1
|
Perry GA, Ketchum JN, Quail LK. Importance of preovulatory estradiol on uterine receptivity and luteal function. Anim Reprod 2023; 20:e20230061. [PMID: 37720725 PMCID: PMC10503890 DOI: 10.1590/1984-3143-ar2023-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/18/2023] [Indexed: 09/19/2023] Open
Abstract
Animals that exhibited estrus had greater pregnancy success compared to animals that did not exhibit estrus before fixed-time AI (FTAI). Estradiol is synthesized in bovine ovarian follicles under gonadotropin regulation and can directly and indirectly regulate the uterine receptivity and luteal function. Estradiol concentrations at FTAI impacted oviductal gene expression and has been reported to play an important role in establishing the timing of uterine receptivity. These changes have been reported to impact uterine pH and sperm transport to the site of fertilization. After fertilization, preovulatory estradiol has been reported to improve embryo survival likely by mediating changes in uterine blood flow, endometrial thickness and changes in histotroph. Cows with greater estradiol concentrations at the time of GnRH-induced ovulation also had a larger dominant follicle size and greater circulating progesterone concentrations on day 7. Therefore, it is impossible to accurately determine the individual benefit of greater estradiol concentrations prior to ovulation and greater progesterone concentrations following ovulation to pregnancy establishment, as these two measurements are confounded. Research has indicated an importance in the occurrence and timing of increasing preovulatory concentrations of estradiol, but increasing estradiol concentrations by supplementation may not be sufficient to increase fertility. Increased production of estradiol by the preovulatory follicle may be required to enhance fertility through the regulation of sperm transport, fertilization, oviductal secretions, the uterine environment, and embryo survival.
Collapse
Affiliation(s)
| | - Jaclyn Nicole Ketchum
- Texas A&M AgriLife Research, Overton, Texas, United States of America
- Department of Animal Science, Texas A&M University, College Station, Texas, United States of America
| | - Lacey Kay Quail
- Texas A&M AgriLife Research, Overton, Texas, United States of America
- Department of Animal Science, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
2
|
Ezz MA, Mansouri A, Akthar I, Yousef MS, Kowsar R, Miyamoto A. Hyaluronan regulates sperm-induced inflammatory response by enhancing sperm attachment to bovine endometrial epithelial cells via CD44: in-silico and in-vitro approaches. Front Endocrinol (Lausanne) 2023; 14:1134868. [PMID: 37234812 PMCID: PMC10206253 DOI: 10.3389/fendo.2023.1134868] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Recently, we reported that sperm induce cluster of differentiation 44 (CD44) expression and Toll-like receptor 2 (TLR2)-mediated inflammatory response in bovine uterus. In the present study, we hypothesized that the interaction between CD44 of bovine endometrial epithelial cells (BEECs) and hyaluronan (HA) affects sperm attachment and thereby enhancing TLR2-mediated inflammation. To test our hypothesis, at first, in-silico approaches were employed to define the binding affinity of HA for CD44 and TLR2. Further, an in-vitro experiment using the sperm-BEECs co-culture model was applied to investigate the effect of HA on sperm attachment and inflammatory response. Here, low molecular weight (LMW) HA at different concentrations (0, 0.1, 1, or 10 µg/mL) was incubated with BEECs for 2 h followed by the co-culture without- or with non-capacitated washed sperm (106/ml) for additional 3 h was performed. The present in-silico model clarified that CD44 is a high-affinity receptor for HA. Moreover, TLR2 interactions with HA oligomer (4- and 8-mers) target a different subdomain (h-bonds) compared to TLR2-agonist (PAM3) which targets a central hydrophobic pocket. However, the interaction of LMW HA (32-mers) with TLR2 revealed no stability of HA at any pocket of TLR2. Notably, the immunofluorescence analysis revealed the HA localization in both endometrial stroma and epithelia of ex-vivo endometrial explant. Moreover, ELISA showed significant levels of HA in BEECs culture media. Importantly, BEECs pretreatment with HA prior to sperm exposure increased the number of attached sperm to BEECs, and upregulated the transcriptional levels of pro-inflammatory genes (TNFA, IL-1B, IL-8, and PGES) in BEECs in response to sperm. However, BEECs treated with HA only (no sperm exposure) did not show any significant effect on the transcript abundance of pro-inflammatory genes when compared to the non-treated BEECs. Altogether, our findings strongly suggest a possible cross-talk between sperm and endometrial epithelial cells via HA and HA binding receptors (CD44 and TLR2) to induce a pro-inflammatory response in bovine uterus.
Collapse
Affiliation(s)
- Mohamed Aboul Ezz
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Alireza Mansouri
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Ihshan Akthar
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Mohamed Samy Yousef
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- Department of Theriogenology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Rasoul Kowsar
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Akio Miyamoto
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| |
Collapse
|
3
|
SUGINO Y, SATO T, YAMAMOTO Y, KIMURA K. Evaluation of bovine uterine gland functions in 2D and 3D culture system. J Reprod Dev 2022; 68:254-261. [PMID: 35644574 PMCID: PMC9334319 DOI: 10.1262/jrd.2022-029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In ruminants, uterine glands play key roles in the establishment of pregnancy by secreting various factors into the uterine lumen. Although a three-dimensional (3D) culture system has been
used for investigating cellular functions in vitro, the detailed functions of uterine gland have not been fully elucidated. In this study, we examined the benefits of 3D
culture system to examine the innate functions of bovine uterine glands. Isolated bovine uterine glands were cultured on Matrigel (2D) or in Matrigel (3D), respectively, and the mRNA levels
of secreted proteins (SERPINA14, MEP1B, APOA1, ARSA, CTGF, and SPP1) were measured in
isolated and cultured uterine glands. The protein expression of estrogen receptor β (ERβ) and progesterone receptor (PR) and the establishment of apico-basal polarity were examined. In
isolated uterine glands, the mRNA levels of secreted proteins changed during the estrous cycle. Although uterine glands cultured in both 2D and 3D expressed ERβ and PR, progesterone did not
affect SERPINA14 mRNA expression. The expression of APOA1 mRNA in 2D cultured uterine glands did not respond to estrogen and progesterone. Additionally, the
mRNA levels of secreted proteins in the 3D culture system were significantly higher than those in the 2D culture system, which might be attributed to the different cellular morphology
between them. The locations of ZO-1 and β-catenin in 2D cultured uterine glands were disordered compared with 3D cultured uterine glands. These results showed that the hormonal
responsiveness of secreted factor expression and cellular morphology were different between 2D and 3D cultured bovine uterine glands.
Collapse
Affiliation(s)
- Yosuke SUGINO
- Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Taiki SATO
- Laboratory of Reproductive Physiology, Faculty of Agriculture, Okayama University, Okayama 700-8530, Japan
| | - Yuki YAMAMOTO
- Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Koji KIMURA
- Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
4
|
Chankeaw W, Lignier S, Richard C, Ntallaris T, Raliou M, Guo Y, Plassard D, Bevilacqua C, Sandra O, Andersson G, Humblot P, Charpigny G. Analysis of the transcriptome of bovine endometrial cells isolated by laser micro-dissection (1): specific signatures of stromal, glandular and luminal epithelial cells. BMC Genomics 2021; 22:451. [PMID: 34139994 PMCID: PMC8212485 DOI: 10.1186/s12864-021-07712-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 04/11/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND A number of studies have examined mRNA expression profiles of bovine endometrium at estrus and around the peri-implantation period of pregnancy. However, to date, these studies have been performed on the whole endometrium which is a complex tissue. Consequently, the knowledge of cell-specific gene expression, when analysis performed with whole endometrium, is still weak and obviously limits the relevance of the results of gene expression studies. Thus, the aim of this study was to characterize specific transcriptome of the three main cell-types of the bovine endometrium at day-15 of the estrus cycle. RESULTS In the RNA-Seq analysis, the number of expressed genes detected over 10 transcripts per million was 6622, 7814 and 8242 for LE, GE and ST respectively. ST expressed exclusively 1236 genes while only 551 transcripts were specific to the GE and 330 specific to LE. For ST, over-represented biological processes included many regulation processes and response to stimulus, cell communication and cell adhesion, extracellular matrix organization as well as developmental process. For GE, cilium organization, cilium movement, protein localization to cilium and microtubule-based process were the only four main biological processes enriched. For LE, over-represented biological processes were enzyme linked receptor protein signaling pathway, cell-substrate adhesion and circulatory system process. CONCLUSION The data show that each endometrial cell-type has a distinct molecular signature and provide a significantly improved overview on the biological process supported by specific cell-types. The most interesting result is that stromal cells express more genes than the two epithelial types and are associated with a greater number of pathways and ontology terms.
Collapse
Affiliation(s)
- Wiruntita Chankeaw
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, SLU, PO Box 7054, 750 07, Uppsala, Sweden
- Faculty of Veterinary Science, Rajamangala University of Technolgy Srivijaya (RUTS), Thungyai, Nakhon si thammarat, 80240, Thailand
| | - Sandra Lignier
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
| | - Christophe Richard
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
| | - Theodoros Ntallaris
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, SLU, PO Box 7054, 750 07, Uppsala, Sweden
| | - Mariam Raliou
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
| | - Yongzhi Guo
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, SLU, PO Box 7054, 750 07, Uppsala, Sweden
| | - Damien Plassard
- GenomEast Platform CERBM GIE, IGBMC, 67404, Illkirch, Cedex, France
| | - Claudia Bevilacqua
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy en Josas, France
| | - Olivier Sandra
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
| | - Göran Andersson
- Department of Animal Breeding and Genetics, Molecular Genetics, Swedish University of Agricultural Sciences, SLU, PO Box 7023, 750 07, Uppsala, Sweden
| | - Patrice Humblot
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, SLU, PO Box 7054, 750 07, Uppsala, Sweden
| | - Gilles Charpigny
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France.
- Department of Animal Breeding and Genetics, Molecular Genetics, Swedish University of Agricultural Sciences, SLU, PO Box 7023, 750 07, Uppsala, Sweden.
| |
Collapse
|
5
|
Tao L, He X, Jiang Y, Liu Y, Ouyang Y, Shen Y, Hong Q, Chu M. Genome-Wide Analyses Reveal Genetic Convergence of Prolificacy between Goats and Sheep. Genes (Basel) 2021; 12:480. [PMID: 33810234 PMCID: PMC8065816 DOI: 10.3390/genes12040480] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022] Open
Abstract
The litter size of domestic goats and sheep is an economically important trait that shows variation within breeds. Strenuous efforts have been made to understand the genetic mechanisms underlying prolificacy in goats and sheep. However, there has been a paucity of research on the genetic convergence of prolificacy between goats and sheep, which likely arose because of similar natural and artificial selection forces. Here, we performed comparative genomic and transcriptomic analyses to identify the genetic convergence of prolificacy between goats and sheep. By combining genomic and transcriptomic data for the first time, we identified this genetic convergence in (1) positively selected genes (CHST11 and SDCCAG8), (2) differentially expressed genes (SERPINA14, RSAD2, and PPIG at follicular phase, and IGF1, GPRIN3, LIPG, SLC7A11, and CHST15 at luteal phase), and (3) biological pathways (genomic level: osteoclast differentiation, ErbB signaling pathway, and relaxin signaling pathway; transcriptomic level: the regulation of viral genome replication at follicular phase, and protein kinase B signaling and antigen processing and presentation at luteal phase). These results indicated the potential physiological convergence and enhanced our understanding of the overlapping genetic makeup underlying litter size in goats and sheep.
Collapse
Affiliation(s)
- Lin Tao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.T.); (X.H.); (Y.L.)
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.T.); (X.H.); (Y.L.)
| | - Yanting Jiang
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, China; (Y.J.); (Y.O.)
| | - Yufang Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.T.); (X.H.); (Y.L.)
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Yina Ouyang
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, China; (Y.J.); (Y.O.)
| | - Yezhen Shen
- Annoroad Gene Technology Co., Ltd., Beijing 100176, China;
| | - Qionghua Hong
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, China; (Y.J.); (Y.O.)
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.T.); (X.H.); (Y.L.)
| |
Collapse
|
6
|
Camacho CA, Santos GDO, Caballeros JE, Cazales N, Ramirez CJ, Vidigal PMP, Ramos HJDO, Barros E, Mattos RC. Uterine infusion of conceptus fragments changes the protein profile from cyclic mares. Anim Reprod 2020; 17:e20200552. [PMID: 33791032 PMCID: PMC7995263 DOI: 10.1590/1984-3143-ar2020-0552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 11/22/2022] Open
Abstract
This experiment aimed to compare at day seven after ovulation, the protein profile of uterine fluid in cyclic mares with mares infused two days before with Day 13 conceptus fragments. Experimental animals were ten healthy cyclic mares, examined daily to detect ovulation (Day 0) as soon as estrus was confirmed. On day seven, after ovulation, uterine fluid was collected, constituting the Cyclic group (n = 10). The same mares were examined in the second cycle until ovulation was detected. On day five, after ovulation, fragments from a previously collected concepti were infused into each mare's uterus. Two days after infusion, uterine fluid was collected, constituting the Fragment group (n = 10). Two-dimensional electrophoresis technique processed uterine fluid samples. A total of 373 spots were detected. MALDI-TOF/TOF and NanoUHPLC-QTOF mass spectrometry identified twenty spots with differences in abundance between the Cyclic and Fragment group. Thirteen proteins were identified, with different abundance between groups. Identified proteins may be related to embryo-maternal communication, which involves adhesion, nutrition, endothelial cell proliferation, transport, and immunological tolerance. In conclusion, conceptus fragments signalized changes in the protein profile of uterine fluid seven days after ovulation in comparison to the observed at Day 7 in the same cyclic mares.
Collapse
Affiliation(s)
- Cesar Augusto Camacho
- Laboratório de Reprodução Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Gabriel de Oliveira Santos
- Laboratório de Reprodução Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Jorge Emilio Caballeros
- Laboratório de Reprodução Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Nicolas Cazales
- Laboratório de Reprodução Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
- Facultad de Veterinária, Universidad de la República - UDELAR, Montevideo, Uruguay
| | - Camilo José Ramirez
- Núcleo de Análise de Biomoléculas, Universidade Federal de Viçosa, Viçosa, MG, Brasil
| | | | | | - Edvaldo Barros
- Núcleo de Análise de Biomoléculas, Universidade Federal de Viçosa, Viçosa, MG, Brasil
| | - Rodrigo Costa Mattos
- Laboratório de Reprodução Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| |
Collapse
|
7
|
Panigrahi M, Kumar H, Sah V, Dillipkumar Verma A, Bhushan B, Parida S. Transcriptome profiling of buffalo endometrium reveals molecular signature distinct to early pregnancy. Gene 2020; 743:144614. [PMID: 32222532 DOI: 10.1016/j.gene.2020.144614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 12/18/2022]
Abstract
Buffalo reproduction struggles with a high incidence of early embryonic mortality. Effective treatment and prevention strategies for this condition are not available due to lack of understanding of molecular pathways in early pregnancy of this species. In the present study, we have attempted to understand these molecular pathways by characterizing the endometrial transcriptomic profiles of pregnant buffalos during early pregnancy. For the transcriptome profiling, buffalo endometrial tissues of 29-36 days of pregnancy and of nonpregnant luteal phase were collected from the local slaughterhouse. We confirmed the status of pregnancy based on the crown vertebral length of the foetus. Total RNA was isolated and sequencing was performed using the Illumina nextseq platform. The raw reads were filtered and mapped to the Bos taurus UMD 3.1 reference genome assembly. An average of 24,597 genes was investigated for differential expression between the two groups. Transcriptome data identified a total of 450 differentially expressed genes (using a cut off value of log2 fold changes >2 and <-2) in early pregnancy in comparison to the nonpregnant group (Padj < 0.05). Among these, 270 genes were significantly upregulated and 180 genes were downregulated. The most impacted pathways were related to secretion, transport, ionic homeostasis, mitosis and negative regulation of viral processes. In conclusion, our study characterized a unique set of DEGs, during the early pregnancy of buffalo, which potentially modulate the endometrial environment to establish and maintain a successful pregnancy.
Collapse
Affiliation(s)
- Manjit Panigrahi
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Harshit Kumar
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Vaishali Sah
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Ankita Dillipkumar Verma
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Bharat Bhushan
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Subhashree Parida
- Division of Pharmacology & Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India.
| |
Collapse
|
8
|
Perry GA, Cushman RA, Perry BL, Schiefelbein AK, Northrop EJ, Rich JJJ, Perkins SD. Role of preovulatory concentrations of estradiol on timing of conception and regulation of the uterine environment in beef cattle. Syst Biol Reprod Med 2019; 66:12-25. [PMID: 31813287 DOI: 10.1080/19396368.2019.1695979] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The ability to induce ovulation with an injection of GnRH facilitated the development of fixed-time artificial insemination (AI) protocols. However, animals that exhibit estrus prior to fixed-time AI have greater pregnancy success. Thus, the objectives of the present experiments were to determine the impact of estrus expression prior to fixed-time AI on timing of conception and to characterize the role of preovulatory estradiol in regulating changes in expression of uterine genes. In experiment 1, data were collected from 4,499 beef cows inseminated by fixed-time AI in 31 different herds. Animals that did not conceive to AI but exhibited estrus before timed-AI were more likely to conceive during cycle 1 after AI, and overall conceived earlier in the breeding season compared to animals that did not exhibit estrus. In experiment 2, beef cows were synchronized using a fixed-time AI protocol. Uterine horn biopsies and blood samples were collected on Day 0, 5, 10, or 16. Concentrations of estradiol on Day 0 did not influence expression of progesterone receptor, ER beta, or oxytocin receptor. Increased concentrations of estradiol on Day 0 increased expression of ER alpha from Days 0 to 5 of the estrous cycle. Furthermore, cows with increased concentrations of estradiol on Day 0 had increased expression of inhibin beta A, and uterine milk protein precursor. Thus, animals that do not exhibit estrus prior to fixed-time AI had decreased breeding season pregnancy success and conceived later in the breeding season, and preovulatory concentrations of estradiol likely play a major role in this establishment of pregnancy, not only directly by regulating uterine gene expression, but also indirectly throughout the subsequent estrous cycle.
Collapse
Affiliation(s)
- George A Perry
- Department of Animal Science, South Dakota State University, Brookings, SD, USA
| | | | - Brandi L Perry
- Department of Animal Science, South Dakota State University, Brookings, SD, USA
| | | | - Emmalee J Northrop
- Department of Animal Science, South Dakota State University, Brookings, SD, USA
| | - Jerica J J Rich
- Department of Animal Science, South Dakota State University, Brookings, SD, USA
| | - Stephanie D Perkins
- Department of Animal Science, South Dakota State University, Brookings, SD, USA
| |
Collapse
|
9
|
Srikanth K, Park W, Lim D, Lee KT, Jang GW, Choi BH, Ka H, Park JE, Kim JM. Serial gene co-expression network approach to mine biological meanings from integrated transcriptomes of the porcine endometrium during estrous cycle. Funct Integr Genomics 2019; 20:117-131. [PMID: 31396752 DOI: 10.1007/s10142-019-00703-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 07/03/2019] [Accepted: 07/22/2019] [Indexed: 01/22/2023]
Abstract
The estrous cycle is a complex process regulated by several hormones. To understand the dynamic changes in gene expression that takes place in the swine endometrium during the estrous cycle relative to the day of estrus onset, we performed RNA-sequencing analysis on days 0, 3, 6, 9, 12, 15, and 18, resulting in the identification of 4495 differentially expressed genes (DEGs; Q ≤ 0.05 and |log2FC| ≥ 1) at various phases in the estrous cycle. These DEGs were integrated into multiple gene co-expression networks based on different fold changes and correlation coefficient (R2) thresholds and a suitable network, which included 899 genes (|log2FC| ≥ 2 and R2 ≥ 0.99), was identified for downstream analyses based on the biological relevance of the Gene Ontology (GO) terms enriched. The genes in this network were partitioned into 6 clusters based on the expression pattern. Several GO terms including cell cycle, apoptosis, hormone signaling, and lipid biosynthetic process were found to be enriched. Furthermore, we found 15 significant KEGG pathways, including cell adhesion molecules, cytokine-cytokine receptor signaling, steroid biosynthesis, and estrogen signaling pathways. We identified several genes and GO terms to be stage-specific. Moreover, the identified genes and pathways extend our understanding of porcine endometrial regulation during estrous cycle and will serve as a good resource for future studies.
Collapse
Affiliation(s)
- Krishnamoorthy Srikanth
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365, Republic of Korea
| | - WonCheoul Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365, Republic of Korea
| | - Dajeong Lim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365, Republic of Korea
| | - Kyung Tai Lee
- Animal Genetics and Breeding Division, National Institute of Animal Science, RDA, Wanju, 55365, Republic of Korea
| | - Gul Won Jang
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365, Republic of Korea
| | - Bong Hwan Choi
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365, Republic of Korea
| | - Hakhyun Ka
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea.
| | - Jong-Eun Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365, Republic of Korea.
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea.
| |
Collapse
|
10
|
TLR2/4 signaling pathway mediates sperm-induced inflammation in bovine endometrial epithelial cells in vitro. PLoS One 2019; 14:e0214516. [PMID: 30995239 PMCID: PMC6469758 DOI: 10.1371/journal.pone.0214516] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 03/15/2019] [Indexed: 02/06/2023] Open
Abstract
We have recently shown that sperm attachment to bovine endometrial epithelial cells (BEECs) triggers uterine local innate immunity with induction of a pro-inflammatory response in vitro, however details of the mechanism remain unknown. Here, we investigated the involvement of Toll-like receptor 2/4 (TLR2/4) pathway in mediating sperm-BEECs inflammatory process. Immunohistochemistry of the uterine tissue revealed that TLR2 and TLR4 proteins were present in the luminal and glandular epithelia of bovine endometrium. Moreover, BEECs monolayers were treated with TLR2 agonist (Pam; 0, 10, 100, and 1000 ng/ml) or TLR4 agonist (LPS; 0, 0.1, 1, and 10 ng/ml) for 0, 1, 3, or 6 h, followed by evaluating mRNA expression of the pro-inflammatory genes (TNFA, IL-1B, IL-8, and PGES) in BEECs using a real-time PCR. Both Pam and LPS treatments showed a dose-dependent stimulation of mRNA expression of the pro-inflammatory genes. To elucidate the functional role of TLR2/4 in sperm-BEECs interaction, BEECs monolayers were incubated with either TLR2 antagonist or TLR4 antibody for 2 h prior to the co-culture with sperm for 3 h. Importantly, pre-incubation of BEECs with TLR2 antagonist or TLR4 antibody prevented the stimulatory effect of sperm on the transcription of pro-inflammatory genes in BEECs. Furthermore, sperm increased the phosphorylation levels of TLR2/4 downstream targets (p38MAPK and JNK) in BEECs within 1 h of the co-culture. Treatment of BEECs with TLR2 antagonist prior to sperm addition inhibited JNK phosphorylation, while TLR4 antibody inhibited the phosphorylation of both p38MAPK and JNK. In conclusion, the present in vitro findings strongly suggest that bovine endometrial epithelial cells respond to sperm via TLR2/4 signal transduction.
Collapse
|
11
|
Campos C, Hartling I, Kaur M, Fernandes A, Santos R, Cerri R. Intramammary infusion of lipopolysaccharide promotes inflammation and alters endometrial gene expression in lactating Holstein cows. J Dairy Sci 2018; 101:10440-10455. [DOI: 10.3168/jds.2018-14393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 06/06/2018] [Indexed: 12/12/2022]
|
12
|
Elweza AE, Ezz MA, Acosta TJ, Talukder AK, Shimizu T, Hayakawa H, Shimada M, Imakawa K, Zaghloul AH, Miyamoto A. A proinflammatory response of bovine endometrial epithelial cells to active sperm in vitro. Mol Reprod Dev 2018; 85:215-226. [DOI: 10.1002/mrd.22955] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 12/15/2017] [Accepted: 01/03/2018] [Indexed: 02/03/2023]
Affiliation(s)
- Ahmed E. Elweza
- Graduate School of Animal and Food Hygiene; Obihiro University of Agriculture and Veterinary Medicine; Obihiro Japan
- Faculty of Veterinary Medicine; Department of Theriogenology; University of Sadat City; Sadat City Egypt
| | - Mohamed A. Ezz
- Graduate School of Animal and Food Hygiene; Obihiro University of Agriculture and Veterinary Medicine; Obihiro Japan
- Faculty of Veterinary Medicine; Department of Theriogenology; Mansoura University; Mansoura Egypt
| | - Tomas J. Acosta
- Field Center of Animal Science and Agriculture; Obihiro University of Agriculture and Veterinary Medicine; Obihiro Japan
| | - Anup K. Talukder
- Graduate School of Animal and Food Hygiene; Obihiro University of Agriculture and Veterinary Medicine; Obihiro Japan
- Department of Gynecology; Obstetrics and Reproductive Health; Bangabandhu Sheikh Mujibur Rahman Agricultural University; Gaipur Bangladesh
| | - Takashi Shimizu
- Graduate School of Animal and Food Hygiene; Obihiro University of Agriculture and Veterinary Medicine; Obihiro Japan
| | | | - Masayuki Shimada
- Graduate School of Biosphere Science; Hiroshima University; Higashi-Hiroshima Japan
| | - Kazuhiko Imakawa
- Animal Resource Science Center; Graduate School of Agricultural and Life Sciences; The University of Tokyo; Ibaraki Japan
| | - Ahmed H. Zaghloul
- Faculty of Veterinary Medicine; Department of Theriogenology; University of Sadat City; Sadat City Egypt
| | - Akio Miyamoto
- Graduate School of Animal and Food Hygiene; Obihiro University of Agriculture and Veterinary Medicine; Obihiro Japan
| |
Collapse
|
13
|
Sá Filho MFD, Gonella-Diaza AM, Sponchiado M, Mendanha MF, Pugliesi G, Ramos RDS, Andrade SCDS, Gasparin G, Coutinho LL, Goissis MD, Mesquita FS, Baruselli PS, Binelli M. Impact of hormonal modulation at proestrus on ovarian responses and uterine gene expression of suckled anestrous beef cows. J Anim Sci Biotechnol 2017; 8:79. [PMID: 29118976 PMCID: PMC5664832 DOI: 10.1186/s40104-017-0211-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 09/04/2017] [Indexed: 11/24/2022] Open
Abstract
Background This study evaluated the impact of hormonal modulation at the onset of proestrus on ovarian response and uterine gene expression of beef cows. Methods A total of 172 anestrous beef cows were assigned to one of four groups according to the treatment with estradiol cypionate (ECP) and/or equine chorionic gonadotropin (eCG) [CON (n = 43), ECP (n = 43), eCG (n = 44) and ECP + eCG (n = 42)]. Results ECP-treated cows (ECP and ECP + eCG groups) presented greater occurrence of estrus (44.6% vs. 65.4%; P = 0.01) and pregnancy per AI [47.1% vs. 33.3%; P = 0.07], but similar progesterone (P4) concentration at subsequent diestrus than cows not treated with ECP (CON and eCG groups). Nonetheless, eCG-treated cows (eCG and ECP + eCG groups) presented larger follicle at timed AI (12.6 ± 0.3 vs. 13.5 ± 0.3 mm; P = 0.03), greater ovulation rate (96.5% vs. 82.6%; P = 0.008) and greater P4 concentration at d 6 (3.9 ± 0.2 vs. 4.8 ± 0.2 ng/mL; P = 0.001) than cows not treated with eCG (CON and ECP groups). Next, cows with a new corpus luteum 6 d after TAI were submitted to uterine biopsy procedure. Uterine fragments [CON (n = 6), ECP (n = 6)] were analyzed by RNA-Seq and a total of 135 transcripts were differentially expressed between groups (73 genes up-regulated by ECP treatment). Subsequently, uterine samples were analyzed by qPCR (genes associated with cell proliferation). ECP treatment induced greater abundance of PTCH2 (P = 0.07) and COL4A1 (P = 0.02), whereas suppressed EGFR (P = 0.09) expression. Conversely, eCG treatment increased abundance of HB-EGF (P = 0.06), ESR2 (P = 0.09), and ITGB3 (P = 0.05), whereas it reduced transcription of ESR1 (P = 0.05). Collectively, supplementation with ECP or eCG at the onset of proestrous of anestrous beef cows influenced ovarian responses, global and specific endometrial gene expression. Conclusion Proestrus estradiol regulate the endometrial transcriptome, particularly stimulating proliferative activity in the endometrium. Electronic supplementary material The online version of this article (10.1186/s40104-017-0211-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Gustavo Gasparin
- Laboratório de Biotecnologia Animal, ESALQ-USP, Av Pádua Dias, Piracicaba, SP 11 Brazil
| | - Luiz Lehmann Coutinho
- Laboratório de Biotecnologia Animal, ESALQ-USP, Av Pádua Dias, Piracicaba, SP 11 Brazil
| | | | | | | | - Mario Binelli
- Departamento de Reprodução Animal, FMVZ-USP, São Paulo, SP Brazil.,Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Reprodução Animal, Avenida Duque de Caxias Norte, 225, Pirassununga, SP Zip Code 13635900 Brazil
| |
Collapse
|
14
|
Huo SD, Chen SE, Long RJ, Yang JT, Lu JX, Zang RX, Zhang TJ, Abudureyimu A, Liu JL, Zhang GH, Zhao YQ, Ma ZR. Protein and mRNA expression of follicle-stimulating hormone receptor and luteinizing hormone receptor during the oestrus in the yak (Bos grunniens). Reprod Domest Anim 2017; 52:477-482. [PMID: 28181328 DOI: 10.1111/rda.12936] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/04/2017] [Indexed: 11/29/2022]
Abstract
Follicle-stimulating hormone (FSH) and luteinizing hormone (LH) have a central role in follicle growth, maturation and oestrus, but no clear pathway in the seasonal oestrus of yak (Bos grunniens) has been found. To better understand the role of FSH and LH in seasonal oestrus in the yak, six yaks were slaughtered while in oestrus, and the pineal gland, hypothalamus, pituitary gland, and gonads were collected. Using real-time PCR and immunohistochemical assays, we determined the mRNA and protein expression of the FSH and LH receptors (FSHR and LHR) in these organs. The analysis showed that the FSHR mRNA expression level was higher in the pituitary gland tissue compared with LHR (p < .01) during oestrus. By contrast, there was low expression of FSHR and LHR mRNA in the pineal gland and hypothalamus. FSHR mRNA expression was higher than that of LHR (p < .05) in the ovary, whereas LHR mRNA expression was higher than that of FSHR (p < .01) in the uterus. FSHR and LHR proteins were located in the pinealocyte, synaptic ribbon and synaptic spherules of the pineal gland and that FSH and LH interact via nerve fibres. In the hypothalamus, FSHR and LHR proteins were located in the magnocellular neurons and parvocellular neurons. FSHR and LHR proteins were localized in acidophilic cells and basophilic cells in the pituitary gland, and in surface epithelium, stromal cell and gland epithelium in the uterus. In the ovary, FSHR and LHR protein were present in the ovarian follicle. Thus, we concluded that FSHR and LHR are located in the pineal gland, hypothalamus, pituitary and gonad during oestrus in the yak. However, FSHR was mainly expressed in the pituitary gland and ovaries, whereas LHR was mainly expressed in the pituitary gland and uterus.
Collapse
Affiliation(s)
- S-D Huo
- Animal Cell Engineering and Technology Research Center of Gansu, Northwest University for Nationalities, Lanzhou, China.,College of Life Science and Engineering, Northwest University for Nationalities, Lanzhou, China
| | - S-E Chen
- College of Life Science and Engineering, Northwest University for Nationalities, Lanzhou, China
| | - R-J Long
- College of Life Science, Lanzhou University, Lanzhou, China
| | - J-T Yang
- College of Life Science and Engineering, Northwest University for Nationalities, Lanzhou, China
| | - J-X Lu
- College of Life Science and Engineering, Northwest University for Nationalities, Lanzhou, China
| | - R-X Zang
- College of Life Science and Engineering, Northwest University for Nationalities, Lanzhou, China
| | - T-J Zhang
- College of Life Science and Engineering, Northwest University for Nationalities, Lanzhou, China
| | - A Abudureyimu
- College of Life Science and Engineering, Northwest University for Nationalities, Lanzhou, China
| | - J-L Liu
- College of Life Science and Engineering, Northwest University for Nationalities, Lanzhou, China
| | - G-H Zhang
- College of Life Science and Engineering, Northwest University for Nationalities, Lanzhou, China
| | - Y-Q Zhao
- College of Life Science and Engineering, Northwest University for Nationalities, Lanzhou, China
| | - Z-R Ma
- Animal Cell Engineering and Technology Research Center of Gansu, Northwest University for Nationalities, Lanzhou, China.,College of Life Science and Engineering, Northwest University for Nationalities, Lanzhou, China
| |
Collapse
|
15
|
Larimore EL, Amundson OL, Bridges GA, McNeel AK, Cushman RA, Perry GA. Changes in ovarian function associated with circulating concentrations of estradiol before a GnRH-induced ovulation in beef cows. Domest Anim Endocrinol 2016; 57:71-9. [PMID: 27565233 DOI: 10.1016/j.domaniend.2016.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/29/2016] [Accepted: 06/01/2016] [Indexed: 11/29/2022]
Abstract
These studies were conducted to evaluate causes for differences in circulating concentrations of estradiol before a GnRH-induced ovulation. Beef cows were synchronized by an injection of GnRH on day -7 and an injection of prostaglandin F2α (PGF2α) on day 0. In experiment 1, blood samples were collected every 3 h from PGF2α on day 0 to hour 33 after PGF2α and at slaughter (hour 36 to 42; n = 10). Cows were assigned to treatment group based on circulating concentrations of estradiol (E2): HighE2 vs LowE2. At slaughter, follicular fluid (FF) and granulosa cells were collected from the dominant follicle. In experiment 2, blood samples (n = 30) were collected every 8 h from PGF2α until the dominant follicle was aspirated via ultrasound-guided follicular aspiration to collect FF and granulosa cells (hour 38 to 46). In experiment 1, HighE2 had increased abundance of 3β-hydroxysteroid dehydrogenase, cytochrome P450 aromatase, and LHR (P ≤ 0.02), and greater concentrations of estradiol and androstenedione (P ≤ 0.02) in the FF. In experiment 2, HighE2 had increased abundance of CYP11A1, 3β-hydroxysteroid dehydrogenase, cytochrome P450 aromatase, and LHR (P ≤ 0.03) vs either LowE2 or GnRHLowE2. There was a tendency (P = 0.07) for LH pulse frequency to be increased in both the GnRHLowE2 and HighE2 compared with LowE2. HighE2 cows experienced increas in circulating concentrations of estradiol compared with LowE2. In conclusion, animals with greater concentrations of circulating estradiol before fixed-time AI experienced an upregulation of the steroidogenic pathway during the preovulatory period.
Collapse
Affiliation(s)
- E L Larimore
- Department of Animal Science, South Dakota State University, Brookings, SD, USA
| | - O L Amundson
- Department of Animal Science, South Dakota State University, Brookings, SD, USA
| | - G A Bridges
- North Central Research and Outreach Center, University of Minnesota, Grand Rapids, MN, USA
| | - A K McNeel
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, USA
| | - R A Cushman
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, USA
| | - G A Perry
- Department of Animal Science, South Dakota State University, Brookings, SD, USA.
| |
Collapse
|
16
|
Moza Jalali B, Likszo P, Skarzynski DJ. Proteomic and network analysis of pregnancy-induced changes in the porcine endometrium on Day 12 of gestation. Mol Reprod Dev 2016; 83:827-841. [PMID: 27612325 DOI: 10.1002/mrd.22733] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/30/2016] [Indexed: 12/21/2022]
Abstract
Conceptus attachment is a time-sensitive process that requires a synchronized uterine environment created by molecular changes in the endometrium in response to ovarian hormones and conceptus signals. Porcine conceptuses undergo rapid elongation and differentiation, and secrete estrogens that serve as maternal-recognition-of-pregnancy signals during the peri-implantation period (Days 11-12). Pregnancy-induced proteomic changes in the porcine endometrium were measured during this period using two-dimensional differential gel electrophoresis of endometrial protein lysates from Day-12 pregnant versus non-pregnant animals (n = 4 each). Forty-four differentially abundant proteins in the pregnant endometrium were identified by mass spectrometry. The pregnant endometrium was associated with a unique protein profile, revealed by principal component analysis. A pregnancy-dependent increase in the abundance of serpins, cofilin, annexin A2, aldose reductase, cyclophilin, protein disulphide isomerase A3, and peroxiredoxin 1 was observed. Western blotting for some of the selected proteins confirmed their enrichment during pregnancy. Ingenuity pathway analysis identified several functions specifically over-represented among the differentially abundant proteins in the pregnant endometrium, including calcium signaling, angiogenesis, leukocyte migration, and cell movement. Interleukin-1 beta and beta-estradiol were identified as upstream regulators of several high-abundance proteins from pregnancy. Therefore, signals from porcine conceptuses, such as estrogens, interleukin 1B, and epidermal growth factor, either alone or in coordination with other factors, prepare the uterus for implantation. Mol. Reprod. Dev. 83: 827-841, 2016 © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Beenu Moza Jalali
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland.
| | - Pawel Likszo
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Dariusz J Skarzynski
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
17
|
Serrano-Pérez B, Hansen PJ, Mur-Novales R, García-Ispierto I, de Sousa NM, Beckers JF, Almería S, López-Gatius F. Crosstalk between uterine serpin (SERPINA14) and pregnancy-associated glycoproteins at the fetal-maternal interface in pregnant dairy heifers experimentally infected with Neospora caninum. Theriogenology 2016; 86:824-30. [PMID: 27045629 DOI: 10.1016/j.theriogenology.2016.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 10/22/2022]
Abstract
Infection with Neospora caninum is the leading cause of abortion in cattle. In cows naturally infected with N caninum, plasma concentrations of pregnancy-associated glycoproteins (PAG) 1 and 2 indicate fetal-placental well-being, whereas an excess of progesterone in the second trimester of gestation has been related to high abortion rate. The immunosuppressive action of progesterone on the uterus during gestation has been attributed in part to the uterine serpins (SERPINA14). This study examines expression patterns of the genes SERPINA14, PAG, and PAG2 at the fetal-maternal interface in dairy heifers experimentally infected with N caninum during the second trimester of pregnancy, when most abortions takes place in natural conditions. Irrespective of infection, expression of SERPINA14 was higher, and expression of PAG1 and PAG2 lower, for intercaruncular endometrium than for caruncles or cotyledons. Cotyledonary tissues showed the highest expression of both PAG genes but lowest expression of SERPINA14. The expression of SERPINA14 was significantly higher in intercaruncular endometrium of control dams than for infected animals, pointing to potential disruption of modulation of maternal immune function during infection. Dramatically reduced SERPINA14 was particularly apparent in infected dams with aborted fetuses. There was also a negative association between N caninum antibody titers with SERPINA14 and PAG expression in infected animals, further suggesting that N caninum infection downregulates the uterine immunosuppressive function of SERPINA14.
Collapse
Affiliation(s)
- B Serrano-Pérez
- Department of Animal Production, University of Lleida, 25198 Lleida, Spain; Agrotecnio Centre, University of Lleida, Spain
| | - P J Hansen
- Department of Animal Sciences, University of Florida, USA
| | - R Mur-Novales
- Department of Animal Production, University of Lleida, 25198 Lleida, Spain
| | - I García-Ispierto
- Department of Animal Production, University of Lleida, 25198 Lleida, Spain; Agrotecnio Centre, University of Lleida, Spain
| | - N M de Sousa
- Physiology of Reproduction, Faculty of Veterinary Medicine, University of Liège, Belgium
| | - J F Beckers
- Physiology of Reproduction, Faculty of Veterinary Medicine, University of Liège, Belgium
| | - S Almería
- Centre de Recerca en Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | | |
Collapse
|
18
|
Pessoa G, Martini A, Carloto G, Rodrigues M, Claro Júnior I, Baruselli P, Brauner C, Rubin M, Corrêa M, Leivas F, Sá Filho M. Different doses of equine chorionic gonadotropin on ovarian follicular growth and pregnancy rate of suckled Bos taurus beef cows subjected to timed artificial insemination protocol. Theriogenology 2016; 85:792-799. [DOI: 10.1016/j.theriogenology.2015.09.057] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/10/2015] [Accepted: 09/14/2015] [Indexed: 11/16/2022]
|
19
|
Davoodi S, Cooke RF, Fernandes ACC, Cappellozza BI, Vasconcelos JLM, Cerri RLA. Expression of estrus modifies the gene expression profile in reproductive tissues on Day 19 of gestation in beef cows. Theriogenology 2015; 85:645-55. [PMID: 26525398 DOI: 10.1016/j.theriogenology.2015.10.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/22/2015] [Accepted: 10/01/2015] [Indexed: 11/16/2022]
Abstract
The aim of this study was to test the effect of expression of estrus at artificial insemination (AI) on endometrium, conceptus, and CL gene expression of beef cows. Thirty-six multiparous nonlactating Nelore cows were enrolled on an estradiol- and progesterone (P4)-based timed AI protocol (AI = Day 0) and then slaughtered for the endometrium, CL, and conceptus collection on Day 19. The animals were retrospectively grouped on the basis of cows that (1) showed signs of estrus near AI (n = 19; estrus) and (2) did not show any signs of estrus (n = 17; nonestrus). Body condition score, blood sampling, and ultrasound examination were performed on Days 0, 7, and 18 of the experiment followed by messenger RNA extraction and quantitative reverse transcription polymerase chain reaction analysis of 58 target genes. Data were checked for normality and analyzed by ANOVA for repeated measures using proc GLM, MIXED, and UNIVARIATE of SAS. Only pregnant cows were included in the analyses (n = 12; nonestrus, n = 11). Estrous expression had no correlation with parameters such as body condition score, preovulatory follicle and CL diameter, P4 concentration in plasma on Days 7 and 18 after AI, and interferon-tau concentration in the uterine flushing (P > 0.15); however, a significant increase was observed in conceptus size from cows that expressed estrus (P = 0.02; 38.3 ± 2.8 vs. 28.2 ± 2.9 mm). The majority of transcripts affected by estrous expression in the endometrium belong to the immune system and adhesion molecule family (MX1, MX2, MYL12A, MMP19, CXCL10, IGLL1, and SLPI; P ≤ 0.05), as well as those related with prostaglandin synthesis (OTR and COX-2; P ≤ 0.05). Genes related to apoptosis, P4 synthesis, and prostaglandin receptor were downregulated (CYP11A, BAX, and FPr; P < 0.05) in the CL tissue of cows that expressed estrus. In addition, four genes were identified as differentially expressed in the 19-day-old conceptus from cows that expressed estrus (ISG15, PLAU, BMP15, and EEF1A1; P < 0.05). There was also a significant effect of Day 7 concentration of P4 mainly affecting the immune system, adhesion molecules, and wnt signaling pathway of the endometrium (IGLL1, MX2, SLPI, TRD, APC, WNT2, GLYCAM1, and MYL12A; P < 0.05). A significant interaction between estrous expression and P4 concentration on Day 7 was more pronounced in immune system genes (MX1, MX2, TRD, SLPI, and IGLL1; P < 0.05). This study reported that estrous expression at the time of AI favorably altered the gene expression profile in reproductive tissues during the preimplantation phase toward a more receptive state to the elongating conceptus. These effects seem to be more evident in the endometrium during the time of dynamic remodeling for embryo implantation.
Collapse
Affiliation(s)
- S Davoodi
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - R F Cooke
- Eastern Oregon Agricultural Research Center, Oregon State University, Burns, Oregon, USA
| | - A C C Fernandes
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - B I Cappellozza
- Eastern Oregon Agricultural Research Center, Oregon State University, Burns, Oregon, USA
| | - J L M Vasconcelos
- Faculdade de Medicina Veterinária e Zootecnia, UNESP, Botucatu, São Paulo, Brazil
| | - R L A Cerri
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
20
|
Schilling J, Nepomuceno AI, Planchart A, Yoder JA, Kelly RM, Muddiman DC, Daniels HV, Hiramatsu N, Reading BJ. Machine learning reveals sex-specific 17β-estradiol-responsive expression patterns in white perch (Morone americana) plasma proteins. Proteomics 2015; 15:2678-90. [PMID: 25900664 PMCID: PMC5765861 DOI: 10.1002/pmic.201400606] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/03/2015] [Accepted: 04/17/2015] [Indexed: 12/29/2022]
Abstract
With growing abundance and awareness of endocrine disrupting compounds (EDCs) in the environment, there is a need for accurate and reliable detection of EDC exposure. Our objective in the present study was to observe differences within and between the global plasma proteomes of sexually mature male and female white perch (Morone americana) before (Initial Control, IC) and after 17β-estradiol (E2 ) induction. Semiquantitative nanoLC-MS/MS data were analyzed by machine learning support vector machines (SVMs) and by two-way ANOVA. By ANOVA, the expression levels of 44, 77, and 57 proteins varied significantly by gender, treatment, and the interaction of gender and treatment, respectively. SVMs perfectly classified male and female perch IC and E2 -induced plasma samples using the protein expression data. E2 -induced male and female perch plasma proteomes contained significantly higher levels of the yolk precursors vitellogenin Aa and Ab (VtgAa, VtgAb), as well as latrophilin and seven transmembrane domain-containing protein 1 (Eltd1) and kininogen 1 (Kng1). This is the first report that Eltd1 and Kng1 may be E2 -responsive proteins in fishes and therefore may be useful indicators of estrogen induction.
Collapse
Affiliation(s)
- Justin Schilling
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Angelito I. Nepomuceno
- W. M. Keck FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Antonio Planchart
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - Jeffrey A. Yoder
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, NC, USA
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - David C. Muddiman
- W. M. Keck FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC, USA
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, NC, USA
| | - Harry V. Daniels
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Naoshi Hiramatsu
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Benjamin J. Reading
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
21
|
Larimore EL, Amundson OL, Bird SL, Funnell BJ, Kruse SG, Bridges GA, Perry GA. Influence of estrus at fixed-time artificial insemination on early embryonic development in beef cattle. J Anim Sci 2015; 93:2806-12. [DOI: 10.2527/jas.2015-8892] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Gómez E, Muñoz M. Multiple-embryo transfer for studying very early maternal-embryo interactions in cattle. Reproduction 2015; 150:R35-43. [PMID: 25918434 DOI: 10.1530/rep-14-0465] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 04/20/2015] [Indexed: 01/13/2023]
Abstract
In the present paper, we highlight the need to study very early maternal-embryo interactions and discuss how these interactions can be addressed. Bovine species normally carry one or, less frequently, two embryos to term; there are very rare cases of triplets or higher-order multiple pregnancies in which all the offspring are born alive. Multiple-embryo transfer (MET) in cattle allows for the detection of endometrial responses in scenarios where single-embryo transfer would not. Although MET is non-physiological, the present study shows that at the very early embryonic stages, a uterus carrying zona-enclosed embryos does not exhibit non-physiological reactions. On the contrary, MET should be considered the sum of multiple individual effects triggered by developing embryos. We provide arguments to support our hypothesis that describe a rationale for current work with MET, and we discuss alternative hypotheses. Using cattle as a model, we describe how technical approaches to analyzing zona-enclosed early embryo-maternal interactions (i.e., transcriptomics, proteomics, and endometrial cell culture) can help identify molecular changes that may be difficult to observe when only a single embryo is present. We conclude that MET can be used for studying very early maternal-embryo interactions in vivo in monotocous species. Free Spanish abstract: A Spanish translation of this abstract is freely available at http://www.reproduction-online.org/content/150/2/R35/suppl/DC1.
Collapse
Affiliation(s)
- E Gómez
- Centro de Biotecnología Animal - SERIDACamino de Rioseco 1225, La Olla - Deva, 33394 Gijón, Asturias, Spain
| | - M Muñoz
- Centro de Biotecnología Animal - SERIDACamino de Rioseco 1225, La Olla - Deva, 33394 Gijón, Asturias, Spain
| |
Collapse
|
23
|
Albers RM, Schnapper A, Beyerbach M, Boos A. Quantitative morphological changes in the interplacentomal wall of the gravid uterine horn of cattle during pregnancy. Reprod Biol Endocrinol 2015; 13:32. [PMID: 25903583 PMCID: PMC4407553 DOI: 10.1186/s12958-015-0030-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 04/14/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The interplacentomal wall of the gravid uterine horn in cattle is the subject of reports dealing mainly with specific aspects of early pregnancy or the peripartal period. Only a very limited number of early and descriptive studies includes the whole period of pregnancy. Thus, there is a gap concerning quantitative morphological data of the uterine wall during pregnancy. We hypothesized that the specific requirements of pregnancy are reflected by significant and characteristic morphologic changes. METHODS Interplacentomal segments of the fetus-bearing horn of the uterus of 47 cows were collected at slaughter, assessed quantitatively by light microscopy, grouped into trimesters (trim), and data were analyzed statistically. RESULTS During pregnancy there were significant increases (p<0.05) in the measured parameters: heights of the endometrial surface epithelium (31 increased to 46 and 46 μm, in the 1st, 2nd and 3rd trim, respectively), glandular epithelium (19.6 to 22.4 and 25.4 μm, respectively), diameters of glands (94 to 166 to 239 μm, respectively) and glandular lumina (56 to 122 to 188 μm, respectively). Volume density of the glandular epithelium did not change, while that of glandular lumina increased significantly (8 to 26 to 40% in the 1st, 2nd and 3rd trim, respectively) and of endometrial stroma decreased with ongoing pregnancy (67 to 46 to 37%; p<0.05). Diameters of myometrial smooth muscle cells (MSMC) (9.7 to 12.4 and 12.9 μm, respectively, for the 1st, 2nd and 3rd trim; p<0.05), and the volume fraction of myometrial stroma increased (6 to 10 to 13%; p<0.05), while decreases were observed in MSMC nuclear volume density (4.4 and 4.0 to 2.4%; p<0.05). The fraction of MSMC cytoplasm (89 to 85%) and the nucleus:cytoplasm ratio (0.05 to 0.03%) both decreased for the 1st vs. 3rd trim, respectively (p<0.05). CONCLUSIONS These results indicate that the interplacentomal wall of the gravid uterine horn is subjected to significant morphological changes during pregnancy, underlining the importance of endometrial surface epithelium and of gland hypertrophy for nourishment of the conceptus, of increased myometrial extracellular matrix for uterine tensile strength and of myometrial smooth muscle hypertrophy for expulsion of the fetus at term.
Collapse
Affiliation(s)
- Rose M Albers
- Institute of Veterinary Anatomy, University of Zurich, Vetsuisse Faculty, Winterthurerstrasse 260, 8057, Zurich, Switzerland.
| | - Anke Schnapper
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.
- Institute for Anatomy, University of Veterinary Medicine Hannover Foundation, Hannover, Germany.
| | - Martin Beyerbach
- Institute for Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover Foundation, Hannover, Germany.
| | - Alois Boos
- Institute of Veterinary Anatomy, University of Zurich, Vetsuisse Faculty, Winterthurerstrasse 260, 8057, Zurich, Switzerland.
| |
Collapse
|
24
|
Binelli M, Scolari SC, Pugliesi G, Van Hoeck V, Gonella-Diaza AM, Andrade SCS, Gasparin GR, Coutinho LL. The transcriptome signature of the receptive bovine uterus determined at early gestation. PLoS One 2015; 10:e0122874. [PMID: 25849079 PMCID: PMC4388694 DOI: 10.1371/journal.pone.0122874] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/24/2015] [Indexed: 11/19/2022] Open
Abstract
Pregnancy success is critical to the profitability of cattle operations. However, the molecular events driving the uterine tissue towards embryo receptivity are poorly understood. This study aimed to characterize the uterine transcriptome profiles of pregnant (P) versus non-pregnant (NP) cows during early pregnancy and attempted to define a potential set of marker genes that can be valuable for predicting pregnancy outcome. Therefore, beef cows were synchronized (n=51) and artificially inseminated (n=36) at detected estrus. Six days after AI (D6), jugular blood samples and a biopsy from the uterine horn contralateral to the ovary containing the corpus luteum were collected. Based on pregnancy outcome on D30, samples were retrospectively allocated to the following groups: P (n=6) and NP (n=5). Both groups had similar plasma progesterone concentrations on D6. Uterine biopsies were submitted to RNA-Seq analysis in a Illumina platform. The 272,685,768 million filtered reads were mapped to the Bos Taurus reference genome and 14,654 genes were analyzed for differential expression between groups. Transcriptome data showed that 216 genes are differently expressed when comparing NP versus P uterine tissue (Padj ≤ 0.1). More specifically, 36 genes were up-regulated in P cows and 180 are up-regulated in NP cows. Functional enrichment and pathway analyses revealed enriched expression of genes associated with extracellular matrix remodeling in the NP cows and nucleotide binding, microsome and vesicular fraction in the P cows. From the 40 top-ranked genes, the transcript levels of nine genes were re-evaluated using qRT-PCR. In conclusion, this study characterized a unique set of genes, expressed in the uterus 6 days after insemination, that indicate a receptive state leading to pregnancy success. Furthermore, expression of such genes can be used as potential markers to efficiently predict pregnancy success.
Collapse
Affiliation(s)
- Mario Binelli
- Laboratório de Fisiologia e Endocrinologia Molecular, Department of Animal Reproduction, FMVZ-USP, Pirassununga, Sao Paulo, Brazil
- * E-mail:
| | - Saara C. Scolari
- Laboratório de Fisiologia e Endocrinologia Molecular, Department of Animal Reproduction, FMVZ-USP, Pirassununga, Sao Paulo, Brazil
| | - Guilherme Pugliesi
- Laboratório de Fisiologia e Endocrinologia Molecular, Department of Animal Reproduction, FMVZ-USP, Pirassununga, Sao Paulo, Brazil
| | - Veerle Van Hoeck
- Laboratório de Fisiologia e Endocrinologia Molecular, Department of Animal Reproduction, FMVZ-USP, Pirassununga, Sao Paulo, Brazil
| | - Angela M. Gonella-Diaza
- Laboratório de Fisiologia e Endocrinologia Molecular, Department of Animal Reproduction, FMVZ-USP, Pirassununga, Sao Paulo, Brazil
| | - Sónia C. S. Andrade
- Laboratório de Fisiologia e Endocrinologia Molecular, Department of Animal Reproduction, FMVZ-USP, Pirassununga, Sao Paulo, Brazil
| | - Gustavo R. Gasparin
- Laboratório de Genética Animal, Departamento de Zootecnia, ESALQ-USP, Pirassununga, Sao Paulo, Brazil
| | - Luiz L. Coutinho
- Laboratório de Genética Animal, Departamento de Zootecnia, ESALQ-USP, Pirassununga, Sao Paulo, Brazil
| |
Collapse
|
25
|
PGF2α levels in Day 8 blood plasma are increased by the presence of one or more embryos in the uterus. Animal 2015; 9:1355-60. [DOI: 10.1017/s1751731115000555] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
26
|
Bauersachs S, Wolf E. Uterine responses to the preattachment embryo in domestic ungulates: recognition of pregnancy and preparation for implantation. Annu Rev Anim Biosci 2014; 3:489-511. [PMID: 25387113 DOI: 10.1146/annurev-animal-022114-110639] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The endometrium is a tissue newly evolved with the development of mammalian species. Its main function is the support of embryonic growth and development and the nutrition of the fetus. The species-specific differences in establishment and maintenance of pregnancy make the study of this tissue in various mammalian organisms particularly interesting. With the application of omics technologies to various mammalian species, many systematic studies of endometrial gene expression changes during the phase of establishment of pregnancy have been performed to obtain a global view of regulatory events associated with this biological process. This review summarizes the results of trancriptome studies of bovine, porcine, and equine endometrium. Furthermore, the results are compared between these species and to humans. Because an increasing number of studies suggest an important role of small regulatory RNAs (i.e., microRNAs), recent findings related to the regulation of endometrial functions and the development of the conceptus are presented.
Collapse
Affiliation(s)
- Stefan Bauersachs
- Animal Physiology, Institute of Agricultural Sciences, Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland;
| | | |
Collapse
|
27
|
Multi-tissue omics analyses reveal molecular regulatory networks for puberty in composite beef cattle. PLoS One 2014; 9:e102551. [PMID: 25048735 PMCID: PMC4105537 DOI: 10.1371/journal.pone.0102551] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 06/20/2014] [Indexed: 12/13/2022] Open
Abstract
Puberty is a complex physiological event by which animals mature into an adult capable of sexual reproduction. In order to enhance our understanding of the genes and regulatory pathways and networks involved in puberty, we characterized the transcriptome of five reproductive tissues (i.e. hypothalamus, pituitary gland, ovary, uterus, and endometrium) as well as tissues known to be relevant to growth and metabolism needed to achieve puberty (i.e., longissimus dorsi muscle, adipose, and liver). These tissues were collected from pre- and post-pubertal Brangus heifers (3/8 Brahman; Bos indicus x 5/8 Angus; Bos taurus) derived from a population of cattle used to identify quantitative trait loci associated with fertility traits (i.e., age of first observed corpus luteum (ACL), first service conception (FSC), and heifer pregnancy (HPG)). In order to exploit the power of complementary omics analyses, pre- and post-puberty co-expression gene networks were constructed by combining the results from genome-wide association studies (GWAS), RNA-Seq, and bovine transcription factors. Eight tissues among pre-pubertal and post-pubertal Brangus heifers revealed 1,515 differentially expressed and 943 tissue-specific genes within the 17,832 genes confirmed by RNA-Seq analysis. The hypothalamus experienced the most notable up-regulation of genes via puberty (i.e., 204 out of 275 genes). Combining the results of GWAS and RNA-Seq, we identified 25 loci containing a single nucleotide polymorphism (SNP) associated with ACL, FSC, and (or) HPG. Seventeen of these SNP were within a gene and 13 of the genes were expressed in uterus or endometrium. Multi-tissue omics analyses revealed 2,450 co-expressed genes relative to puberty. The pre-pubertal network had 372,861 connections whereas the post-pubertal network had 328,357 connections. A sub-network from this process revealed key transcriptional regulators (i.e., PITX2, FOXA1, DACH2, PROP1, SIX6, etc.). Results from these multi-tissue omics analyses improve understanding of the number of genes and their complex interactions for puberty in cattle.
Collapse
|
28
|
Araújo ER, Sponchiado M, Pugliesi G, Van Hoeck V, Mesquita FS, Membrive CMB, Binelli M. Spatio-specific regulation of endocrine-responsive gene transcription by periovulatory endocrine profiles in the bovine reproductive tract. Reprod Fertil Dev 2014; 28:RD14178. [PMID: 25896641 DOI: 10.1071/rd14178] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 02/14/2015] [Indexed: 12/11/2022] Open
Abstract
In cattle, pro-oestrous oestradiol and dioestrous progesterone concentrations modulate endometrial gene expression and fertility. The aim was to compare the effects of different periovulatory endocrine profiles on the expression of progesterone receptor (PGR), oestrogen receptor 2 (ESR2), oxytocin receptor (OXTR), member C4 of aldo-keto reductase family 1 (AKR1C4), lipoprotein lipase (LPL), solute carrier family 2, member 1 (SLC2A1) and serpin peptidase inhibitor, clade A member 14 (SERPINA14): (1) between uterine horns ipsi- and contralateral to the corpus luteum (CL), (2) between regions of the ipsilateral horn and (3) in the vagina. Endometrium and vagina tissue samples were collected from cows that ovulated a larger (large follicle-large CL, LF-LCL; n=6) or smaller follicle (small follicle-small CL, SF-SCL; n=6) 7 days after oestrus. Cows in the LF-LCL group had a greater abundance of transcripts encoding ESR2, AKR1C4, LPL, SLC2A1 and SERPINA14, but a reduced expression of PGR and OXTR in the endometrium versus the SF-SCL group (PPGR and OXTR was greater in the contralateral compared with the ipsilateral horn (PPGR, ESR2, LPL, SLC2A1 and SERPINA14 (P<0.05). Different periovulatory endocrine profiles, i.e. LF-LCL or SF-SCL, did not influence gene expression in the vagina and had no interaction with inter- or intra-uterine horn gene expression. In conclusion, inter- and intra-uterine horn variations in gene expression indicate that the expression of specific genes in the bovine reproductive tract is location dependent. However, spatial distribution of transcripts was not influenced by distinct periovulatory sex-steroid environments.
Collapse
|
29
|
Bauersachs S, Wolf E. Immune aspects of embryo-maternal cross-talk in the bovine uterus. J Reprod Immunol 2013; 97:20-6. [PMID: 23432868 DOI: 10.1016/j.jri.2012.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 11/14/2012] [Accepted: 11/26/2012] [Indexed: 12/13/2022]
Abstract
This mini-review summarizes the results of recent transcriptome studies of bovine endometrium during the estrous cycle and during the pre-implantation phase, with a focus on immune response genes. Gene expression changes in the bovine endometrium during the estrous cycle were compared to a similar study in equine endometrium. The results indicate species-specific expression patterns, particularly for genes with immune functions. These are presumably the consequence of adaptations to differences in the physiology of reproduction in each species, including development of the conceptus, hormone profiles during the estrous cycle, and insemination. The results from a number of transcriptome studies during the pre-implantation phase, as well as comparison to the effects of human interferon alpha on bovine endometrial gene expression, suggest that during pregnancy there is no general suppression of the maternal immune system, but rather a fine-tuned regulation of immune cells. This presumably facilitates tolerance to the immunologically 'foreign' conceptus and at the same time activation of the immune system to defend against microbial and viral infections. Furthermore, comparison of differentially expressed genes in bovine endometrium to similar studies in human endometrial samples reveals a number of similar changes, indicating the existence of shared mechanisms in preparation for embryo implantation.
Collapse
Affiliation(s)
- Stefan Bauersachs
- Molecular Animal Breeding and Biotechnology and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany.
| | | |
Collapse
|
30
|
Pitaluga P, Sá Filho M, Sales J, Baruselli P, Vincenti L. Manipulation of the proestrous by exogenous gonadotropin and estradiol during a timed artificial insemination protocol in suckled Bos indicus beef cows. Livest Sci 2013. [DOI: 10.1016/j.livsci.2013.02.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Hansen PJ. Physiology and Endocrinology Symposium: maternal immunological adjustments to pregnancy and parturition in ruminants and possible implications for postpartum uterine health: is there a prepartum-postpartum nexus? J Anim Sci 2013; 91:1639-49. [PMID: 23307838 DOI: 10.2527/jas.2012-5934] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Establishment of microbial infections in the reproductive tract can have negative consequences for reproductive function of the postpartum female. Most periparturient cows experience bacterial contamination of the uterus after parturition, but only a fraction of these develop subclinical or clinical disease. It is not well understood why one female resolves uterine infections after parturition while another develops disease. Perhaps those that develop metritis or endometritis are exposed to a greater bacterial load at parturition than those that successfully restore the uterus to a healthy condition. A second possibility is that females that develop bacterial disease have compromised immune function, either systemically or in the reproductive tract and associated lymph nodes. Here, the possibility is raised that maternal immunological adjustments to the presence of the allogeneic conceptus may predispose some females to metritis or endometritis. Several regulatory processes ensure that adaptive immune responses against paternal antigens on the conceptus are downregulated during pregnancy. Among these are immunosuppressive effects of progesterone, local accumulation of immune cells that can inhibit inflammation and T cell responses, including M2 macrophages and γδ T cells, and differentiation of regulatory T cells to inhibit alloreactive lymphocytes. Some immunological adjustments to the conceptus also make the uterus more susceptible to bacterial infection. For example, progesterone not only depresses skin graft rejection but also reduces uterine capacity to eliminate bacterial infections. Macrophages of M2 phenotype can inhibit inflammation and facilitate persistence of some microbial infections. At parturition, immune defenses in the uterus may be further weakened by loss of the luminal epithelium of the endometrium, which is part of the innate immune system, as well as by disappearance of intraepithelial γδ T cells that produce the antibacterial proteins granulysin and perforin. It is currently not known whether molecules and cells that inhibit immune responses during pregnancy persist after parturition but, if so, they could contribute to compromised immune function in the uterus. It is hypothesized that individual variation in immune adjustments to pregnancy and parturition and the reversal of these changes in the postpartum period are important determinants of susceptibility of the uterus to infection.
Collapse
Affiliation(s)
- P J Hansen
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville 32611-0910, USA.
| |
Collapse
|
32
|
Gebhardt S, Merkl M, Herbach N, Wanke R, Handler J, Bauersachs S. Exploration of global gene expression changes during the estrous cycle in equine endometrium. Biol Reprod 2012; 87:136. [PMID: 23077167 DOI: 10.1095/biolreprod.112.103226] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The equine endometrium exhibits characteristic morphological and functional changes during the estrous cycle controlled by the interplay of progesterone and estradiol. A microarray analysis of endometrial tissue samples derived from five time points of the estrous cycle (Day [D] 0, D3, D8, D12, and D16) was performed to study the dynamics of equine endometrial gene expression. Statistical analysis revealed 4996 genes differentially expressed during the estrous cycle. Clustering of similar expression profiles was performed to find groups of coregulated genes. This revealed eight major profiles: highest mRNA concentrations on D0, from D0 to D3, on D3, from D3 to D8, on D8, from D8 to D12, from D12 to D16, and on D16. Bioinformatics analysis revealed distinct molecular functions and biological processes for the individual expression profiles characterizing the different phases of the estrous cycle (e.g., extracellular matrix and inflammatory response during the estrus phase, cell division and cell cycle during early luteal phase, and endoplasmic reticulum, protein transport, and lipid metabolism in the luteal phase). A comparison to dynamic gene expression changes in bovine endometrium identified common and species-specific gene regulations in cyclic endometrium. Analysis of expression changes during the estrous cycle for genes previously found to be differentially expressed on D12 of pregnancy provided new evidence for possible regulation of these genes. This study provides new insights regarding global changes of equine endometrial gene expression as molecular reflections of physiological changes in the cyclic equine endometrium with regard to the crucial role of this tissue for successful reproduction.
Collapse
Affiliation(s)
- Simone Gebhardt
- Laboratory for Functional Genome Analysis (LAFUGA) and Chair for Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Ulbrich SE, Groebner AE, Bauersachs S. Transcriptional profiling to address molecular determinants of endometrial receptivity--lessons from studies in livestock species. Methods 2012. [PMID: 23178633 DOI: 10.1016/j.ymeth.2012.10.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The development of a fertilized oocyte into a differentiated multi-cellular organism is a major challenge with regard to the orchestration of the expression of the mammalian genome. Highly complex networks of genes are temporally and spatially regulated during cellular differentiation to generate specific cell types. Embryonic development is critically influenced by external impacts in the female reproductive tract. A most critical phase of pregnancy in mammals is the pre- and peri-implantation period, during which the uterine environment plays a crucial role in supporting the development of the conceptus. The analytical description of the transcriptome, proteome and metabolome of the embryo-maternal interface is a prerequisite for the understanding of the complex regulatory processes taking place during this time. This review lines out potentials and limitations of different approaches to unravel the determinants of endometrial receptivity in cattle, the pig and the horse. Suitable in vivo and in vitro models, which have been used to elucidate factors participating in the embryo-maternal dialog are discussed. Taken together, transcriptome analyses and specified selective candidate gene driven approaches contribute to the understanding of endometrial function. The endometrium as sensor and driver of fertility may indicate the qualitative and quantitative nature of signaling molecules sent by the early embryo and in turn, accordingly impact on embryonic development.
Collapse
Affiliation(s)
- Susanne E Ulbrich
- Physiology Weihenstephan, Technische Universität München, Freising, Germany.
| | | | | |
Collapse
|
34
|
Foley C, Chapwanya A, Creevey CJ, Narciandi F, Morris D, Kenny EM, Cormican P, Callanan JJ, O'Farrelly C, Meade KG. Global endometrial transcriptomic profiling: transient immune activation precedes tissue proliferation and repair in healthy beef cows. BMC Genomics 2012; 13:489. [PMID: 22985206 PMCID: PMC3544567 DOI: 10.1186/1471-2164-13-489] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 09/07/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND All cows experience bacterial contamination and tissue injury in the uterus postpartum, instigating a local inflammatory immune response. However mechanisms that control inflammation and achieve a physiologically functioning endometrium, while avoiding disease in the postpartum cow are not succinctly defined. This study aimed to identify novel candidate genes indicative of inflammation resolution during involution in healthy beef cows. Previous histological analysis of the endometrium revealed elevated inflammation 15 days postpartum (DPP) which was significantly decreased by 30 DPP. The current study generated a genome-wide transcriptomic profile of endometrial biopsies from these cows at both time points using mRNA-Seq. The pathway analysis tool GoSeq identified KEGG pathways enriched by significantly differentially expressed genes at both time points. Novel candidate genes associated with inflammatory resolution were subsequently validated in additional postpartum animals using quantitative real-time PCR (qRT-PCR). RESULTS mRNA-Seq revealed 1,107 significantly differentially expressed genes, 73 of which were increased 15 DPP and 1,034 were increased 30 DPP. Early postpartum, enriched immune pathways (adjusted P < 0.1) included the T cell receptor signalling pathway, graft-versus-host disease and cytokine-cytokine receptor interaction pathways. However 30 DPP, where the majority of genes were differentially expressed, the enrichment (adjusted P < 0.1) of tissue repair and proliferative activity pathways was observed. Nineteen candidate genes selected from mRNA-Seq results, were independently assessed by qRT-PCR in additional postpartum cows (5 animals) at both time points. SAA1/2, GATA2, IGF1, SHC2, and SERPINA14 genes were significantly elevated 30 DPP and are functionally associated with tissue repair and the restoration of uterine homeostasis postpartum. CONCLUSIONS The results of this study reveal an early activation of the immune response which undergoes a temporal functional change toward tissue proliferation and regeneration during endometrial involution in healthy postpartum cows. These molecular changes mirror the activation and resolution of endometrial inflammation during involution previously classified by the degree of neutrophil infiltration. SAA1/2, GATA2, IGF1, SHC2, and SERPINA14 genes may become potential markers for resolution of endometrial inflammation in the postpartum cow.
Collapse
Affiliation(s)
- Cathriona Foley
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co, Meath, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Bauersachs S, Wolf E. Transcriptome analyses of bovine, porcine and equine endometrium during the pre-implantation phase. Anim Reprod Sci 2012; 134:84-94. [PMID: 22917876 DOI: 10.1016/j.anireprosci.2012.08.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Different reproductive strategies evolved in various mammalian groups to achieve recognition, establishment and maintenance of pregnancy. The complexity of these processes is reflected by a high incidence of embryonic loss during this critical period in many mammalian species. Besides studies in mice and humans a number of transcriptome studies of endometrial tissue samples and also of early embryos have been performed during the pre-implantation phase in cattle, swine and horse to identify genes associated with embryo-maternal interaction. Results of these studies are reviewed and compared between species. The comparison of data sets from different species indicated a general role of interferons for the establishment of pregnancy. In addition to many species-specific changes in gene expression, which may reflect different pregnancy recognition signals and mechanisms of embryo implantation, a number of transcriptome changes were found to be similar across species. These genes may have conserved roles during the establishment of pregnancy in mammals and reflect basic principles of mammalian reproduction. The relevance and strategies, but also the challenges of cross-species comparisons of gene expression data are discussed.
Collapse
Affiliation(s)
- Stefan Bauersachs
- Molecular Animal Breeding & Biotechnology and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 Munich, Germany.
| | | |
Collapse
|
36
|
Fürst RW, Meyer HHD, Schweizer G, Ulbrich SE. Is DNA methylation an epigenetic contribution to transcriptional regulation of the bovine endometrium during the estrous cycle and early pregnancy? Mol Cell Endocrinol 2012; 348:67-77. [PMID: 21802491 DOI: 10.1016/j.mce.2011.07.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 07/04/2011] [Accepted: 07/13/2011] [Indexed: 11/20/2022]
Abstract
Epigenetic events controlling the transcriptional regulation of genes involved in endometrial function during the estrous cycle and early pregnancy have only sparsely been investigated. We analyzed the gene expression of DNA methyltransferases and the most prominent endocrine transcriptional mediator estrogen receptor alpha (ESR1) in the bovine endometrium of heifers at 0, 12 and 18 days following estrous and at day 18 after insemination. The luminometric methylation assay for the investigation of global DNA methylation and an elegant combination of methylation-sensitive high resolution melting and pyrosequencing for local methylation levels of ESR1 were deployed. In spite of differential gene expression of ESR1 among groups, no differences in endometrial ESR1 DNA methylation during neither estrous cycle nor early pregnancy were determined. Global DNA methylation prevailed at similar low levels in endometrium, likely controlled by the observed moderate DNMT3b expression. Thus, the epigenetic contribution of DNA methylation influencing endometrial function seems rather limited. However, because a control tissue expressing only minute amounts of ESR1 transcripts was locally significantly higher methylated, DNA methylation might contribute to an appropriate tissue-specific expression status underlying further specific control mechanisms of gene transcription.
Collapse
Affiliation(s)
- Rainer W Fürst
- Physiology Weihenstephan, Technische Universität München, 85354 Freising-Weihenstephan, Germany
| | | | | | | |
Collapse
|
37
|
Groebner AE, Rubio-Aliaga I, Schulke K, Reichenbach HD, Daniel H, Wolf E, Meyer HHD, Ulbrich SE. Increase of essential amino acids in the bovine uterine lumen during preimplantation development. Reproduction 2011; 141:685-95. [PMID: 21383026 DOI: 10.1530/rep-10-0533] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Amino acids (AAs) are crucial for the developing conceptus prior to implantation. To provide insights into the requirements of the bovine embryo, we determined the AA composition of the uterine fluid. At days 12, 15, and 18 post-estrus, the uteri of synchronized pregnant and non-pregnant Simmental heifers were flushed for the analysis of 41 AAs and their derivatives by liquid chromatography-tandem mass spectrometry. The ipsilateral endometrium was sampled for quantitative PCR. In addition to a pregnancy-dependent increase of the essential AAs (P<0.01), we detected elevated concentrations for most non-essential proteinogenic AAs. Histidine (His) and the expression of the His/peptide transporter solute carrier 15A3 (SLC15A3) were significantly increased at day 18 of pregnancy in vivo. In addition, SLC15A3 was predominantly stimulated by trophoblast-derived interferon-τ in stroma cells of an in vitro co-culture model of endometrial cells. Our results show an increased concentration of AAs most likely to optimally provide the elongating pre-attachment conceptus with nutrients.
Collapse
Affiliation(s)
- Anna E Groebner
- Physiology Weihenstephan, Z I E L Research Center for Nutrition and Food Sciences, Technische Universitaet Muenchen, Weihenstephaner Berg 3, 85354 Freising, Germany
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Groebner AE, Schulke K, Schefold JC, Fusch G, Sinowatz F, Reichenbach HD, Wolf E, Meyer HHD, Ulbrich SE. Immunological mechanisms to establish embryo tolerance in early bovine pregnancy. Reprod Fertil Dev 2011; 23:619-32. [DOI: 10.1071/rd10230] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 12/21/2010] [Indexed: 12/16/2022] Open
Abstract
A well-balanced immunological interaction between mother and the semi-allogenic embryo is of particular importance. The objective of the present study was to analyse mechanisms of immune tolerance in bovine pregnancy during peri-implantation. Simmental heifers inseminated with either cryopreserved spermatozoa or seminal plasma were killed 12, 15 or 18 days after oestrus. Uteri were flushed for the recovery of conceptuses and the ipsilateral intercaruncular endometrium was sampled for gene expression analysis. Indoleamine 2,3-dioxygenase (IDO) mRNA, coding for the initial enzyme of the kynurenine pathway, was 18-fold (P < 0.001) more abundant in the endometrium of Day 18 pregnant v. non-pregnant animals. Tandem mass spectrometry revealed a decrease of endometrial l-tryptophan (P = 0.0008), but an increase of l-kynurenine concentration (P = 0.005) from Day 12 to Day 18, suggesting increasing IDO activity (P < 0.03). An in vitro coculture model of endometrial cells showed an induction of IDO expression following interferon-τ exposure primarily in stroma cells, which was confirmed by in situ hybridisation localising IDO mRNA mainly in deep stroma cells. Immunohistochemical analysis revealed fewer CD45-positive leucocytes in the zona basalis of pregnant animals. Elevated IDO activity may reduce the presence of leucocytes in the pregnant endometrium, providing a possible mechanism for protecting the semi-allogenic conceptus from maternal rejection.
Collapse
|
39
|
Hannan NJ, Stephens AN, Rainczuk A, Hincks C, Rombauts LJF, Salamonsen LA. 2D-DiGE Analysis of the Human Endometrial Secretome Reveals Differences between Receptive and Nonreceptive States in Fertile and Infertile Women. J Proteome Res 2010; 9:6256-64. [DOI: 10.1021/pr1004828] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Natalie J. Hannan
- Prince Henry’s Institute of Medical Research, Department of Obstetrics and Gynaecology, Monash University, and Monash IVF Clayton, Victoria, 3168, Australia
| | - Andrew N. Stephens
- Prince Henry’s Institute of Medical Research, Department of Obstetrics and Gynaecology, Monash University, and Monash IVF Clayton, Victoria, 3168, Australia
| | - Adam Rainczuk
- Prince Henry’s Institute of Medical Research, Department of Obstetrics and Gynaecology, Monash University, and Monash IVF Clayton, Victoria, 3168, Australia
| | - Cassandra Hincks
- Prince Henry’s Institute of Medical Research, Department of Obstetrics and Gynaecology, Monash University, and Monash IVF Clayton, Victoria, 3168, Australia
| | - Luk J. F. Rombauts
- Prince Henry’s Institute of Medical Research, Department of Obstetrics and Gynaecology, Monash University, and Monash IVF Clayton, Victoria, 3168, Australia
| | - Lois A. Salamonsen
- Prince Henry’s Institute of Medical Research, Department of Obstetrics and Gynaecology, Monash University, and Monash IVF Clayton, Victoria, 3168, Australia
| |
Collapse
|
40
|
Kandasamy S, Jain A, Kumar R, Agarwal SK, Joshi P, Mitra A. Molecular characterization and expression profile of uterine serpin (SERPINA14) during different reproductive phases in water buffalo (Bubalus bubalis). Anim Reprod Sci 2010; 122:133-41. [DOI: 10.1016/j.anireprosci.2010.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 07/22/2010] [Accepted: 08/06/2010] [Indexed: 11/29/2022]
|
41
|
Abstract
Uterine serpins (recently designated as SERPINA14) are hormonally induced proteins secreted in large quantities by the endometrial epithelium during pregnancy. The SERPINA14 proteins belong to the serine proteinase inhibitor (serpin) superfamily, but their apparent lack of inhibitory activity toward serine proteinases suggests that these proteins evolved a different function from the anti-proteinase activity typically found in most members of the serpin superfamily. The gene is present in a limited group of mammals in the Laurasiatheria superorder (ruminants, horses, pigs, dolphins and some carnivores) while being absent in primates, rodents, lagomorphs and marsupials. Thus, the gene is likely to have evolved by gene duplication after divergence of Laurasiatheria and to play an important role in pregnancy. That role may vary between species. In sheep, SERPINA14 probably serves an immunoregulatory role to prevent rejection of the fetal allograft. It is inhibitory to lymphocyte proliferation and natural killer cell function. In the pig, SERPINA14 is involved in iron transport to the fetus by binding to and stabilizing the iron-binding protein uteroferrin. It is possible that SERPINA14 has undergone divergence in function since the original emergence of the gene in a common ancestor of species possessing SERPINA14.
Collapse
Affiliation(s)
- Maria B Padua
- Department of Obstetrics and Gynecology, College of Medicine, University of Florida, Gainesville, FL 32610-0294, USA.
| | | |
Collapse
|