1
|
McGlade EA, Stephens KK, Winuthayanon S, Anamthathmakula P, Holtzman MJ, Winuthayanon W. Classical Estrogen Signaling in Ciliated Epithelial Cells of the Oviduct Is Nonessential for Fertility in Female Mice. Endocrinology 2023; 165:bqad163. [PMID: 37942801 PMCID: PMC10658216 DOI: 10.1210/endocr/bqad163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/03/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
Ciliary action performs a critical role in the oviduct (Fallopian tube) during pregnancy establishment through sperm and egg transport. The disruption of normal ciliary function in the oviduct affects oocyte pick-up and is a contributing factor to female infertility. Estrogen is an important regulator of ciliary action in the oviduct and promotes ciliogenesis in several species. Global loss of estrogen receptor α (ESR1) leads to infertility. We have previously shown that ESR1 in the oviductal epithelial cell layer is required for female fertility. Here, we assessed the role of estrogen on transcriptional regulation of ciliated epithelial cells of the oviduct using single-cell RNA-sequencing analysis. We observed minor variations in ciliated cell genes in the proximal region (isthmus and uterotubal junction) of the oviduct. However, 17β-estradiol treatment had little impact on the gene expression profile of ciliated epithelial cells. We also conditionally ablated Esr1 from ciliated epithelial cells of the oviduct (called ciliated Esr1d/d mice). Our studies showed that ciliated Esr1d/d females had fertility rates comparable to control females, did not display any disruptions in preimplantation embryo development or embryo transport to the uterus, and had comparable cilia formation to control females. However, we observed some incomplete deletion of Esr1 in the ciliated epithelial cells, especially in the ampulla region. Nevertheless, our data suggest that ESR1 expression in ciliated cells of the oviduct is dispensable for ciliogenesis and nonessential for female fertility in mice.
Collapse
Affiliation(s)
- Emily A McGlade
- Obstetrics, Gynecology and Women's Health, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Kalli K Stephens
- Obstetrics, Gynecology and Women's Health, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | | | | | - Michael J Holtzman
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St.Louis, MO 63110, USA
| | - Wipawee Winuthayanon
- Obstetrics, Gynecology and Women's Health, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
2
|
Guajardo-Correa E, Mena-Silva D, Diaz P, Godoy-Guzmán C, Cardenas H, Orihuela PA. 2-Methoxyoestradiol impairs mouse embryo implantation via F-spondin. Reprod Fertil Dev 2018; 31:689-697. [PMID: 30449298 DOI: 10.1071/rd18114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 10/17/2018] [Indexed: 11/23/2022] Open
Abstract
The anti-implantation effects of high oestradiol (E2) concentrations could be mediated by E2 metabolites. Herein, we examined whether 2-methoxyoestradiol (2ME) impairs embryo implantation via its target protein F-spondin. Mice on Day 3 of pregnancy were treated with E2 concomitantly with the cathecol-O-methyl transferase inhibitor OR486 and the number of implanted embryos was recorded 5 days later. The effect of 2ME or 4-methoxyoestradiol (4ME) on embryo implantation was also investigated. Plasma and uterine levels of 2ME were measured 0.5, 1 or 3h after E2 treatment while the mRNA for spondin 1 (Spon1) and F-spondin were determined in the uterus 3, 6, 12 or 24h after 2ME treatment. Finally, the effect of a neutralising F-spondin antibody on the anti-implantation effect of 2ME was explored. OR486 blocked the anti-implantation effect of E2; 2ME, but not 4ME, affected embryo implantation. The 2ME concentration was increased after 0.5 and 1h in plasma and 3h in uterine fluid following E2 treatment. 2ME increased levels of Spon1 at 12 and 24h although F-spondin was increased at 12h. F-spondin antibody blocked the effect of 2ME on embryo implantation. We conclude that 2ME impairs mouse embryo implantation via activation of F-spondin in the uterus.
Collapse
Affiliation(s)
- Emanuel Guajardo-Correa
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile
| | - Denisse Mena-Silva
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile
| | - Patricia Diaz
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile
| | - Carlos Godoy-Guzmán
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Casilla 40, Correo 33, Chile
| | - Hugo Cardenas
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile
| | - Pedro A Orihuela
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile
| |
Collapse
|
3
|
Landeros RV, Pastore MB, Magness RR. Effects of the Catechol and Methoxy Metabolites of 17β-Estradiol on Nitric Oxide Production by Ovine Uterine Artery Endothelial Cells. Reprod Sci 2018; 26:459-468. [PMID: 29929429 DOI: 10.1177/1933719118783265] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) production is essential to facilitate rises in uterine blood flow (UBF) during pregnancy. It has been proposed that the metabolites of E2β, 2-hydroxyestradiol (2-OHE2), 4-hydroxyestradiol (4-OHE2), 2-methoxyestradiol (2-ME2), and 4-methoxyestradiol (4-ME2) play a role in mediating vasodilation and rises in UBF during pregnancy. We previously showed that the E2β metabolites stimulate prostacyclin production in pregnancy-derived ovine uterine artery endothelial cells (P-UAECs); however, it is unknown whether the E2β metabolites also induce NO production. Herein, UAECs derived from nonpregnant and pregnant ewes were used to test the hypothesis that E2β metabolites stimulate NO production in a pregnancy-specific manner. Specific estrogen receptor (ER) and adrenergic receptor (AR) antagonists were used to determine the roles of ERs or ARs in E2β metabolite-induced NO production. E2β and its metabolites increased total nitric oxide metabolites (NOx) levels (NO2 + NO3) in P-UAECs, but not in NP-UAECs. Pretreatment with combined 1 µmol/L 1,3-bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1H-pyrazole dihydrochloride (MPP; ER-α antagonist) and 1 µmol/L 4-[2-phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5-a]pyrimidin-3-yl]phenol (PHTPP; ER-β antagonist) inhibited the rises in NOx levels stimulated by E2β and 2-ME2, but had no effect on 2-OHE2-, 4-OHE2-, or 4-ME2-stimulated rises in NOx levels. Pretreatment with yohimbine (α2-AR antagonist) and propranolol (β2,3-AR antagonist) inhibited the rises in NOx levels stimulated by 2-OHE2, but not by E2β, 4-OHE2, 2-ME2, or 4-ME2. These data demonstrate that E2β metabolites stimulate NO synthesis via ERs or ARs in UAECs in a pregnancy-specific manner, suggesting that these metabolites contribute to rises in vasodilation and UBF during pregnancy.
Collapse
Affiliation(s)
- Rosalina Villalon Landeros
- 1 Department of Obstetrics and Gynecology, Perinatal Research Laboratories, University of Wisconsin-Madison, Madison, WI, USA
| | - Mayra B Pastore
- 2 Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Ronald R Magness
- 1 Department of Obstetrics and Gynecology, Perinatal Research Laboratories, University of Wisconsin-Madison, Madison, WI, USA.,3 Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA.,4 Department of Animal Science, University of Wisconsin-Madison, Madison, WI, USA.,5 Department of Obstetrics and Gynecology, Morsani College of Medicine, Perinatal Research Vascular Center, University of South Florida, Tampa, FL, USA
| |
Collapse
|
4
|
Parada-Bustamante A, Oróstica ML, Reuquen P, Zuñiga LM, Cardenas H, Orihuela PA. The role of mating in oviduct biology. Mol Reprod Dev 2018; 83:875-883. [PMID: 27371809 DOI: 10.1002/mrd.22674] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 06/29/2016] [Indexed: 02/05/2023]
Abstract
The oviduct connects the ovary to the uterus, and is subject to changes that influence gamete transport, fertilization, and early embryo development. The ovarian steroids estradiol and progesterone are largely responsible for regulating oviduct function, although mating signals also affect the female reproductive tract, both indirectly, through sensory stimulation, and directly, through contact with seminal plasma or spermatozoa. The resulting alterations in gene and protein expression help establish a microenvironment that is appropriate for sperm storage and selection, embryo development, and gamete transport. Mating may also induce the switch from a non-genomic to a genomic pathway of estradiol-accelerated oviduct egg transport, reflecting a novel example of the functional plasticity in well-differentiated cells. This review highlights the physiological relevance of various aspects of mating to oviduct biology and reproductive success. Expanding our knowledge of the mating-associated molecular and cellular events in oviduct cells would undoubtedly facilitate new therapeutic strategies to treat infertility attributable to oviduct pathologies. Mol. Reprod. Dev. 83: 875-883, 2016 © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - María L Oróstica
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Centro Para el Desarrollo en Nanociencia y Nanotecnología-CEDENNA, Santiago, Chile
| | - Patricia Reuquen
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Centro Para el Desarrollo en Nanociencia y Nanotecnología-CEDENNA, Santiago, Chile
| | - Lidia M Zuñiga
- Laboratorio de Biología de la Reproducción, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Hugo Cardenas
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Centro Para el Desarrollo en Nanociencia y Nanotecnología-CEDENNA, Santiago, Chile
| | - Pedro A Orihuela
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile. .,Centro Para el Desarrollo en Nanociencia y Nanotecnología-CEDENNA, Santiago, Chile.
| |
Collapse
|
5
|
Wang P, Mills LH, Song JH, Yu J, Zhu BT. Lack of Cell Proliferative and Tumorigenic Effects of 4-Hydroxyestradiol in the Anterior Pituitary of Rats: Role of Ultrarapid O-Methylation Catalyzed by Pituitary Membrane-Bound Catechol-O-Methyltransferase. Chem Res Toxicol 2017; 30:1448-1462. [PMID: 28616971 DOI: 10.1021/acs.chemrestox.7b00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In animal models, estrogens are complete carcinogens in certain target sites. 4-Hydroxyestradiol (4-OH-E2), an endogenous metabolite of 17β-estradiol (E2), is known to have prominent estrogenic activity plus potential genotoxicity and mutagenicity. We report here our finding that 4-OH-E2 does not induce pituitary tumors in ACI female rats, whereas E2 produces 100% pituitary tumor incidence. To probe the mechanism, we conducted a short-term animal experiment to compare the proliferative effect of 4-OH-E2 in several organs. We found that, whereas 4-OH-E2 had little ability to stimulate pituitary cell proliferation in ovariectomized female rats, it strongly stimulates cell proliferation in certain brain regions of these animals. Further, when we used in vitro cultured rat pituitary tumor cells as models, we found that 4-OH-E2 has similar efficacy as E2 in stimulating cell proliferation, but its potency is approximately 3 orders of magnitude lower than that of E2. Moreover, we found that the pituitary tumor cells have the ability to selectively metabolize 4-OH-E2 (but not E2) with ultrahigh efficiency. Additional analysis revealed that the rat pituitary expresses a membrane-bound catechol-O-methyltransferase that has an ultralow Km value (in nM range) for catechol estrogens. On the basis of these observations, it is concluded that rapid metabolic disposition of 4-OH-E2 through enzymatic O-methylation in rat anterior pituitary cells largely contributes to its apparent lack of cell proliferative and tumorigenic effects in this target site.
Collapse
Affiliation(s)
- Pan Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center , Kansas City, Kansas 66160, United States.,State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences , Beijing 100101, China
| | - Laura H Mills
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center , Kansas City, Kansas 66160, United States
| | - Ji-Hoon Song
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center , Kansas City, Kansas 66160, United States
| | - Jina Yu
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center , Kansas City, Kansas 66160, United States
| | - Bao-Ting Zhu
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center , Kansas City, Kansas 66160, United States.,Kobilka Institute of Innovative Drug Discovery, The Chinese University of Hong Kong (Shenzhen) , Shenzhen, Guangdong 518172, China
| |
Collapse
|
6
|
Liu JL, Zhao M. Prioritization of Susceptibility Genes for Ectopic Pregnancy by Gene Network Analysis. Int J Mol Sci 2016; 17:ijms17020191. [PMID: 26840308 PMCID: PMC4783925 DOI: 10.3390/ijms17020191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/14/2016] [Accepted: 01/27/2016] [Indexed: 01/25/2023] Open
Abstract
Ectopic pregnancy is a very dangerous complication of pregnancy, affecting 1%–2% of all reported pregnancies. Due to ethical constraints on human biopsies and the lack of suitable animal models, there has been little success in identifying functionally important genes in the pathogenesis of ectopic pregnancy. In the present study, we developed a random walk–based computational method named TM-rank to prioritize ectopic pregnancy–related genes based on text mining data and gene network information. Using a defined threshold value, we identified five top-ranked genes: VEGFA (vascular endothelial growth factor A), IL8 (interleukin 8), IL6 (interleukin 6), ESR1 (estrogen receptor 1) and EGFR (epidermal growth factor receptor). These genes are promising candidate genes that can serve as useful diagnostic biomarkers and therapeutic targets. Our approach represents a novel strategy for prioritizing disease susceptibility genes.
Collapse
Affiliation(s)
- Ji-Long Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Miao Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
7
|
Reuquén P, Oróstica ML, Rojas I, Díaz P, Parada-Bustamante A, Orihuela PA. Estradiol increases IP3 by a nongenomic mechanism in the smooth muscle cells from the rat oviduct. Reproduction 2015; 150:331-41. [PMID: 26159830 DOI: 10.1530/rep-15-0137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/09/2015] [Indexed: 12/20/2022]
Abstract
Estradiol (E2) accelerates egg transport by a nongenomic action, requiring activation of estrogen receptor (ER) and successive cAMP and IP3 production in the rat oviduct. Furthermore, E2 increases IP3 production in primary cultures of oviductal smooth muscle cells. As smooth muscle cells are the mechanical effectors for the accelerated oocyte transport induced by E2 in the oviduct, herein we determined the mechanism by which E2 increases IP3 in these cells. Inhibition of protein synthesis by Actinomycin D did not affect the E2-induced IP3 increase, although this was blocked by the ER antagonist ICI182780 and the inhibitor of phospholipase C (PLC) ET-18-OCH3. Immunoelectron microscopy for ESR1 or ESR2 showed that these receptors were associated with the plasma membrane, indicating compatible localization with E2 nongenomic actions in the smooth muscle cells. Furthermore, ESR1 but not ESR2 agonist mimicked the effect of E2 on the IP3 level. Finally, E2 stimulated the activity of a protein associated with the contractile tone, calcium/calmodulin-dependent protein kinase II (CaMKII), in the smooth muscle cells. We conclude that E2 increases IP3 by a nongenomic action operated by ESR1 and that involves the activation of PLC in the smooth muscle cells of the rat oviduct. This E2 effect is associated with CaMKII activation in the smooth muscle cells, suggesting that IP3 and CaMKII are involved in the contractile activity necessary to accelerate oviductal egg transport.
Collapse
Affiliation(s)
- Patricia Reuquén
- Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNAInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Alameda 3363, Casilla 40, Correo 33 Santiago, Chile Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNAInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Alameda 3363, Casilla 40, Correo 33 Santiago, Chile
| | - María L Oróstica
- Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNAInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Alameda 3363, Casilla 40, Correo 33 Santiago, Chile Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNAInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Alameda 3363, Casilla 40, Correo 33 Santiago, Chile
| | - Israel Rojas
- Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNAInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Alameda 3363, Casilla 40, Correo 33 Santiago, Chile Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNAInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Alameda 3363, Casilla 40, Correo 33 Santiago, Chile
| | - Patricia Díaz
- Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNAInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Alameda 3363, Casilla 40, Correo 33 Santiago, Chile Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNAInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Alameda 3363, Casilla 40, Correo 33 Santiago, Chile
| | - Alexis Parada-Bustamante
- Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNAInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Alameda 3363, Casilla 40, Correo 33 Santiago, Chile
| | - Pedro A Orihuela
- Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNAInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Alameda 3363, Casilla 40, Correo 33 Santiago, Chile Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNAInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Alameda 3363, Casilla 40, Correo 33 Santiago, Chile
| |
Collapse
|
8
|
Oróstica ML, Lopez J, Rojas I, Rocco J, Díaz P, Reuquén P, Cardenas H, Parada-Bustamante A, Orihuela PA. Estradiol increases cAMP in the oviductal secretory cells through a nongenomic mechanism. Reproduction 2015; 148:285-94. [PMID: 25038866 DOI: 10.1530/rep-14-0128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In the rat oviduct, estradiol (E2) accelerates egg transport by a nongenomic action that requires previous conversion of E2 to methoxyestrogens via catechol-O-methyltranferase (COMT) and activation of estrogen receptor (ER) with subsequent production of cAMP and inositol triphosphate (IP3). However, the role of the different oviductal cellular phenotypes on this E2 nongenomic pathway remains undetermined. The aim of this study was to investigate the effect of E2 on the levels of cAMP and IP3 in primary cultures of secretory and smooth muscle cells from rat oviducts and determine the mechanism by which E2 increases cAMP in the secretory cells. In the secretory cells, E2 increased cAMP but not IP3, while in the smooth muscle cells E2 decreased cAMP and increased IP3. Suppression of protein synthesis by actinomycin D did not prevent the E2-induced cAMP increase, but this was blocked by the ER antagonist ICI 182 780 and the inhibitors of COMT OR 486, G protein-α inhibitory (Gαi) protein pertussis toxin and adenylyl cyclase (AC) SQ 22536. Expression of the mRNA for the enzymes that metabolizes estrogens, Comt, Cyp1a1, and Cyp1b1 was found in the secretory cells, but this was not affected by E2. Finally, confocal immunofluorescence analysis showed that E2 induced colocalization between ESR1 (ERα) and Gαi in extranuclear regions of the secretory cells. We conclude that E2 differentially regulates cAMP and IP3 in the secretory and smooth muscle cells of the rat oviduct. In the secretory cells, E2 increases cAMP via a nongenomic action that requires activation of COMT and ER, coupling between ESR1 and Gαi, and stimulation of AC.
Collapse
Affiliation(s)
- María L Oróstica
- Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Casilla 40, Correo 33, Santiago, ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNASantiago, ChileInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Santiago, ChileLaboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Casilla 40, Correo 33, Santiago, ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNASantiago, ChileInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Santiago, Chile
| | - John Lopez
- Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Casilla 40, Correo 33, Santiago, ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNASantiago, ChileInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Santiago, ChileLaboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Casilla 40, Correo 33, Santiago, ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNASantiago, ChileInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Santiago, Chile
| | - Israel Rojas
- Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Casilla 40, Correo 33, Santiago, ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNASantiago, ChileInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Santiago, ChileLaboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Casilla 40, Correo 33, Santiago, ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNASantiago, ChileInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Santiago, Chile
| | - Jocelyn Rocco
- Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Casilla 40, Correo 33, Santiago, ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNASantiago, ChileInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Santiago, ChileLaboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Casilla 40, Correo 33, Santiago, ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNASantiago, ChileInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Santiago, Chile
| | - Patricia Díaz
- Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Casilla 40, Correo 33, Santiago, ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNASantiago, ChileInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Santiago, ChileLaboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Casilla 40, Correo 33, Santiago, ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNASantiago, ChileInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Santiago, Chile
| | - Patricia Reuquén
- Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Casilla 40, Correo 33, Santiago, ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNASantiago, ChileInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Santiago, ChileLaboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Casilla 40, Correo 33, Santiago, ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNASantiago, ChileInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Santiago, Chile
| | - Hugo Cardenas
- Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Casilla 40, Correo 33, Santiago, ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNASantiago, ChileInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Santiago, ChileLaboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Casilla 40, Correo 33, Santiago, ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNASantiago, ChileInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Santiago, Chile
| | - Alexis Parada-Bustamante
- Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Casilla 40, Correo 33, Santiago, ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNASantiago, ChileInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Santiago, Chile
| | - Pedro A Orihuela
- Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Casilla 40, Correo 33, Santiago, ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNASantiago, ChileInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Santiago, ChileLaboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Casilla 40, Correo 33, Santiago, ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNASantiago, ChileInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Santiago, Chile
| |
Collapse
|
9
|
Oróstica ML, López J, Zuñiga LM, Utz D, Díaz P, Reuquen P, Parada-Bustamante A, Cardenas H, Orihuela PA. Mating decreases plasma levels of TGFβ1 and regulates myosalpinx expression of TGFβ1/TGFBR3 in the rat. Mol Reprod Dev 2014; 81:1053-61. [PMID: 25359088 DOI: 10.1002/mrd.22427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/23/2014] [Indexed: 11/09/2022]
Abstract
Mating shuts down a 2-methoxyestradiol (2ME)-dependent, non-genomic activity that is responsible for accelerating egg transport in the rat oviduct. The aims of this work were to investigate the role of TGFβ1 in this 2ME-reduced activity and to determine the effect of mating on the expression and distribution of TGFβ1 and its receptor TGFBR3 in the rat oviduct. We determined the level of TGFβ1 in the plasma and oviductal fluid at 1, 3, or 6 hr during Day 1 of the oestrous cycle in unmated or mated animals. We then examined if 2ME accelerates oviductal egg transport in unmated rats that were previously treated with a neutralizing TGFβ1 antibody. The expression of Tgfb1 and Tgfbr3 mRNA and the level and distribution of TGFBR3 protein in the oviduct were also determined at these time points. Mating decreased TGFβ1 in the plasma, but not in the oviductal fluid, whereas antibody neutralization of circulating TGFβ1 did not prevent the effect of 2ME on egg transport. Mating decreased Tgfb1 and hastened the increase in TGFBR3 abundance in the myosalpinx. These results indicate that mating decreased circulating levels of TGFβ1 without shutting down the non-genomic 2ME response that normally accelerates egg transport. Levels of Tgfb1 transcript and TGFBR3 protein, however, changed in the myosalpinx of mated rats, suggesting a role for mating-associated factors in the autocrine and paracrine effects of TGFβ in the oviduct.
Collapse
Affiliation(s)
- María L Oróstica
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile; Centro Para el Desarrollo en Nanociencia y Nanotecnología-CEDENNA, Santiago, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Pinto MP, Medina RA, Owen GI. 2-methoxyestradiol and disorders of female reproductive tissues. Discov Oncol 2014; 5:274-83. [PMID: 24764201 DOI: 10.1007/s12672-014-0181-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 04/16/2014] [Indexed: 10/25/2022] Open
Abstract
2-Methoxyestradiol (2ME) is an endogenous metabolite of 17β-estradiol. Once thought of as a mere degradation product, 2ME has gained attention as an important component of reproductive physiology and as a therapeutic agent in reproductive pathologies such as preeclampsia, endometriosis, infertility, and cancer. In this review, we discuss the involvement of 2ME in reproductive pathophysiology and summarize its known mechanisms of action: microtubule disruption, inhibition of angiogenesis and stimulation of apoptosis. Currently, the clinical uses of 2ME as a single agent are limited due to its poor water solubility and thus low bioavailability; however, 2ME analogs and derivatives have been recently developed and tested as cancer treatments. Despite some isolated success stories and ongoing research, 2ME derivatives have not yet provided the expected results. The adjuvant use of 2ME derivatives with chemotherapeutic agents is hindered by their intrinsic toxicity confounding the unwanted secondary effects of chemotherapy. However, due to the well-tested tolerance of the body to high doses of native 2ME, it may the combination of native 2ME with conventional treatments that will offer novel clinically relevant regimens for cancer and other reproductive disorders.
Collapse
Affiliation(s)
- Mauricio P Pinto
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | |
Collapse
|
11
|
Rincón-Rodríguez RJ, Oróstica ML, Díaz P, Reuquén P, Cárdenas H, Orihuela PA. Changes in the gene expression pattern induced by 2-methoxyestradiol in the mouse uterus. Endocrine 2013; 44:773-83. [PMID: 23494413 DOI: 10.1007/s12020-013-9921-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 03/04/2013] [Indexed: 10/27/2022]
Abstract
2-Methoxyestradiol (2ME) is an estrogen metabolite with antitumor and antiangiogenic properties, although their effects on the reproductive tissues are not well-determined. Furthermore, it is not very clear whether 2ME is part of the intracellular signaling of estradiol (E2) or it acts through other signaling pathways. The purpose of this study was to determine changes in the gene expression pattern in the mouse female reproductive tract induced by 2ME, under conditions in which this metabolite has no estrogenic activity. Therefore, we first compared the effect of 2ME or E2 on the uterine weight and epithelial cell height, and on the ovarian weight and the number of follicles of immature mice. Then, we examined the gene expression profile in the uterus of immature mice treated with 2ME or E2 and we selected three genes scd2, snx6, and spon1, to confirm differential regulation by E2 and 2ME in the uterine cells using real-time PCR. Finally, in order to explore the physiologic relevance of the 2ME-induced genes we determined the expression and localization of the F-spondin protein encoded by spon1 in the uterus of mature mice treated with E2 or 2ME. Estradiol and 2ME reduced the ovarian weight and decreased the number of follicles ≥ 300 μm, whereas E2 increased the uterine weight and epithelial cell height but not 2ME, indicating that 2ME did not have estrogenic activity in the mouse uterus. Microarray analysis showed that 1.8 % of the uterine genes were regulated by E2 and 0.23 % by 2ME, while 0.04 % was regulated by E2 and 2ME. The mRNA for scd2 was exclusively increased by 2ME, whereas snx6 and spon1 were up-regulated by E2 and 2ME, but the response to 2ME was more intense. F-spondin was mainly expressed in the uterine stroma layer although 2ME or E2 did not change its localization in the uterine cells. We conclude that 2ME regulates a group of genes in the mice uterus, independently of estrogenic activity, suggesting a functional involvement of 2ME in the mammalian uterus.
Collapse
Affiliation(s)
- Ramiro J Rincón-Rodríguez
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Casilla 40, Correo 33, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
12
|
Oróstica ML, Zuñiga LM, Utz D, Parada-Bustamante A, Velásquez LA, Cardenas H, Orihuela PA. Tumour necrosis factor-α is the signal induced by mating to shutdown a 2-methoxyestradiol nongenomic action necessary to accelerate oviductal egg transport in the rat. Reproduction 2013; 145:109-17. [DOI: 10.1530/rep-12-0389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mating shut down a 2-methoxyestradiol (2ME) nongenomic action necessary to accelerate egg transport in the rat oviduct. Herein, we investigated whether tumour necrosis factor-α (TNF-α) participates in this mating effect. In unmated and mated rats, we determined the concentration of TNF-α in the oviductal fluid and the level of the mRNA for Tnf-a (Tnf) and their receptors Tnfrsf1a and Tnfrsf1b in the oviduct tissues. The distribution of the TNFRSF1A and TNFRSF1B proteins in the oviduct of unmated and mated was also assessed. Finally, we examined whether 2ME accelerates oviductal egg transport in unmated rats that were previously treated with a rat recombinant TNF-α alone or concomitant with a selective inhibitor of the NF-κB activity. Mating increased TNF-α in the oviductal fluid, but Tnf transcript was not detected in the oviduct. The mRNA for TNF-α receptors as well as their distribution was not affected by mating, although they were mainly localized in the endosalpinx. Administration of TNF-α into the oviduct of unmated rats prevented the effect of 2ME on egg transport. However, the NF-κB activity inhibitor did not revert this effect of TNF-α. These results indicate that mating increased TNF-α in the oviductal fluid, although this not associated with changes in the expression and localization of TNF-α receptors in the oviductal cells. Furthermore, TNF-α mimicked the effect of mating on the 2ME-induced egg transport acceleration, independently of the activation of NF-κB in the oviduct. We concluded that TNF-α is the signal induced by mating to shut down a 2ME nongenomic action in the rat oviduct.
Collapse
|
13
|
Chourasia TK, Joy KP. Role of catecholestrogens on ovarian prostaglandin secretion in vitro in the catfish Heteropneustes fossilis and possible mechanism of regulation. Gen Comp Endocrinol 2012; 177:128-42. [PMID: 22429727 DOI: 10.1016/j.ygcen.2012.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 01/23/2012] [Accepted: 03/01/2012] [Indexed: 11/28/2022]
Abstract
Seasonal, periovulatory and 2-hydroxyestradiol-17β (2-OHE(2))-induced changes on ovarian prostaglandin (PG) E(2) and F(2α) were investigated under in vivo or in vitro in the female catfish Heteropneustes fossilis. Both PGE(2) and PGF(2α) increased significantly during ovarian recrudescence with the peak levels in spawning phase. The PGs showed periovulatory changes with the peak levels at 16 h after the hCG treatment. Incubation of postvitellogenic ovary fragments with estradiol-17β (E(2)), 2-OHE(2) or 2-methoxyE(2) produced concentration-dependent increases in PG levels; 2-OHE(2) was more effective. In order to identify the receptor mechanism involved in the 2-OHE(2)-induced PG stimulation, the ovarian pieces were incubated with phentolamine (an α-adrenergic antagonist), propranolol (a β-adrenergic antagonist) or tamoxifen (an estrogen receptor blocker) alone or in combination with 2-OHE(2). The incubation of the tissues with the receptor blockers alone did not produce any significant effect on basal PG levels. However, co- and pre-incubation of the tissues with the blockers resulted in inhibition of the stimulatory effect of 2-OHE(2) on the PGs. Phentolamine was more effective than propranolol. The signal transduction pathway(s) involved in the 2-OHE(2)-induced PG secretion was investigated. The incubation of the ovarian pieces with 3-isobutyl-1-methylxanthine (IBMX, a phosphodiesterase inhibitor), chelerythrine (a protein kinase C inhibitor) and PD098059 (a mitogen-activated protein kinase inhibitor) significantly lowered the basal secretion of PGF(2α) and PGE(2). In contrast, H89 (a protein kinase A inhibitor) increased the basal secretion of PGs at 1 and 5 μM concentration and decreased it at 10 μM concentration. The co- or pre-incubation with IBMX, H89, chelerythrine and PD098059 significantly inhibited the stimulatory effect of 2-OHE(2) on PGF(2α) and PGE(2) levels. The inhibition was higher in the pre-incubation groups. Chelerythrine was the most effective followed by PD098059, IBMX and H89. The results suggest that 2-OHE(2) may employ both adrenergic and estrogen receptors, or a novel receptor mechanism having properties of both adrenergic and estrogen receptors.
Collapse
Affiliation(s)
- T K Chourasia
- Department of Zoology, Centre of Advanced Study, Banaras Hindu University, Varanasi-221005, India
| | | |
Collapse
|
14
|
Shao R, Wang X, Weijdegård B, Norström A, Fernandez-Rodriguez J, Brännström M, Billig H. Coordinate regulation of heterogeneous nuclear ribonucleoprotein dynamics by steroid hormones in the human fallopian tube and endometrium in vivo and in vitro. Am J Physiol Endocrinol Metab 2012; 302:E1269-82. [PMID: 22436695 DOI: 10.1152/ajpendo.00673.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs), which are chromatin-associated RNA-binding proteins, participate in mRNA stability, transport, intracellular localization, and translation by acting as transacting factors. Several studies have shown that steroid hormones can regulate hnRNP expression. However, to date, the regulation of hnRNPs and their interactions with steroid hormone signaling in fallopian tubes and endometrium are not fully elucidated. In the present study, we determined whether hnRNP expression is regulated during the menstrual cycle and correlates with estrogen receptor (ER) and progesterone receptor (PR) levels in human fallopian tubes in vivo. Because of the limited availability of human tubal tissues for the research, we also explored the mechanisms of hnRNP regulation in human endometrium in vitro. Fallopian tissue was obtained from patients in the early, late, and postovulatory phases and the midsecretory phase and endometrial tissue from premenopausal and postmenopausal women undergoing hysterectomy. We measured expression of hnRNPs and assessed their intracellular localization and interactions with ERs and PRs. We also determined the effects of human chorionic gonadotropin, 17β-estradiol (E(2)), and progesterone (P(4)) on hnRNP expression. In fallopian tubes, mRNA and protein levels of hnRNP A1, AB, D, G, H, and U changed dynamically during ovulation and in the midsecretory phase. In coimmunolocation and coimmunoprecipitation experiments, hnRNPs interacted with each other and with ERs and PRs in fallopian tubes. After treatment with E(2) and/or P(4) to activate ERs and PRs, hnRNP A1, AB, D, G, and U proteins displayed overlapping but distinct patterns of regulation in the endometrium in vitro. Our findings expand the physiological repertoire of hnRNPs in human fallopian tubes and endometrium and suggest that steroid hormones regulate different hnRNPs directly by interacting with ERs and/or PRs or indirectly by binding other hnRNPs. Both actions may contribute to regulation of gene transcription.
Collapse
Affiliation(s)
- Ruijin Shao
- Dept. of Physiology/Endocrinology, Sahlgrenska Academy, Univ. of Gothenburg, Box 434, Gothenburg, Sweden.
| | | | | | | | | | | | | |
Collapse
|
15
|
Parada-Bustamante A, Croxatto HB, Cárdenas H, Orihuela PA. Differential participation of endothelin receptors in estradiol-induced oviductal egg transport acceleration in unmated and mated rats. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2012. [DOI: 10.1016/s2305-0500(13)60042-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
16
|
Chourasia TK, Joy KP. In vitro effects of 2-hydroxyestradiol-17β on ovarian follicular steroid secretion in the catfish Heteropneustes fossilis and identification of the receptor and signaling mechanisms. Gen Comp Endocrinol 2012; 175:500-13. [PMID: 22202599 DOI: 10.1016/j.ygcen.2011.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 12/06/2011] [Accepted: 12/11/2011] [Indexed: 10/14/2022]
Abstract
Ovarian pieces containing postvitellogenic follicles were incubated in vitro with different concentrations of the catecholestrogen 2-hydroxyestradiol-17β (2-OHE(2)) to evaluate its effects on steroid production and germinal vesicle breakdown (GVBD) in the catfish Heteropneustes fossilis. The incubation with 2-OHE(2) induced a shift in steroidogenic pattern: the C(19) and C(18) steroids testosterone (T) and estradiol-17β (E(2)), respectively were significantly decreased with a concomitant significant increase in the C(21) steroids progesterone (P(4)), 17-hydroxyprogesterone (17-OHP), 17,20β-dihydroxy-4-pregnen-3-one (17,20β-DP), 17,20α-dihydroxy-4-pregnen-3-one (17,20α-DP) and cortisol (F). Concomitantly, the catecholestrogen induced dose-dependently GVBD response, the first sign of meiosis resumption. The co- and pre-incubations of the ovarian pieces with 2-OHE(2), and adrenergic (phentolamine, α-blocker and propranolol, β-blocker) or estrogen (tamoxifen) receptor blockers resulted in inhibition of the stimulatory effect of the catecholestrogen on C(21) steroids and reversed the inhibition of testosterone and E(2). The α-blocker was more effective than the β-blocker. Our results suggest that 2-OHE(2) appears to employ both adrenergic (α-type) and estrogen receptor mechanisms in mediating the effects. The co- or pre-incubation of ovarian pieces with IBMX (a cAMP elevating drug), H89 (a protein kinase A inhibitor), and PD098059 (a MAP kinase kinase inhibitor) significantly inhibited the stimulatory effect of 2-OHE(2) on the C(21) steroids. The effect of chelerythrine (a protein kinase C inhibitor), on the other hand, varied with the incubation condition. In the co-incubation, the steroids showed varied effects: 17,20β-DP, testosterone and E(2) were elevated, and P(4) and 17-OHP were decreased. In the pre-incubation set up, all the steroids were inhibited except E(2). The inhibition by the blockers was higher in the pre-incubation groups. Taken together, the data suggest the involvement cAMP-protein kinase A, protein kinase C and MAP kinase pathways in the modulation of the steroidogenic activity.
Collapse
Affiliation(s)
- T K Chourasia
- Department of Zoology, Centre of Advanced Study, Banaras Hindu University, Varanasi 221 005, India
| | | |
Collapse
|
17
|
Ríos M, Parada-Bustamante A, Velásquez LA, Croxatto HB, Orihuela PA. Participation of the oviductal s100 calcium binding protein G in the genomic effect of estradiol that accelerates oviductal embryo transport in mated rats. Reprod Biol Endocrinol 2011; 9:69. [PMID: 21605449 PMCID: PMC3115850 DOI: 10.1186/1477-7827-9-69] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Accepted: 05/23/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mating changes the mechanism by which E2 regulates oviductal egg transport, from a non-genomic to a genomic mode. Previously, we found that E2 increased the expression of several genes in the oviduct of mated rats, but not in unmated rats. Among the transcripts that increased its level by E2 only in mated rats was the one coding for an s100 calcium binding protein G (s100 g) whose functional role in the oviduct is unknown. METHODS Herein, we investigated the participation of s100 g on the E2 genomic effect that accelerates oviductal transport in mated rats. Thus, we determined the effect of E2 on the mRNA and protein level of s100 g in the oviduct of mated and unmated rats. Then, we explored the effect of E2 on egg transport in unmated and mated rats under conditions in which s100 g protein was knockdown in the oviduct by a morpholino oligonucleotide against s100 g (s100 g-MO). In addition, the localization of s100 g in the oviduct of mated and unmated rats following treatment with E2 was also examined. RESULTS Expression of s100 g mRNA progressively increased at 3-24 h after E2 treatment in the oviduct of mated rats while in unmated rats s100 g increased only at 12 and 24 hours. Oviductal s100 g protein increased 6 h following E2 and continued elevated at 12 and 24 h in mated rats, whereas in unmated rats s100 g protein increased at the same time points as its transcript. Administration of a morpholino oligonucleotide against s100 g transcript blocked the effect of E2 on egg transport in mated, but not in unmated rats. Finally, immunoreactivity of s100 g was observed only in epithelial cells of the oviducts of mated and unmated rats and it was unchanged after E2 treatment. CONCLUSIONS Mating affects the kinetic of E2-induced expression of s100 g although it not changed the cellular localization of s100 g in the oviduct after E2 . On the other hand, s100 g is a functional component of E2 genomic effect that accelerates egg transport. These findings show a physiological involvement of s100 g in the rat oviduct.
Collapse
Affiliation(s)
- Mariana Ríos
- Unidad de Reproducción y Desarrollo, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Alexis Parada-Bustamante
- Unidad de Reproducción y Desarrollo, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Luis A Velásquez
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile
- Centro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNA, Santiago, Chile
| | - Horacio B Croxatto
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile
- Centro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNA, Santiago, Chile
- Millennium Institute for Fundamental and Applied Biology, Santiago, Chile
| | - Pedro A Orihuela
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile
- Centro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNA, Santiago, Chile
| |
Collapse
|
18
|
Parada-Bustamante A, Orihuela PA, Ríos M, Cuevas CA, Oróstica ML, Velásquez LA, Villalón MJ, Croxatto HB. A non-genomic signaling pathway shut down by mating changes the estradiol-induced gene expression profile in the rat oviduct. Reproduction 2009; 139:631-44. [PMID: 20032209 DOI: 10.1530/rep-09-0218] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Estradiol (E(2)) accelerates oviductal egg transport through intraoviductal non-genomic pathways in unmated rats and through genomic pathways in mated rats. This shift in pathways has been designated as intracellular path shifting (IPS), and represents a novel and hitherto unrecognized effect of mating on the female reproductive tract. We had reported previously that IPS involves shutting down the E(2) non-genomic pathway up- and downstream of 2-methoxyestradiol. Here, we evaluated whether IPS involves changes in the genomic pathway too. Using microarray analysis, we found that a common group of genes changed its expression in response to E(2) in unmated and mated rats, indicating that an E(2) genomic signaling pathway is present before and after mating; however, a group of genes decreased its expression only in mated rats and another group of genes increased its expression only in unmated rats. We evaluated the possibility that this difference is a consequence of an E(2) non-genomic signaling pathway present in unmated rats, but not in mated rats. Mating shuts down this E(2) non-genomic signaling pathway up- and downstream of cAMP production. The Star level is increased by E(2) in unmated rats, but not in mated rats. This is blocked by the antagonist of estrogen receptor ICI 182 780, the adenylyl cyclase inhibitor SQ 22536, and the catechol-O-methyltransferase inhibitor, OR 486. These results indicate that the E(2)-induced gene expression profile in the rat oviduct differs before and after mating, and this difference is probably mediated by an E(2) non-genomic signaling pathway operating on gene expression only in unmated rats.
Collapse
Affiliation(s)
- Alexis Parada-Bustamante
- Unidad de Reproducción y Desarrollo, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331010 Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Orihuela PA, Zuñiga LM, Rios M, Parada-Bustamante A, Sierralta WD, Velásquez LA, Croxatto HB. Mating changes the subcellular distribution and the functionality of estrogen receptors in the rat oviduct. Reprod Biol Endocrinol 2009; 7:139. [PMID: 19948032 PMCID: PMC2789086 DOI: 10.1186/1477-7827-7-139] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 11/30/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mating changes the mode of action of 17beta-estradiol (E2) to accelerate oviductal egg transport from a nongenomic to a genomic mode, although in both pathways estrogen receptors (ER) are required. This change was designated as intracellular path shifting (IPS). METHODS Herein, we examined the subcellular distribution of ESR1 and ESR2 (formerly known as ER-alpha and ER-beta) in oviductal epithelial cells of rats on day 1 of cycle (C1) or pregnancy (P1) using immunoelectron microscopy for ESR1 and ESR2. The effect of mating on intraoviductal ESR1 or ESR2 signaling was then explored comparing the expression of E2-target genes c-fos, brain creatine kinase (Ckb) and calbindin 9 kDa (s100g) in rats on C1 or P1 treated with selective agonists for ESR1 (PPT) or ESR2 (DPN). The effect of ER agonists on egg transport was also evaluated on C1 or P1 rats. RESULTS Receptor immunoreactivity was associated with the nucleus, cytoplasm and plasma membrane of the epithelial cells. Mating affected the subcellular distribution of both receptors as well as the response to E2. In C1 and P1 rats, PPT increased Ckb while both agonists increased c-fos. DPN increased Ckb and s100g only in C1 and P1 rats, respectively. PPT accelerated egg transport in both groups and DPN accelerated egg transport only in C1 rats. CONCLUSION Estrogen receptors present a subcellular distribution compatible with E2 genomic and nongenomic signaling in the oviductal epithelial cells of C1 and P1 although IPS occurs independently of changes in the distribution of ESR1 and ESR2 in the oviductal epithelial cells. Mating affected intraoviductal ER-signaling and induced loss of functional involvement of ESR2 on E2-induced accelerated egg transport. These findings reveal a profound influence on the ER signaling pathways exerted by mating in the oviduct.
Collapse
Affiliation(s)
- Pedro A Orihuela
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Centro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNA, Santiago, Chile
| | - Lidia M Zuñiga
- Millennium Institute for Fundamental and Applied Biology, Santiago, Chile
| | - Mariana Rios
- Unidad de Reproducción y Desarrollo, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Walter D Sierralta
- Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Luis A Velásquez
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Centro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNA, Santiago, Chile
| | - Horacio B Croxatto
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Centro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNA, Santiago, Chile
- Millennium Institute for Fundamental and Applied Biology, Santiago, Chile
| |
Collapse
|
20
|
Shao R, Nutu M, Karlsson-Lindahl L, Benrick A, Weijdegård B, Lager S, Egecioglu E, Fernandez-Rodriguez J, Gemzell-Danielsson K, Ohlsson C, Jansson JO, Billig H. Downregulation of cilia-localized Il-6Rα by 17β-estradiol in mouse and human fallopian tubes. Am J Physiol Cell Physiol 2009; 297:C140-51. [DOI: 10.1152/ajpcell.00047.2009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The action of interleukin-6 (IL-6) impacts female reproduction. Although IL-6 was recently shown to inhibit cilia activity in human fallopian tubes in vitro, the molecular mechanisms underlying IL-6 signaling to tubal function remain elusive. Here, we investigate the cellular localization, regulation, and possible function of two IL-6 receptors (IL-6Rα and gp130) in mouse and human fallopian tubes in vivo. We show that IL-6Rα is restricted to the cilia of epithelial cells in both mouse and human fallopian tubes. Exogenous 17β-estradiol (E2), but not progesterone (P4), causes a time-dependent decrease in IL-6Rα expression, which is blocked by the estrogen receptor (ER) antagonist ICI-182,780. Exposure of different ER-selective agonists propyl-(1H)-pyrazole-1,3,5-triyl-trisphenol or 2,3-bis-(4-hydroxyphenyl)-propionitrile demonstrated an ER subtype-specific regulation of IL-6Rα in mouse fallopian tubes. In contrast to IL-6Rα, gp130 was detected in tubal epithelial cells in mice but not in humans. In humans, gp130 was found in the muscle cells and was decreased in the periovulatory and luteal phases during the reproductive cycles, indicating a species-specific expression and regulation of gp130 in the fallopian tube. Expression of tubal IL-6Rα and gp130 in IL-6 knockout mice was found to be normal; however, E2 treatment increased IL-6Rα, but not gp130, in IL-6 knockout mice when compared with wild-type mice. Furthermore, expression levels of IL-6Rα, but not gp130, decreased in parallel with estrogenic accelerated oocyte-cumulus complex (OCC) transport in mouse fallopian tubes. Our findings open the posibility that cilia-specific IL-6Rα may play a role in the regulation of OCC transport and suggest an estrogen-regulatory pathway of IL-6Rα in the fallopian tube.
Collapse
|