1
|
Gao Y, Wang Z, Long Y, Yang L, Jiang Y, Ding D, Teng B, Chen M, Yuan J, Gao F. Unveiling the roles of Sertoli cells lineage differentiation in reproductive development and disorders: a review. Front Endocrinol (Lausanne) 2024; 15:1357594. [PMID: 38699384 PMCID: PMC11063913 DOI: 10.3389/fendo.2024.1357594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/07/2024] [Indexed: 05/05/2024] Open
Abstract
In mammals, gonadal somatic cell lineage differentiation determines the development of the bipotential gonad into either the ovary or testis. Sertoli cells, the only somatic cells in the spermatogenic tubules, support spermatogenesis during gonadal development. During embryonic Sertoli cell lineage differentiation, relevant genes, including WT1, GATA4, SRY, SOX9, AMH, PTGDS, SF1, and DMRT1, are expressed at specific times and in specific locations to ensure the correct differentiation of the embryo toward the male phenotype. The dysregulated development of Sertoli cells leads to gonadal malformations and male fertility disorders. Nevertheless, the molecular pathways underlying the embryonic origin of Sertoli cells remain elusive. By reviewing recent advances in research on embryonic Sertoli cell genesis and its key regulators, this review provides novel insights into sex determination in male mammals as well as the molecular mechanisms underlying the genealogical differentiation of Sertoli cells in the male reproductive ridge.
Collapse
Affiliation(s)
- Yang Gao
- College of Basic Medicine, Jining Medical University, Jining, Shandong, China
| | - Zican Wang
- College of Basic Medicine, Jining Medical University, Jining, Shandong, China
| | - Yue Long
- College of Basic Medicine, Jining Medical University, Jining, Shandong, China
| | - Lici Yang
- College of Basic Medicine, Jining Medical University, Jining, Shandong, China
| | - Yongjian Jiang
- College of Basic Medicine, Jining Medical University, Jining, Shandong, China
| | - Dongyu Ding
- College of Basic Medicine, Jining Medical University, Jining, Shandong, China
| | - Baojian Teng
- College of Basic Medicine, Jining Medical University, Jining, Shandong, China
| | - Min Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jinxiang Yuan
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, China
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, Shandong, China
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, China
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
2
|
Wang J, Li S, Li X, Liu J, Yang J, Li Y, Li W, Yang Y, Li J, Chen R, Li K, Huang D, Liu Y, Lv L, Li M, Xiao X, Luo XJ. Functional variant rs2270363 on 16p13.3 confers schizophrenia risk by regulating NMRAL1. Brain 2022; 145:2569-2585. [PMID: 35094059 PMCID: PMC9612800 DOI: 10.1093/brain/awac020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 11/17/2021] [Accepted: 12/20/2021] [Indexed: 12/28/2023] Open
Abstract
Recent genome-wide association studies have reported multiple schizophrenia risk loci, yet the functional variants and their roles in schizophrenia remain to be characterized. Here we identify a functional single nucleotide polymorphism (rs2270363: G>A) at the schizophrenia risk locus 16p13.3. rs2270363 lies in the E-box element of the promoter of NMRAL1 and disrupts binding of the basic helix-loop-helix leucine zipper family proteins, including USF1, MAX and MXI1. We validated the regulatory effects of rs2270363 using reporter gene assays and electrophoretic mobility shift assay. Besides, expression quantitative trait loci analysis showed that the risk allele (A) of rs2270363 was significantly associated with elevated NMRAL1 expression in the human brain. Transcription factors knockdown and CRISPR-Cas9-mediated editing further confirmed the regulatory effects of the genomic region containing rs2270363 on NMRAL1. Intriguingly, NMRAL1 was significantly downregulated in the brain of schizophrenia patients compared with healthy subjects, and knockdown of Nmral1 expression affected proliferation and differentiation of mouse neural stem cells, as well as genes and pathways associated with brain development and synaptic transmission. Of note, Nmral1 knockdown resulted in significant decrease of dendritic spine density, revealing the potential pathophysiological mechanisms of NMRAL1 in schizophrenia. Finally, we independently confirmed the association between rs2270363 and schizophrenia in the Chinese population and found that the risk allele of rs2270363 was the same in European and Chinese populations. These lines of evidence suggest that rs2270363 may confer schizophrenia risk by regulating NMRAL1, a gene whose expression dysregulation might be involved in the pathogenesis of schizophrenia by affecting neurodevelopment and synaptic plasticity.
Collapse
Affiliation(s)
- Junyang Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Shiwu Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Xiaoyan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Jiewei Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Jinfeng Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Yifan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Wenqiang Li
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Yongfeng Yang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Jiao Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Rui Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Kaiqin Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Di Huang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yixing Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Luxian Lv
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiong Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, Jiangsu 210096, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
3
|
Gupta A, Mandal K, Singh P, Sarkar R, Majumdar SS. Declining levels of miR-382-3p at puberty trigger the onset of spermatogenesis. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 26:192-207. [PMID: 34513304 PMCID: PMC8413679 DOI: 10.1016/j.omtn.2021.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/02/2021] [Indexed: 12/20/2022]
Abstract
A major change in the transcriptome of testicular Sertoli cells (Scs) at the onset of puberty enables them to induce robust spermatogenesis. Through comprehensive literature mining, we generated a list of genes crucial for Sc functioning and computationally predicted the microRNAs regulating them. Differential expression analysis of microRNAs in infant and pubertal rat Scs showed that miR-382-3p levels decline significantly in pubertal Scs. Interestingly, miR-382-3p was found to regulate genes like Ar and Wt1, which are crucial for functional competence of Scs. We generated a transgenic (Tg) mouse model in which pubertal decline of miR-382-3p was prevented by its overexpression in pubertal Scs. Elevated miR-382-3p restricted the functional maturation of Scs at puberty, leading to infertility. Prevention of decline in miR-382-3p expression in pubertal Scs was responsible for defective blood-testis barrier (BTB) formation, severe testicular defects, low epididymal sperm counts and loss of fertility in these mice. This provided substantial evidence that decline in levels of miR-382-3p at puberty is the essential trigger for onset of robust spermatogenesis at puberty. Hence, sustained high levels of miR-382-3p in pubertal Scs could be one of the underlying causes of idiopathic male infertility and should be considered for diagnosis and treatment of infertility.
Collapse
Affiliation(s)
- Alka Gupta
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Kamal Mandal
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Parminder Singh
- Metabolic Research Laboratory, National Institute of Immunology, New Delhi, India
| | - Rajesh Sarkar
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Subeer S. Majumdar
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
- Genes and Protein Engineering Laboratory, National Institute of Animal Biotechnology, Hyderabad, India
- Corresponding author: Subeer S. Majumdar, Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
4
|
Pradhan BS, Bhattacharya I, Sarkar R, Majumdar SS. Pubertal down-regulation of Tetraspanin 8 in testicular Sertoli cells is crucial for male fertility. Mol Hum Reprod 2021; 26:760-772. [PMID: 32687199 DOI: 10.1093/molehr/gaaa055] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 05/28/2020] [Indexed: 12/23/2022] Open
Abstract
The alarming decline in sperm count has become a global concern in the recent decades. The division and differentiation of male germ cells (Gc) into sperm are governed by Sertoli cells (Sc) upon their functional maturation during puberty. However, the roles of genes regulating pubertal maturation of Sc have not been fully determined. We have observed that Tetraspanin 8 (Tspan8) is down-regulated in Sc during puberty in rats. However, there has been no in vivo evidence for a causal link between the down-regulation of Tspan8 expression and the onset of spermatogenesis as yet. To investigate this, we generated a novel transgenic (Tg) rat, in which the natural down-regulation of Tspan8 was prevented specifically in Sc from puberty up to adulthood. Adult Tg male rats showed around 98% reduction in sperm count despite having a similar level of serum testosterone (T) as the controls. Functional maturation of Sc was impaired as indicated by elevated levels of Amh and low levels of Kitlg and Claudin11 transcripts. The integrity of the blood testis barrier was compromised due to poor expression of Gja1 and Gc apoptosis was discernible. This effect was due to a significant rise in both Mmp7 and phospho P38 MAPK in Tg rat testis. Taken together, we demonstrated that the natural down-regulation of Tspan8 in Sc during puberty is a prerequisite for establishing male fertility. This study divulges one of the aetiologies of certain forms of idiopathic male infertility where somatic cell defect, but not hormonal deficiency, is responsible for impaired spermatogenesis.
Collapse
Affiliation(s)
- Bhola Shankar Pradhan
- Cellular Endocrinology Laboratory, National Institute of Immunology, New Delhi, India
| | - Indrashis Bhattacharya
- Cellular Endocrinology Laboratory, National Institute of Immunology, New Delhi, India.,Department of Zoology, Hemvati Nandan Bahuguna Garhwal University, Srinagar, Uttarakhand, India
| | - Rajesh Sarkar
- Cellular Endocrinology Laboratory, National Institute of Immunology, New Delhi, India
| | - Subeer S Majumdar
- Cellular Endocrinology Laboratory, National Institute of Immunology, New Delhi, India.,National Institute of Animal Biotechnology, Miyapur, Hyderabad 500049, Telengana, India
| |
Collapse
|
5
|
Bhattacharya I, Sen Sharma S, Majumdar SS. Pubertal orchestration of hormones and testis in primates. Mol Reprod Dev 2019; 86:1505-1530. [DOI: 10.1002/mrd.23246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Indrashis Bhattacharya
- Department of Zoology & BiotechnologyHNB Garhwal University, Srinagar CampusSrinagar India
- Cellular Endocrinology LabNational Institute of ImmunologyNew Delhi India
| | - Souvik Sen Sharma
- Cellular Endocrinology LabNational Institute of ImmunologyNew Delhi India
| | - Subeer S. Majumdar
- Cellular Endocrinology LabNational Institute of ImmunologyNew Delhi India
- Gene and Protein Engineering LabNational Institute of Animal BiotechnologyHyderabad India
| |
Collapse
|
6
|
Li X, Lu Y, Liu X, Xie X, Wang K, Yu D. Identification of chicken FSHR gene promoter and the correlations between polymorphisms and egg production in Chinese native hens. Reprod Domest Anim 2019; 54:702-711. [PMID: 30702781 PMCID: PMC6850157 DOI: 10.1111/rda.13412] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/12/2019] [Indexed: 11/30/2022]
Abstract
Egg production is an important economic trait in poultry, and it is of great significance to study the key genes and functional SNPs that affect egg laying performance. Follicle‐stimulating hormone (FSH) plays an important physiological role in the reproductive performance of humans and animals by binding to its receptor (FSHR). Studies have shown that there are many transcriptional regulatory elements in the 5′ flanking region of the FSHR gene that interact with transcription factors to regulate FSHR transcription. In this study, DNA sequencing was used to identify SNPs in the FSHR promoter sequence in both Dongxiang and Suken chickens. To detect the activity of the chicken FSHR gene promoter, we analysed the characteristics of the sequence and constructed three deletion vectors. We confirmed that the region (−18/−544) was the core promoter. Furthermore, five polymorphisms, including a 200‐bp indel at −869, C−1684T, C−1608T, G−368A and T−238A, were detected in both the Dongxiang and Suken chickens. The age at first egg (AFE) for different genotype of −869 indel in Suken chicken was significantly different (p < 0.01). For SNP C−1684T in Dongxiang chickens, the CC genotype had higher egg number at 43 weeks of age (E43) than that of the TC genotype (p < 0.05). For SNP C−1684T in Suken chickens, the TC genotype had higher AFE than that of the CC genotype (p < 0.05). For SNP C−1608T in Suken chickens, the CC genotype had higher AFE than that of the TC genotype (p < 0.05). For SNP G−368A in Suken chickens, the AG genotype had higher AFE than that of the GG genotype (p < 0.05).
Collapse
Affiliation(s)
- Xiaopeng Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yinglin Lu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaofan Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaolei Xie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Kun Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Debing Yu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
7
|
Bhattacharya I, Basu S, Pradhan BS, Sarkar H, Nagarajan P, Majumdar SS. Testosterone augments FSH signaling by upregulating the expression and activity of FSH-Receptor in Pubertal Primate Sertoli cells. Mol Cell Endocrinol 2019; 482:70-80. [PMID: 30579957 DOI: 10.1016/j.mce.2018.12.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/16/2018] [Accepted: 12/18/2018] [Indexed: 11/30/2022]
Abstract
The synergistic actions of Testosterone (T) and FSH via testicular Sertoli cells (Sc) regulate male fertility. We have previously reported that the actions of these hormones (T and FSH) in infant monkey testes are restricted only to the expansion of Sc and spermatogonial cells. The robust differentiation of male Germ cells (Gc) occurs after pubertal maturation of testis. The present study was aimed to investigate the molecular basis of the synergy between T and FSH action in pubertal primate (Macaca mulatta) Sc. Using primary Sc culture, we here have demonstrated that T (but not FSH) downregulated AMH and Inhibin-β-B (INHBB) mRNAs in pubertal Sc. We also found that, prolonged stimulation of T in pubertal Sc significantly elevated the expression of genes involved in FSH signaling pathway like FSH-Receptor (FSHR), GNAS and RIC8B, and this was associated with a rise in cAMP production. T also augmented FSH induced expression of genes like SCF, GDNF, ABP and Transferrin (TF) in pubertal Sc. We therefore conclude that T acts in synergy with FSH signaling in pubertal Sc. Such a coordinated network of hormonal signaling in Sc may facilitate the timely onset of the first spermatogenic wave in pubertal primates and is responsible for quantitatively and qualitatively normal spermatogenesis.
Collapse
Affiliation(s)
- Indrashis Bhattacharya
- Cellular Endocrinology Laboratory, National Institute of Immunology, New Delhi, 110067, India; Primate Research Center, National Institute of Immunology, New Delhi, India; Department of Zoology and Biotechnology, HNB Garhwal University, Srinagar Campus, Uttarakhand, India
| | - Sayon Basu
- Cellular Endocrinology Laboratory, National Institute of Immunology, New Delhi, 110067, India
| | - Bhola Shankar Pradhan
- Cellular Endocrinology Laboratory, National Institute of Immunology, New Delhi, 110067, India
| | - Hironmoy Sarkar
- Cellular Endocrinology Laboratory, National Institute of Immunology, New Delhi, 110067, India; Department of Microbiology, Raiganj University, Raiganj, West Bengal, India
| | - Perumal Nagarajan
- Primate Research Center, National Institute of Immunology, New Delhi, India
| | - Subeer S Majumdar
- Cellular Endocrinology Laboratory, National Institute of Immunology, New Delhi, 110067, India; Primate Research Center, National Institute of Immunology, New Delhi, India; National Institute of Animal Biotechnology, Hyderabad, Telangana, India.
| |
Collapse
|
8
|
Advantages of pulsatile hormone treatment for assessing hormone-induced gene expression by cultured rat Sertoli cells. Cell Tissue Res 2016; 368:389-396. [DOI: 10.1007/s00441-016-2410-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/06/2016] [Indexed: 01/02/2023]
|
9
|
Gautam M, Bhattacharya I, Devi YS, Arya SP, Majumdar SS. Hormone responsiveness of cultured Sertoli cells obtained from adult rats after their rapid isolation under less harsh conditions. Andrology 2016; 4:509-19. [PMID: 26991307 DOI: 10.1111/andr.12161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 12/02/2015] [Accepted: 12/20/2015] [Indexed: 01/16/2023]
Abstract
During adulthood, testicular Sertoli cells (Sc) coordinate all stages of germ cell (Gc) development involved in sperm production. However, our understanding about the functions of adult Sc is limited because of the difficulties involved in the process of isolating these cells from the adult testis, mainly because of the presence of large number of advanced Gc which interfere with Sc isolation at this age. Most of our knowledge about Sc function are derived from studies which used pre-pubertal rat Sc (18 ± 2-day old) as it is easy to isolate and culture Sc at this age. To this end, we established a less time consuming and less harsh procedure of isolating Sc from adult (60 days of age) rat testis for facilitating research on Sc-mediated regulation of spermatogenesis during adulthood. The cells were isolated using collagenase digestion at higher temperature, reducing the exposure time of cells to the enzyme. Step-wise digestion with intermittent removal of small clusters of tissue helped in increasing the yield of Sc. Isolated Sc were cultured and treated with FSH and testosterone (T) to evaluate their hormone responsiveness in terms of lactate, E2 , cAMP production. Adult Sc were found to be active and produced high amounts of lactate in a FSH-independent manner. FSH-mediated augmentation of cAMP and E2 production by adult Sc was less as compared with that by pre-pubertal Sc obtained from 18-day-old rats. Androgen-binding ability of adult Sc was significantly higher than pre-pubertal Sc. Although T treatment remarkably augmented expression of Claudin 11, it failed to augment lactate production by adult Sc. This efficient and rapid procedure for isolation and culture of functionally viable adult rat Sertoli cells may pave the way for determining their role in regulation and maintenance of spermatogenesis.
Collapse
Affiliation(s)
- M Gautam
- Cellular Endocrinology Laboratory, National Institute of Immunology, New Delhi, India
| | - I Bhattacharya
- Cellular Endocrinology Laboratory, National Institute of Immunology, New Delhi, India
| | - Y S Devi
- Cellular Endocrinology Laboratory, National Institute of Immunology, New Delhi, India
| | - S P Arya
- Cellular Endocrinology Laboratory, National Institute of Immunology, New Delhi, India
| | - S S Majumdar
- Cellular Endocrinology Laboratory, National Institute of Immunology, New Delhi, India
| |
Collapse
|
10
|
Hoang B, Ernsting MJ, Roy A, Murakami M, Undzys E, Li SD. Docetaxel-carboxymethylcellulose nanoparticles target cells via a SPARC and albumin dependent mechanism. Biomaterials 2015; 59:66-76. [PMID: 25956852 DOI: 10.1016/j.biomaterials.2015.04.032] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/11/2015] [Accepted: 04/14/2015] [Indexed: 01/18/2023]
Abstract
Cellax, a polymer-docetaxel (DTX) conjugate that self-assembled into 120 nm particles, displayed significant enhancements in safety and efficacy over native DTX across a number of primary and metastatic tumor models. Despite these exciting preclinical data, the underlying mechanism of delivery of Cellax remains elusive. Herein, we demonstrated that serum albumin efficiently adsorbed onto the Cellax particles with a 4-fold increased avidity compared to native DTX, and the uptake of Cellax by cells was primarily driven by an albumin and SPARC (secreted protein acidic and rich in cysteine, an albumin binder) dependent internalization mechanism. In the SPARC-positive cells, a >2-fold increase in cellular internalization of Cellax was observed in the presence of albumin. In the SPARC-negative cells, no difference in Cellax internalization was observed in the presence or absence of albumin. Evaluation of the internalization mechanism using endocytotic inhibitors revealed that Cellax was internalized predominantly via a clathrin-mediated endocytotic mechanism. Upon internalization, it was demonstrated that Cellax was entrapped within the endo-lysosomal and autophagosomal compartments. Analysis of the tumor SPARC level with tumor growth inhibition of Cellax in a panel of tumor models revealed a positive and linear correlation (R(2) > 0.9). Thus, this albumin and SPARC-dependent pathway for Cellax delivery to tumors was confirmed both in vitro and in vivo.
Collapse
Affiliation(s)
- Bryan Hoang
- Drug Delivery and Formulation, Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Mark J Ernsting
- Drug Delivery and Formulation, Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada; Faculty of Engineering and Architectural Science, Ryerson University, Toronto, ON, Canada
| | - Aniruddha Roy
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Mami Murakami
- Drug Delivery and Formulation, Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Elijus Undzys
- Drug Delivery and Formulation, Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Shyh-Dar Li
- Drug Delivery and Formulation, Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
11
|
Yang WR, Wang Y, Wang Y, Zhang JJ, Zhang JH, Lu C, Wang XZ. mTOR is involved in 17β-estradiol-induced, cultured immature boar Sertoli cell proliferation via regulating the expression of SKP2, CCND1, and CCNE1. Mol Reprod Dev 2015; 82:305-14. [PMID: 25739982 DOI: 10.1002/mrd.22473] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/12/2015] [Indexed: 12/25/2022]
Abstract
Mammalian target of rapamycin (mTOR) is known to be involved in mammalian cell proliferation, while S-phase kinase-associated protein 2 (SKP2) plays a vital role in the cell cycle. Within the testis, estrogen also plays an important role in Sertoli cell proliferation, although it is not clear how. The present study asked if mTOR is involved in 17β-estradiol-dependent Sertoli cell proliferation. We specifically assessed if extracellular signal-regulated kinase 1/2 (ERK1/2) and/or phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) exert convergent effects toward the activation of mTOR signaling, and if this signaling regulates the expression of SKP2 through retinoblastoma (RB) and early mitotic inhibitor 1 (EMI1) protein and on CCNE1 and CCND1 mRNA levels. Treatment with 17β-estradiol for 15-90 min activated mTOR, with mTOR phosphorylation peaking after 30 min. U0126 (5 μM), a specific inhibitor of (MEK1/2), and 10-DEBC (2 μM), a selective inhibitor of AKT, both significantly reduced 17β-estradiol-induced phosphorylation of mTOR. Rapamycin suppressed 17β-estradiol-induced Sertoli cell proliferation, appearing to act by reducing the abundance of SKP2, CCND1, and CCNE1 mRNA as well as RB and EMI1 protein. These data indicated that 17β-estradiol enhances Sertoli cell proliferation via mTOR activation, which involves both ERK1/2 and PI3K/AKT signaling. Activated mTOR subsequently increases SKP2 mRNA and protein expression by enhancing the expression of CCND1 and CCNE1, and inhibits SKP2 protein degradation by increasing EMI1 abundance.
Collapse
Affiliation(s)
- Wei-Rong Yang
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China; Chongqing Key Laboratory of Forage and Herbivore, Southwest University, Chongqing, P. R. China
| | | | | | | | | | | | | |
Collapse
|
12
|
Wu W, Han J, Cao R, Zhang J, Li B, Liu Z, Liu K, Li Q, Pan Z, Chen J, Liu H. Sequence and regulation of the porcine FSHR gene promoter. Anim Reprod Sci 2015; 154:95-104. [DOI: 10.1016/j.anireprosci.2014.11.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 11/25/2014] [Accepted: 11/29/2014] [Indexed: 01/17/2023]
|
13
|
Bhattacharya I, Gautam M, Majumdar SS. The effect of IBMX and hormones on gene expression by rat Sertoli cells. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.jrhm.2014.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
14
|
Association of single nucleotide polymorphisms in the USF1, GTF2A1L and OR2W3 genes with non-obstructive azoospermia in the Chinese population. J Assist Reprod Genet 2014; 32:95-101. [PMID: 25374392 DOI: 10.1007/s10815-014-0369-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/13/2014] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To research the association between the single nucleotide polymorphisms (SNPs) of three spermatogenesis-related genes (USF1, GTF2A1L and OR2W3) and non-obstruction azoospermia (NOA). METHODS We investigated 361 NOA cases and 368 controls from the Chinese Han population, and we used Sequenom iplex technology to analyze the candidate 9 SNPs from the USF1, GTF2A1L and OR2W3 genes. RESULTS In this study, we found that the variant rs2516838 of USF1 was associated with NOA susceptibility (P = 0.020, OR = 1.436), and the haplotype TCG of the variants rs1556259, rs2516838, and rs2774276 of USF1 conferred an increased risk of NOA (P = 0.019, OR = 1.436). Furthermore, we found that the rs11204546 genotype of OR2W3 and the rs11677854 genotype of GTF2A1L were correlated with the FSH level in the patients (P = 0.004 and P = 0.018, respectively). CONCLUSIONS Our results provided a new insight into susceptibility of USF1 variant with male infertility. Clinically, the SNPs (rs11204546 of OR2W3 and rs11677854 of GTF2A1L ) might be additional valuable molecular predictive markers for assessing the treatment of NOA patients.
Collapse
|
15
|
Salces-Ortiz J, González C, Moreno-Sánchez N, Calvo JH, Pérez-Guzmán MD, Serrano MM. Ovine HSP90AA1 expression rate is affected by several SNPs at the promoter under both basal and heat stress conditions. PLoS One 2013; 8:e66641. [PMID: 23826107 PMCID: PMC3691178 DOI: 10.1371/journal.pone.0066641] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/08/2013] [Indexed: 11/30/2022] Open
Abstract
The aim of this work was to investigate the association between polymorphisms located at the HSP90AA1 ovine gene promoter and gene expression rate under different environmental conditions, using a mixed model approach. Blood samples from 120 unrelated rams of the Manchega sheep breed were collected at three time points differing in environmental conditions. Rams were selected on the basis of their genotype for the transversion G/C located 660 base pairs upstream the gene transcription initiation site. Animals were also genotyped for another set of 6 SNPs located at the gene promoter. Two SNPs, G/C−660 and A/G−444, were associated with gene overexpression resulting from heat stress. The composed genotype CC−660-AG−444 was the genotype having the highest expression rates with fold changes ranging from 2.2 to 3.0. The genotype AG−522 showed the highest expression levels under control conditions with a fold change of 1.4. Under these conditions, the composed genotype CC−601-TT−524-AG−522-TT−468 is expected to be correlated with higher basal expression of the gene according to genotype frequencies and linkage disequilibrium values. Some putative transcription factors were predicted for binding sites where the SNPs considered are located. Since the expression rate of the gene under alternative environmental conditions seems to depend on the composed genotype of several SNPs located at its promoter, a cooperative regulation of the transcription of the HSP90AA1 gene could be hypothesized. Nevertheless epigenetic regulation mechanisms cannot be discarded.
Collapse
Affiliation(s)
- Judit Salces-Ortiz
- Dpto. Mejora Genética animal. Inst. Nac. Invest. Agrarias y Alimentarias, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
16
|
Bhattacharya I, Pradhan BS, Sarda K, Gautam M, Basu S, Majumdar SS. A switch in Sertoli cell responsiveness to FSH may be responsible for robust onset of germ cell differentiation during prepubartal testicular maturation in rats. Am J Physiol Endocrinol Metab 2012; 303:E886-98. [PMID: 22850685 DOI: 10.1152/ajpendo.00293.2012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
FSH and Testosterone (T) regulate spermatogenesis via testicular Sertoli cells (Sc), which bear receptors for these hormones. Despite sufficient circulating levels of FSH and T postnatally, predominant appearance of spermatogonia B and spermatocytes is not discernible until 11 and 18 days of postnatal age, respectively, in rat testes. In an attempt to explore the underlying causes, we cultured Sc from neonatal (5- and 9-day-old) and prepubertal (12- and 19-day-old) rat testes and compared the status of FSH receptor (FSH-R) and androgen receptor (AR) signaling. Protein and mRNA levels of FSH-R and AR remained uniform in cultured Sc from all age groups. Androgen binding ability of AR was similar, and T-induced nuclear localization of AR was discernible in Sc from all age groups. Binding of FSH to FSH-R, subsequent production of cAMP, and mRNA of stem cell factor (SCF) and glial cell line-derived neurotrophic factor (GDNF), known to be essential for the robust differentiation of repopulating spermatogonia, were significantly augmented in prepubertal Sc compared with those in neonatal Sc. However, treatment of neonatal Sc with cholera toxin or forskolin, which stimulate cAMP production bypassing FSH-R, demonstrated a concomitant rise in SCF and GDNF mRNA expression, which was similar to the FSH-mediated rise observed in prepubertal Sc. These observations suggested that, during prepubertal Sc maturation, the ability of FSH-R to respond to FSH is significantly augmented and is associated with the robust differentiation of repopulating spermatogonia, and such a switch in Sc from FSH-resistant to FSH-responsive mode during prepubertal development may underlie the initiation of robust spermatogenesis.
Collapse
Affiliation(s)
- Indrashis Bhattacharya
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, JNU Complex, New Delhi 110067, India
| | | | | | | | | | | |
Collapse
|
17
|
Majumdar SS, Sarda K, Bhattacharya I, Plant TM. Insufficient androgen and FSH signaling may be responsible for the azoospermia of the infantile primate testes despite exposure to an adult-like hormonal milieu. Hum Reprod 2012; 27:2515-25. [PMID: 22669085 DOI: 10.1093/humrep/des184] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND In humans, as well as in other higher primates, the infantile testis is exposed to an adult-like hormonal milieu, but spermatogenesis is not initiated at this stage of primate development. In the present study, we examined the molecular basis of this intriguing infertile state of the primate testis. METHODS The integrity of androgen receptor (AR) and FSH receptor (FSHR) signaling pathways in primary cultures of Sertoli cells (Scs) harvested from azoospermic infant and spermatogenic pubertal monkey testes were investigated under identical in vitro hormonal conditions. In order to synchronously harvest Scs from early pubertal testis, the activation of testicular puberty was timed experimentally by prematurely initiating gonadotrophin secretion in juvenile animals with an intermittent infusion of gonadotrophin-releasing hormone. RESULTS While qRT-PCR demonstrated that AR and FSHR mRNA expression in Scs from infant and pubertal testes were comparable, androgen-binding and FSH-mediated cAMP production by infant Scs was extremely low. Compromised AR and FSHR signaling in infant Scs was further supported by the finding that testosterone (T) and FSH failed to augment the expression of the T responsive gene, claudin 11, and the FSH responsive genes, inhibin-βB, stem cell factor (SCF) and glial cell line-derived neurotrophic factor (GDNF) in Scs harvested at this stage of development. CONCLUSION These results indicate that compromised AR and FSHR signaling pathways in Scs underlie the inability of the infant primate testis to respond to an endogenous hormonal milieu that later in development, at the time puberty, stimulates the initiation of spermatogenesis. This finding may have relevance to some forms of idiopathic infertility in men.
Collapse
Affiliation(s)
- Subeer S Majumdar
- Division of Cellular Endocrinology, National Institute of Immunology, New Delhi 110067, India.
| | | | | | | |
Collapse
|
18
|
Lian C, Sun B, Niu S, Yang R, Liu B, Lu C, Meng J, Qiu Z, Zhang L, Zhao Z. A comparative profile of the microRNA transcriptome in immature and mature porcine testes using Solexa deep sequencing. FEBS J 2012; 279:964-75. [PMID: 22240065 DOI: 10.1111/j.1742-4658.2012.08480.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding regulatory RNAs that play key roles in many diverse biological processes such as spermatogenesis. However, no study has been performed on the miRNA transcriptome of developing porcine testes. Here, we employed Solexa deep sequencing technology to extend the repertoire of porcine testis miRNAs and extensively compare the expression patterns of sexually immature and mature porcine testes. Solexa sequencing of two small RNA libraries derived from immature (30 days) and mature (180 days) pig testis samples yielded over 25 million high-quality reads. Overall, the two developmental stages had significantly different small RNA compositions. A custom data analysis pipeline identified 398 known and/or homologous conserved porcine miRNAs, 15 novel pig-specific miRNAs and 56 novel candidate miRNAs. We further observed multiple mature miRNA variants and identified a new bidirectional transcribed miRNA locus, ssc-mir-181a. A total of 122 miRNAs were differentially expressed in the immature and mature testes, and 10 were validated using quantitative RT-PCR. Furthermore, GO and KEGG pathway analyses of the predicted miRNA targets further illustrate the likely roles for these differentially expressed miRNAs in spermatogenesis. This study is the first comparative profile of the miRNA transcriptome in immature and mature porcine testes using a deep sequencing approach, and it provides a useful resource for future studies on the role of miRNAs in spermatogenesis and male infertility treatment.
Collapse
Affiliation(s)
- Chuanjiang Lian
- College of Animal Science and Veterinary Medicine, Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wood MA, Mukherjee P, Toocheck CA, Walker WH. Upstream stimulatory factor induces Nr5a1 and Shbg gene expression during the onset of rat Sertoli cell differentiation. Biol Reprod 2011; 85:965-76. [PMID: 21734262 DOI: 10.1095/biolreprod.111.093013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Within the testis, each Sertoli cell can support a finite number of developing germ cells. During development, the cessation of Sertoli cell proliferation and the onset of differentiation establish the final number of Sertoli cells and, thus, the total number of sperm that can be produced. The upstream stimulatory factors 1 and 2 (USF1 and USF2, respectively) differentially regulate numerous Sertoli cell genes during differentiation. To identify genes that are activated by USF proteins during differentiation, studies were conducted in Sertoli cells isolated from 5- and 11-day-old rats, representing proliferating and differentiating cells, respectively. Usf1 mRNA and USF1 protein levels were increased between 5 and 11 days after birth. In vitro studies revealed that USF1 and USF2 DNA-binding activity also increased at 11 days for the promoters of four potential target genes, Fshr, Gata4, Nr5a1, and Shbg. Chromatin immunoprecipitation assays confirmed that USF recruitment increased in vivo between 5 and 11 days after birth at the Fshr, Gata4, and Nr5a1 promoters. Expression of Nr5a1 and Shbg, but not of Fshr or Gata4, mRNAs was elevated in 11-day-old Sertoli cells compared with 5-day-old Sertoli cells. Transient transfection of USF1 and USF2 expression vectors up-regulated Nr5a1 and Shbg promoter activity. RNA interference assays demonstrated that USF1 and USF2 contribute to Nr5a1 and Shbg expression in differentiating cells. Together, these data indicate that increased USF levels induce the expression of Nr5a1 and Shbg during the differentiation of Sertoli cells, whereas Fshr and Gata4 expression is not altered by USF proteins during differentiation.
Collapse
Affiliation(s)
- Michelle A Wood
- Center for Research in Reproductive Physiology, Department of Obstetrics, Gynecology, and Reproduction Services, Magee Women's Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | |
Collapse
|
20
|
Role of helix-loop-helix proteins during differentiation of erythroid cells. Mol Cell Biol 2011; 31:1332-43. [PMID: 21282467 DOI: 10.1128/mcb.01186-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Helix-loop-helix (HLH) proteins play a profound role in the process of development and cellular differentiation. Among the HLH proteins expressed in differentiating erythroid cells are the ubiquitous proteins Myc, USF1, USF2, and TFII-I, as well as the hematopoiesis-specific transcription factor Tal1/SCL. All of these HLH proteins exhibit distinct functions during the differentiation of erythroid cells. For example, Myc stimulates the proliferation of erythroid progenitor cells, while the USF proteins and Tal1 regulate genes that specify the differentiated phenotype. This minireview summarizes the known activities of Myc, USF, TFII-I, and Tal11/SCL and discusses how they may function sequentially, cooperatively, or antagonistically in regulating expression programs during the differentiation of erythroid cells.
Collapse
|
21
|
George JW, Dille EA, Heckert LL. Current concepts of follicle-stimulating hormone receptor gene regulation. Biol Reprod 2011; 84:7-17. [PMID: 20739665 PMCID: PMC4480823 DOI: 10.1095/biolreprod.110.085043] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 05/04/2010] [Accepted: 08/16/2010] [Indexed: 12/25/2022] Open
Abstract
Follicle-stimulating hormone (FSH), a pituitary glycoprotein hormone, is an integral component of the endocrine axis that regulates gonadal function and fertility. To transmit its signal, FSH must bind to its receptor (FSHR) located on Sertoli cells of the testis and granulosa cells of the ovary. Thus, both the magnitude and the target of hormone response are controlled by mechanisms that determine FSHR levels and cell-specific expression, which are supported by transcription of its gene. The present review examines the status of FSHR/Fshr gene regulation, emphasizing the importance of distal sequences in FSHR/Fshr transcription, new insights gained from the influx of genomics data and bioinformatics, and emerging trends that offer direction in deciphering the FSHR/Fshr regulatory landscape.
Collapse
Affiliation(s)
- Jitu W. George
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Elizabeth A. Dille
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Leslie L. Heckert
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
22
|
17β-Estradiol Regulates Cultured Immature Boar Sertoli Cell Proliferation via the cAMP-ERK1/2 Pathway and the Estrogen Receptor β. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/s1671-2927(09)60208-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Lin IJ, Zhou Z, Crusselle-Davis VJ, Moghimi B, Gandhi K, Anantharaman A, Pantic D, Huang S, Jayandharan G, Zhong L, Srivastava A, Bungert J. Calpeptin increases the activity of upstream stimulatory factor and induces high level globin gene expression in erythroid cells. J Biol Chem 2009; 284:20130-5. [PMID: 19491096 DOI: 10.1074/jbc.m109.001461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Differentiation of erythroid cells is regulated by cell signaling pathways including those that change the intracellular concentration of calcium. Calcium-dependent proteases have been shown previously to process and regulate the activity of specific transcription factors. We show here that the protein levels of upstream stimulatory factor (USF) increase during differentiation of murine erythroleukemia (MEL) cells. USF was subject to degradation by the Ca(2+)-dependent protease m-calpain in undifferentiated but not in differentiated MEL cells. Treatment of MEL cells with the specific calpain inhibitor calpeptin increased the levels of USF and strongly induced expression of the adult alpha- and beta-globin genes. The induction of globin gene expression was associated with an increase in the association of USF and RNA po ly mer ase II with regulatory elements of the beta-globin gene locus. Calpeptin also induced high level alpha- and beta-globin gene expression in primary CD71-positive erythroid progenitor cells. The combined data suggest that inhibition of calpain activity is required for erythroid differentiation-associated increase in globin gene expression.
Collapse
Affiliation(s)
- I-Ju Lin
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|