, Yantian District, Shenzhen, China and The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA Reproduction, Development and Endocrinology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong-Shandong University (CUHK-SDU) Joint Laboratory on Reproductive Genetics and CUHK-BGI Innovation Institute of Trans-Omics, The Chinese University of Hong Kong, Shatin, Hong Kong, China, GigaScience, Beijing Genomics Institute-Hong Kong (BGI-HK) Research Institute, 16 Dai Fu Street, Tai Po Industrial Estate, Hong Kong, China, Beijing Genomics Institute-Shenzhen (BGI-SZ), Beishan Industrial Zone, Yantian District, Shenzhen, China and The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA Reproduction, Development and Endocrinology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong-Shandong University (CUHK-SDU) Joint Laboratory on Reproductive Genetics and CUHK-BGI Innovation Institute of Trans-Omics, The Chinese University of Hong Kong, Shatin, Hong Kong, China, GigaScience, Beijing Genomics Institute-Hong Kong (BGI-HK) Research Institute, 16 Dai Fu Street, Tai Po Industrial Estate, Hong Kong, China, Beijing Genomics Institute-Shenzhen (BGI-SZ), Beishan Industrial Zone, Yantian District, Shenzhen, China and T
| | - Tin-Lap Lee
- Reproduction, Development and Endocrinology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong-Shandong University (CUHK-SDU) Joint Laboratory on Reproductive Genetics and CUHK-BGI Innovation Institute of Trans-Omics, The Chinese University of Hong Kong, Shatin, Hong Kong, China, GigaScience, Beijing Genomics Institute-Hong Kong (BGI-HK) Research Institute, 16 Dai Fu Street, Tai Po Industrial Estate, Hong Kong, China, Beijing Genomics Institute-Shenzhen (BGI-SZ), Beishan Industrial Zone, Yantian District, Shenzhen, China and The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA Reproduction, Development and Endocrinology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong-Shandong University (CUHK-SDU) Joint Laboratory on Reproductive Genetics and CUHK-BGI Innovation Institute of Trans-Omics, The Chinese University of Hong Kong, Shatin, Hong Kong, China, GigaScience, Beijing Genomics Institute-Hong Kong (BGI-HK) Research Institute, 16 Dai Fu Street, Tai Po Industrial Estate, Hong Kong, China, Beijing Genomics Institute-Shenzhen (BGI-SZ), Beishan Industrial Zone, Yantian District, Shenzhen, China and The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA Reproduction, Development and Endocrinology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong-Shandong University (CUHK-SDU) Joint Laboratory on Reproductive Genetics and CUHK-BGI Innovation Institute of Trans-Omics, The Chinese University of Hong Kong, Shatin, Hong Kong, China, GigaScience, Beijing Genomics Institute-Hong Kong (BGI-HK) Research Institute, 16 Dai Fu Street, Tai Po Industrial Estate, Hong Kong, China, Beijing Genomics Institute-Shenzhen (BGI-SZ), Beishan Industrial Zone, Yantian District, Shenzhen, China and T
| |
Collapse
|
12
|
Pierucci-Alves F, Akoyev V, Schultz BD. Bicarbonate exchangers SLC26A3 and SLC26A6 are localized at the apical membrane of porcine vas deferens epithelium. Physiol Rep 2015; 3:3/4/e12380. [PMID: 25907791 PMCID: PMC4425982 DOI: 10.14814/phy2.12380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The goal of this study was to test for expression of HCO3 (-) exchangers SLC26A3 and SLC26A6 in primary cultures of porcine vas deferens epithelial cells (1°PVD) and native porcine vas deferens. Quantitative RT-PCR revealed that mRNA coding for SLC26A6 was six times more abundant than mRNA coding for SLC26A3 in 1°PVD cells. Western blot analyses combined with surface biotinylation of 1°PVD demonstrated SLC26A3 and SLC26A6 immunoreactivities in whole-cell lysates and apical surfaces of monolayers. Laser scanning confocal microscopy (LSCM) of the 1°PVD cell monolayers demonstrated that SLC26A3 immunoreactivity was primarily in the apical region but present throughout the basal-apical cellular axis, whereas SLC26A6 immunoreactivity was present in the apical region and sometimes accumulated in the nuclear region. LSCM also demonstrated SLC26A3 and SLC26A6 immunoreactivities present along the entire apical lining of the native porcine vas deferens epithelium and in basal cells. The patterns and apparent abundance of SLC26A3 and SLC26A6 immunoreactivities in the proximal vas deferens were not different from the corresponding immunoreactivities in the distal region. There is no evidence of preferential expression of SLC26A3 or SLC26A6 in any portion of the vas deferens, as has been proposed for epithelia that secrete HCO3 (-) in other duct systems. Thus, vas deferens epithelia express transporters throughout the duct that can contribute to rapid alkalinization of the luminal contents as it has been demonstrated in vivo.
Collapse
Affiliation(s)
| | - Vladimir Akoyev
- Department of Anatomy & Physiology, Kansas State University, Manhattan, Kansas, USA
| | - Bruce D Schultz
- Department of Anatomy & Physiology, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
13
|
Abstract
Arginine vasopressin (VP) is neurohypophysial hormone has been implicated in stimulating contractile activity of the male reproductive tract in the testis. Higher levels of VP decrease sperm count and motility. However, very little is known about the involvement of VP in controlling mammalian reproductive process. The goal of this study was to confirm that effect of VP receptor (AVPR2) on sperm function in capacitation condition. Deamino [Cys 1, D-ArgS] vasopressin (dDAVP), an AVPR2 agonist that operates only on AVPR2, was used. Also, Mouse spermatozoa were incubated with various concentrations of dDAVP (10(-11)-10(-5) M) and sperm motility, capacitation status, Protein Kinase A activity (PKA), tyrosine phosphorylation, fertilization, and embryo development were assessed using computer-assisted sperm analysis, Combined Hoechst 33258/chlortetracycline fluorescence, Western blotting, and in vitro fertilization, respectively. AVPR2 was placed on the acrosome region and mid-piece in cauda epididymal spermatozoa, but the caput epididymal spermatozoa was mid-piece only. The high dDAVP treatment (10(-8) and 10(-5) M) significantly decreased sperm motility, intracellular pH and PKA substrates (approximately 55 and 22 kDa) and increased Ca(2+) concentration. The highest concentration treatment significantly decreased PKA substrate (approximately 23 kDa) and tyrosine phosphorylation (approximately 30 kDa). VP detrimentally affected capacitation, acrosome reaction, and embryo development. Treatment with the lowest concentration (10(-11) M) was not significantly different. Our data have shown that VP stimulates ion transport across sperm membrane through interactions with AVPR2. VP has a detrimental effect in sperm function, fertilization, and embryonic development, suggesting its critical role in the acquisition of fertilizing ability of mouse spermatozoa. These research findings will enable further study to determine molecular mechanism associated with fertility in capacitation and fertilization. It is also an important pivotal precondition to the progress of diagnostic test to identify infertility and to apply male contraception.
Collapse
|
14
|
Shum WWC, Ruan YC, Da Silva N, Breton S. Establishment of cell-cell cross talk in the epididymis: control of luminal acidification. ACTA ACUST UNITED AC 2011; 32:576-86. [PMID: 21441423 DOI: 10.2164/jandrol.111.012971] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Male infertility is often caused by sperm that have low motility and interact poorly with the oocyte. Spermatozoa acquire these crucial functions in the epididymis. A low luminal bicarbonate (HCO(3)(-)) concentration and low pH keep sperm quiescent during their maturation and storage in this organ. This review describes how epididymal epithelial cells work in a concerted manner, together with spermatozoa, to establish and maintain this acidic luminal environment. Clear cells express the proton-pumping ATPase (V-ATPase) in their apical membrane and actively secrete protons. HCO(3)(-) induces V-ATPase accumulation in apical microvilli in clear cells via HCO(3)(-)-sensitive adenylyl cyclase-dependent cAMP production. HCO(3)(-) is secreted from principal cells following basolateral stimulation, to transiently "prime" spermatozoa before ejaculation. Luminal ATP and adenosine also induce V-ATPase apical accumulation in clear cells via activation of P2 and P1 receptors, respectively. ATP is released into the lumen from sperm and principal cells and is then metabolized into adenosine by local nucleotidases. In addition, the V-ATPase is regulated by luminal angiotensin II via activation of basal cells, which can extend narrow body projections that cross the tight junction barrier. Basal cells then secrete nitric oxide, which diffuses out to stimulate proton secretion in clear cells via activation of the cGMP pathway. Thus, an elaborate communication network is present between principal cells and clear cells, and between basal cells and clear cells, to control luminal acidification. Monitoring and decoding these "intercellular conversations" will help define pathophysiologic mechanisms underlying male infertility.
Collapse
Affiliation(s)
- Winnie W C Shum
- Program in Membrane Biology, MGH Simches Research Center, 185 Cambridge Street, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
15
|
Lee NK, Kim MK, Choi JH, Kim EB, Lee HG, Kang SK, Choi YJ. Identification of a peptide sequence targeting mammary vasculature via RPLP0 during lactation. Peptides 2010; 31:2247-54. [PMID: 20863866 DOI: 10.1016/j.peptides.2010.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 09/13/2010] [Accepted: 09/13/2010] [Indexed: 11/20/2022]
Abstract
To find novel targeting moieties to lactating mammary gland, in vivo phage display screening was conducted with lactating rats and a peptide ligand, CLHQHNQMC (designated as MG1), which specifically homes to the mammary tissue during lactation, was identified through the consecutive in vivo biopannings. MG1 peptide ligand showed specific binding affinity to lactating mammary tissue without any preference to other organs tested in ex vivo and in vivo validation, and microscopy analysis revealed that systemically introduced MG1 could be specifically localized in the lactating mammary gland associated with mammary epithelia and alveolar vasculature. Based on the observation that binding of MG1-encoding phage to lactating mammary gland was competitively inhibited by synthetic MG1 peptide ligand, we attempted to identify a counterpart molecule corresponding to specific recognition of the MG1 and the acidic Ribosomal Protein Large P0 (RPLP0) was selected as a candidate receptor for MG1 by peptide affinity pull-down assay with protein extracts from lactating mammary tissue. We demonstrated specific expression of RPLP0 in mammary tissue, especially during lactation, by immunoblotting assays and also demonstrated that MG1 peptide ligand could be bound to, and internalized into, the cells effectively via specific interaction with RPLP0 by analysis using an in vitro endothelial cell model. The overall results suggest that the MG1 has a specific affinity with RPLP0 which are dominantly expressed on the mammary vasculature during lactation and this specific affinity enables the MG1 would be served as an effective homing ligand to deliver functional molecules to the lactating mammary gland.
Collapse
Affiliation(s)
- Nam Kyung Lee
- Laboratory of Animal Cell Biotechnology, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
16
|
Sang Y, Rowland RRR, Blecha F. Molecular characterization and antiviral analyses of porcine type III interferons. J Interferon Cytokine Res 2010; 30:801-7. [PMID: 20929278 DOI: 10.1089/jir.2010.0016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Type III interferons (IFNs) are a family of recently identified antiviral cytokines. One to 3 paralogs have been identified in several species; however, little information is available about type III IFNs in pigs. We have identified 2 porcine type III IFNs, Sus scrofa IFN-λ1 (SsIFN-λ1) and SsIFN-λ3, and determined their tissue expression profile and antiviral activities. Open reading frames of SsIFN-λ1 and SsIFN-λ3 are 576 and 588 bp, encoding 191 and 195 amino acid preproteins, respectively. In healthy pigs, SsIFN-λ3 was primarily expressed in mesenteric lymph nodes and intestine, whereas expression of SsIFN-λ1 was found in all tested tissues and was high in mesenteric lymph nodes, intestine, and liver. Porcine cells treated with the viral mimic, dsRNA, robustly increased SsIFN-λ3 expression, with epithelial cells generally displaying the greatest response. Conversely, dsRNA-induced mRNA expressions of SsIFN-λ1, SsIFN-α1, and SsIFN-β were relatively weaker and delayed compared with SsIFN-λ3. SsIFN-λ1 and SsIFN-λ3 peptides exerted similar but lower antiviral potency than SsIFN-α1 and SsIFN-β against a porcine arterivirus and an adenovirus. These findings indicate that pigs have 2 type III IFN paralogs, which have antiviral activity and may serve as targets for modulation of the porcine host-pathogen interaction.
Collapse
Affiliation(s)
- Yongming Sang
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | |
Collapse
|
17
|
Jobling P. Autonomic control of the urogenital tract. Auton Neurosci 2010; 165:113-26. [PMID: 20727839 DOI: 10.1016/j.autneu.2010.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 07/01/2010] [Accepted: 07/08/2010] [Indexed: 11/28/2022]
Abstract
The urogenital tract houses many of the organs that play a major role in homeostasis, in particular those that control water and salt balance, and reproductive function. This review focuses on the anatomical and functional innervation of the kidneys, urinary ducts and bladders of the urinary system, and the gonads, gonadal ducts, and intromittent organs of the reproductive tract. The literature, especially in recent years, is overwhelmingly skewed toward the situation in mammals. Nevertheless, where specific neurochemical markers have been investigated, common patterns of innervation can be found in representatives from most vertebrate classes. Not surprisingly the vasculature, epithelia and smooth muscle of all urogenital organs receives adrenergic innervation. These nerves may contain non-adrenergic non-cholinergic (NANC) neurotransmitters such as ATP and NPY. Cholinergic nerves increase motility in most urogenital organs with the exception of the kidney. The major NANC nerves found to influence urogenital organs include those containing VIP/PACAP, galanin and neuronal nitric oxide synthase. These can be found associated with both smooth muscle and epithelia. The role these nerves play, and the circumstances where they are activated are for the most part unknown.
Collapse
Affiliation(s)
- Phillip Jobling
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, Australia.
| |
Collapse
|
18
|
Shum WWC, Da Silva N, Brown D, Breton S. Regulation of luminal acidification in the male reproductive tract via cell-cell crosstalk. ACTA ACUST UNITED AC 2009; 212:1753-61. [PMID: 19448084 DOI: 10.1242/jeb.027284] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the epididymis, spermatozoa acquire their ability to become motile and to fertilize an egg. A luminal acidic pH and a low bicarbonate concentration help keep spermatozoa in a quiescent state during their maturation and storage in this organ. Net proton secretion is crucial to maintain the acidity of the luminal fluid in the epididymis. A sub-population of epithelial cells, the clear cells, express high levels of the proton-pumping V-ATPase in their apical membrane and are important contributors to luminal acidification. This review describes selected aspects of V-ATPase regulation in clear cells. The assembly of a particular set of V-ATPase subunit isoforms governs the targeting of the pump to the apical plasma membrane. Regulation of V-ATPase-dependent proton secretion occurs via recycling mechanisms. The bicarbonate-activated adenylyl cyclase is involved in the non-hormonal regulation of V-ATPase recycling, following activation of bicarbonate secretion by principal cells. The V-ATPase is also regulated in a paracrine manner by luminal angiotensin II by activation of the angiotensin II type 2 receptor (AGTR2), which is located in basal cells. Basal cells have the remarkable property of extending long and slender cytoplasmic projections that cross the tight junction barrier to monitor the luminal environment. Clear cells are activated by a nitric oxide signal that originates from basal cells. Thus, a complex interplay between the different cell types present in the epithelium leads to activation of the luminal acidifying capacity of the epididymis, a process that is crucial for sperm maturation and storage.
Collapse
Affiliation(s)
- Winnie W C Shum
- Center for Systems Biology, Program in Membrane Biology, Nephrology Division, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
19
|
Hallows KR, Alzamora R, Li H, Gong F, Smolak C, Neumann D, Pastor-Soler NM. AMP-activated protein kinase inhibits alkaline pH- and PKA-induced apical vacuolar H+-ATPase accumulation in epididymal clear cells. Am J Physiol Cell Physiol 2009; 296:C672-81. [PMID: 19211918 DOI: 10.1152/ajpcell.00004.2009] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Acidic luminal pH and low [HCO(3)(-)] maintain sperm quiescent during maturation in the epididymis. The vacuolar H(+)-ATPase (V-ATPase) in clear cells is a major contributor to epididymal luminal acidification. We have shown previously that protein kinase A (PKA), acting downstream of soluble adenylyl cyclase stimulation by alkaline luminal pH or HCO(3)(-), induces V-ATPase apical membrane accumulation in clear cells. Here we examined whether the metabolic sensor AMP-activated protein kinase (AMPK) regulates this PKA-induced V-ATPase apical membrane accumulation. Immunofluorescence labeling of rat and non-human primate epididymides revealed specific AMPK expression in epithelial cells. Immunofluorescence labeling of rat epididymis showed that perfusion in vivo with the AMPK activators 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) or A-769662 induced a redistribution of the V-ATPase into subapical vesicles, even in the presence of a luminal alkaline (pH 7.8) buffer compared with that of controls perfused without drug. Moreover, preperfusion with AICAR blocked the PKA-mediated V-ATPase translocation to clear cell apical membranes induced by N(6)-monobutyryl-cAMP (6-MB-cAMP). Purified PKA and AMPK both phosphorylated V-ATPase A subunit in vitro. In HEK-293 cells [(32)P]orthophosphate in vivo labeling of the A subunit increased following PKA stimulation and decreased following RNA interference-mediated knockdown of AMPK. Finally, the extent of PKA-dependent in vivo phosphorylation of the A subunit increased with AMPK knockdown. In summary, our findings suggest that AMPK inhibits PKA-mediated V-ATPase apical accumulation in epididymal clear cells, that both kinases directly phosphorylate the V-ATPase A subunit in vitro and in vivo, and that AMPK inhibits PKA-dependent phosphorylation of this subunit. V-ATPase activity may be coupled to the sensing of acid-base status via PKA and to metabolic status via AMPK.
Collapse
Affiliation(s)
- Kenneth R Hallows
- Renal-Electrolyte Division, Dept. of Medicine, Scaife A915, 3550 Terrace St., Pittsburgh, PA 15263, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Pierucci-Alves F, Schultz BD. Bradykinin-stimulated cyclooxygenase activity stimulates vas deferens epithelial anion secretion in vitro in swine and humans. Biol Reprod 2008; 79:501-9. [PMID: 18480467 DOI: 10.1095/biolreprod.107.066910] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Epithelia lining the male reproductive duct modulate fertility by altering the luminal environment to which sperm are exposed. Although vas deferens epithelial cells reportedly express high levels of cyclooxygenases (Ptgs), and activation of bradykinin (BK) receptors can lead to upregulation of PTGS activity in epididymal epithelia, it remains unknown whether BKs and/or PTGSs have any role in modulating epithelial ion transport across vas deferens epithelia. Porcine and human vas deferens epithelial cell primary cultures and the PVD9902 cell line responded to lysylbradykinin with an increase in short circuit current (I SC; indicating net anion secretion), an effect that was 60%-93% reduced by indomethacin. The BK effect was inhibited by the B2 receptor subtype (BDKRB2) antagonist HOE140, whereas the B1 receptor subtype agonist des-Arg9-BK had no effect. BDKRB2 immunoreactivity was documented in most epithelial cells composing the native epithelium and on Western blots derived from cultured cells. Gene expression analysis revealed that the PTGS2 transcript is 20 times more abundant than its PTGS1 counterpart in cultured porcine vas deferens epithelia and that BDKRB2 mRNA is likewise highly expressed. Subsequent experiments revealed that prostaglandin E2, 1-OH prostaglandin E1 (prostaglandin E receptor 4 [PTGER4] agonist) and butaprost (PTGER2 agonist) increase I SC in a concentration-dependent manner, whereas sulprostone (mixed PTGER1 and PTGER3 agonist) produced no change in I SC. These results demonstrate that autacoids can affect epithelial cells to acutely modulate the luminal environment to which sperm are exposed in the vas deferens by enhancing PTGS activity, leading to the production of prostaglandins that act at PTGER4 and/or PTGER2 to induce or enhance anion secretion.
Collapse
|