1
|
Zhe J, Ye D, Chen X, Liu Y, Zhou X, Li Y, Zhang J, Chen S. Consanguineous Chinese Familial Study Reveals that a Gross Deletion that Includes the SYCE1 Gene Region Is Associated with Premature Ovarian Insufficiency. Reprod Sci 2020; 27:461-467. [PMID: 31925770 DOI: 10.1007/s43032-019-00037-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 07/07/2019] [Indexed: 01/25/2023]
Abstract
Premature ovarian insufficiency (POI) is a highly heterogeneous ovarian disorder. Genetic factors account for the cause of POI. We aimed to analyze the genetic alterations in two affected sisters diagnosed with POI and their parents from a highly consanguineous Chinese Han family. Whole-exome sequencing was performed, and bioinformatics analysis was used to determine the potential genetic cause of POI in this family. A SYCE1 deletion was verified by Sanger sequencing. A homozygous deletion in SYCE1 was harbored by the proband and her affected sister, whereas both parents had heterozygous deletions. There were distinct differences in the amino acid sequences between wild-type and SYCE1 deletion. Domain analysis and 3D structural analysis of the SYCE1 deletion was also performed to evaluate the potential impact and pathogenicity of POI. The SYCE1 domain structure was truncated. Additionally, the 3D structure showed that the SYCE1 deletion changed the shape of the protein compared with that of wild-type SYCE1. This study revealed a novel SYCE1 deletion. This SYCE1 deletion may be the cause of POI. Genetic counseling for POI is helpful for researchers and clinicians to identify the mode of genetic inheritance for SYCE1 deletion in POI pathology.
Collapse
Affiliation(s)
- Jing Zhe
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, 1838 Northern Guangzhou Avenue, Guangzhou, 510515, People's Republic of China
| | - Desheng Ye
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, 1838 Northern Guangzhou Avenue, Guangzhou, 510515, People's Republic of China
| | - Xin Chen
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, 1838 Northern Guangzhou Avenue, Guangzhou, 510515, People's Republic of China
| | - Yudong Liu
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, 1838 Northern Guangzhou Avenue, Guangzhou, 510515, People's Republic of China
| | - Xingyu Zhou
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, 1838 Northern Guangzhou Avenue, Guangzhou, 510515, People's Republic of China
| | - Ying Li
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, 1838 Northern Guangzhou Avenue, Guangzhou, 510515, People's Republic of China
| | - Jun Zhang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, 1838 Northern Guangzhou Avenue, Guangzhou, 510515, People's Republic of China
| | - Shiling Chen
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, 1838 Northern Guangzhou Avenue, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
2
|
Tšuiko O, Nõukas M, Žilina O, Hensen K, Tapanainen JS, Mägi R, Kals M, Kivistik PA, Haller-Kikkatalo K, Salumets A, Kurg A. Copy number variation analysis detects novel candidate genes involved in follicular growth and oocyte maturation in a cohort of premature ovarian failure cases. Hum Reprod 2016; 31:1913-25. [PMID: 27301361 PMCID: PMC4974666 DOI: 10.1093/humrep/dew142] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/24/2016] [Indexed: 12/20/2022] Open
Abstract
STUDY QUESTION Can spontaneous premature ovarian failure (POF) patients derived from population-based biobanks reveal the association between copy number variations (CNVs) and POF? SUMMARY ANSWER CNVs can hamper the functional capacity of ovaries by disrupting key genes and pathways essential for proper ovarian function. WHAT IS KNOWN ALREADY POF is defined as the cessation of ovarian function before the age of 40 years. POF is a major reason for female infertility, although its cause remains largely unknown. STUDY DESIGN, SIZE, DURATION The current retrospective CNV study included 301 spontaneous POF patients and 3188 control individuals registered between 2003 and 2014 at Estonian Genome Center at the University of Tartu (EGCUT) biobank. PARTICIPANTS/MATERIALS, SETTING, METHODS DNA samples from 301 spontaneous POF patients were genotyped by Illumina HumanCoreExome (258 samples) and HumanOmniExpress (43 samples) BeadChip arrays. Genotype and phenotype information was drawn from the EGCUT for the 3188 control population samples, previously genotyped with HumanCNV370 and HumanOmniExpress BeadChip arrays. All identified CNVs were subjected to functional enrichment studies for highlighting the POF pathogenesis. Real-time quantitative PCR was used to validate a subset of CNVs. Whole-exome sequencing was performed on six patients carrying hemizygous deletions that encompass genes essential for meiosis or folliculogenesis. MAIN RESULTS AND THE ROLE OF CHANCE Eleven novel microdeletions and microduplications that encompass genes relevant to POF were identified. For example, FMN2 (1q43) and SGOL2 (2q33.1) are essential for meiotic progression, while TBP (6q27), SCARB1 (12q24.31), BNC1 (15q25) and ARFGAP3 (22q13.2) are involved in follicular growth and oocyte maturation. The importance of recently discovered hemizygous microdeletions of meiotic genes SYCE1 (10q26.3) and CPEB1 (15q25.2) in POF patients was also corroborated. LIMITATIONS, REASONS FOR CAUTION This is a descriptive analysis and no functional studies were performed. Anamnestic data obtained from population-based biobank lacked clinical, biological (hormone levels) or ultrasonographical data, and spontaneous POF was predicted retrospectively by excluding known extraovarian causes for premature menopause. WIDER IMPLICATIONS OF THE FINDINGS The present study, with high number of spontaneous POF cases, provides novel data on associations between the genomic aberrations and premature menopause of ovarian cause and demonstrates that population-based biobanks are powerful source of biological samples and clinical data to reveal novel genetic lesions associated with human reproductive health and disease, including POF. STUDY FUNDING/COMPETING INTEREST This study was supported by the Estonian Ministry of Education and Research (IUT20-43, IUT20-60, IUT34-16, SF0180027s10 and 9205), Enterprise Estonia (EU30020 and EU48695), Eureka's EUROSTARS programme (NOTED, EU41564), grants from European Union's FP7 Marie Curie Industry-Academia Partnerships and Pathways (IAPP, SARM, |EU324509) and Horizon 2020 innovation programme (WIDENLIFE, 692065), Academy of Finland and the Sigrid Juselius Foundation.
Collapse
Affiliation(s)
- O Tšuiko
- Institute of Bio- and Translational Medicine, University of Tartu, Ravila 19, Tartu 50411, Estonia Competence Centre on Health Technologies, Tiigi 61b, Tartu 50410, Estonia Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, Tartu 51010, Estonia
| | - M Nõukas
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, Tartu 51010, Estonia Estonian Genome Center, University of Tartu, Riia 23b, Tartu 51010, Estonia
| | - O Žilina
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, Tartu 51010, Estonia Department of Genetics, United Laboratory, Tartu University Hospital, L. Puusepa 2, Tartu 51014, Estonia
| | - K Hensen
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, Tartu 51010, Estonia
| | - J S Tapanainen
- Department of Obstetrics and Gynecology, Helsinki University Hospital, Haartmaninkatu 2, Helsinki 00290, Finland Department of Obstetrics and Gynecology, Oulu University and Oulu University Hospital, Kajaanintie 50, Oulu 90220, Finland
| | - R Mägi
- Estonian Genome Center, University of Tartu, Riia 23b, Tartu 51010, Estonia Department of Bioinformatics, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, Tartu 51010, Estonia
| | - M Kals
- Estonian Genome Center, University of Tartu, Riia 23b, Tartu 51010, Estonia
| | - P A Kivistik
- Estonian Genome Center, University of Tartu, Riia 23b, Tartu 51010, Estonia
| | - K Haller-Kikkatalo
- Institute of Bio- and Translational Medicine, University of Tartu, Ravila 19, Tartu 50411, Estonia Competence Centre on Health Technologies, Tiigi 61b, Tartu 50410, Estonia Department of Obstetrics and Gynecology, University of Tartu, L. Puusepa 8, Tartu 51014, Estonia
| | - A Salumets
- Institute of Bio- and Translational Medicine, University of Tartu, Ravila 19, Tartu 50411, Estonia Competence Centre on Health Technologies, Tiigi 61b, Tartu 50410, Estonia Department of Obstetrics and Gynecology, University of Tartu, L. Puusepa 8, Tartu 51014, Estonia
| | - A Kurg
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, Tartu 51010, Estonia
| |
Collapse
|
3
|
Jung D, Kee K. Insights into female germ cell biology: from in vivo development to in vitro derivations. Asian J Androl 2016; 17:415-20. [PMID: 25652637 PMCID: PMC4430939 DOI: 10.4103/1008-682x.148077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Understanding the mechanisms of human germ cell biology is important for developing infertility treatments. However, little is known about the mechanisms that regulate human gametogenesis due to the difficulties in collecting samples, especially germ cells during fetal development. In contrast to the mitotic arrest of spermatogonia stem cells in the fetal testis, female germ cells proceed into meiosis and began folliculogenesis in fetal ovaries. Regulations of these developmental events, including the initiation of meiosis and the endowment of primordial follicles, remain an enigma. Studying the molecular mechanisms of female germ cell biology in the human ovary has been mostly limited to spatiotemporal characterizations of genes or proteins. Recent efforts in utilizing in vitro differentiation system of stem cells to derive germ cells have allowed researchers to begin studying molecular mechanisms during human germ cell development. Meanwhile, the possibility of isolating female germline stem cells in adult ovaries also excites researchers and generates many debates. This review will mainly focus on presenting and discussing recent in vivo and in vitro studies on female germ cell biology in human. The topics will highlight the progress made in understanding the three main stages of germ cell developments: namely, primordial germ cell formation, meiotic initiation, and folliculogenesis.
Collapse
Affiliation(s)
| | - Kehkooi Kee
- Department of Basic Medical Sciences, Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
He J, Stewart K, Kinnell HL, Anderson RA, Childs AJ. A developmental stage-specific switch from DAZL to BOLL occurs during fetal oogenesis in humans, but not mice. PLoS One 2013; 8:e73996. [PMID: 24086306 PMCID: PMC3783425 DOI: 10.1371/journal.pone.0073996] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/29/2013] [Indexed: 01/24/2023] Open
Abstract
The Deleted in Azoospermia gene family encodes three germ cell-specific RNA-binding proteins (DAZ, DAZL and BOLL) that are essential for gametogenesis in diverse species. Targeted disruption of Boll in mice causes male-specific spermiogenic defects, but females are apparently fertile. Overexpression of human BOLL promotes the derivation of germ cell-like cells from genetically female (XX), but not male (XY) human ES cells however, suggesting a functional role for BOLL in regulating female gametogenesis in humans. Whether BOLL is expressed during oogenesis in mammals also remains unclear. We have therefore investigated the expression of BOLL during fetal oogenesis in humans and mice. We demonstrate that BOLL protein is expressed in the germ cells of the human fetal ovary, at a later developmental stage than, and almost mutually-exclusive to, the expression of DAZL. Strikingly, BOLL is downregulated, and DAZL re-expressed, as primordial follicles form, revealing BOLL expression to be restricted to a narrow window during fetal oogenesis. By quantifying the extent of co-expression of DAZL and BOLL with markers of meiosis, we show that this window likely corresponds to the later stages of meiotic prophase I. Finally, we demonstrate that Boll is also transiently expressed during oogenesis in the fetal mouse ovary, but is simultaneously co-expressed within the same germ cells as Dazl. These data reveal significant similarities and differences between the expression of BOLL homologues during oogenesis in humans and mice, and raise questions as to the validity of the Boll(-/-) mouse as a model for understanding BOLL function during human oogenesis.
Collapse
Affiliation(s)
- Jing He
- MRC Centre for Reproductive Health, the Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Kayleigh Stewart
- MRC Centre for Reproductive Health, the Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Hazel L. Kinnell
- MRC Centre for Reproductive Health, the Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard A. Anderson
- MRC Centre for Reproductive Health, the Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew J. Childs
- MRC Centre for Reproductive Health, the Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Department of Comparative Biomedical Sciences, the Royal Veterinary College, University of London, Camden, London, United Kingdom
- * E-mail:
| |
Collapse
|
5
|
An asymmetry algorithm based on parameter transformation for Hessian matrix. Neural Comput Appl 2012. [DOI: 10.1007/s00521-012-0876-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
6
|
Ray D, Hogarth CA, Evans EB, An W, Griswold MD, Ye P. Experimental validation of Ankrd17 and Anapc10, two novel meiotic genes predicted by computational models in mice. Biol Reprod 2012; 86:102. [PMID: 22190705 DOI: 10.1095/biolreprod.111.095216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Prophase is a critical stage of meiosis, during which recombination-the landmark event of meiosis-exchanges information between homologous chromosomes. The intractability of mammalian gonads has limited our knowledge on genes or interactions between genes during this key stage. Microarray profiling of gonads in both sexes has generated genome-scale information. However, the asynchronous development of germ cells and the mixed germ/somatic cell population complicate the use of this resource. To elucidate functional networks of meiotic prophase, we have integrated global gene expression with other genome-scale datasets either within or across species. Our computational approaches provide a comprehensive understanding of interactions between genes and can prioritize candidates for targeted experiments. Here, we examined two novel prophase genes predicted by computational models: Ankrd17 and Anapc10. Their expression and localization were characterized in the developing mouse testis using in situ hybridization and immunofluorescence. We found ANKRD17 expression was predominantly restricted to pachytene spermatocytes and round spermatids. ANKRD17 was diffusely distributed throughout the nucleus of pachytene cells but excluded from the XY body and other heterochromatic regions. ANAPC10 was mainly expressed in the cytoplasm of spermatogonia and leptotene and pachytene spermatocytes. These experiments support our computational predictions of Ankrd17 and Anapc10 as potential prophase genes. More importantly, they serve as a proof of concept of our integrative computational and experimental approach, which has delivered a larger candidate gene set to the broader reproductive community.
Collapse
Affiliation(s)
- Debjit Ray
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA
| | | | | | | | | | | |
Collapse
|
7
|
Anagnostopoulos AK, Tsiliki G, Spyrou G, Tsangaris GT. Bioinformatics approaches in the discovery and understanding of reproduction-related biomarkers. Expert Rev Proteomics 2011; 8:187-95. [PMID: 21501012 DOI: 10.1586/epr.11.12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The emerging field of bioinformatics in proteomics is introducing new algorithms in order to handle large and heterogeneous datasets and improve the knowledge-discovery process. Management systems, software construction and application, database population and leverage, as well as computed prediction, have crafted bioinformatics into a valuable tool for basic research. Human reproduction is one of many fields proteomics has been extensively studying over the last decade, accumulating complex experimental data at a rate far exceeding the ability to assimilate them. Transformation of the rapidly proliferating quantities of experimental information into a usable form in order to facilitate their analysis is a challenging task. On this track, bioinformatics, an essential part of proteomics research, aspires to amend inquiries into a better manipulated, a better handled and a better understood form so as to enhance existing knowledge expansion.
Collapse
Affiliation(s)
- Athanasios K Anagnostopoulos
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou, 115 27 Athens, Greece
| | | | | | | |
Collapse
|
8
|
McGuire MM, Bowden W, Engel NJ, Ahn HW, Kovanci E, Rajkovic A. Genomic analysis using high-resolution single-nucleotide polymorphism arrays reveals novel microdeletions associated with premature ovarian failure. Fertil Steril 2011; 95:1595-600. [PMID: 21256485 DOI: 10.1016/j.fertnstert.2010.12.052] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 11/12/2010] [Accepted: 12/22/2010] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To analyze DNA from women with premature ovarian failure (POF) for genome-wide copy-number variations (CNVs), focusing on novel autosomal microdeletions. DESIGN Case-control genetic association study. SETTING Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas. PATIENT(S) Of 89 POF patients, eight experienced primary amenorrhea and 81 exhibited secondary amenorrhea before age 40 years. INTERVENTION(S) Genomic DNA from peripheral blood samples was analyzed for CNVs using high-resolution single-nucleotide polymorphism (SNP) arrays. MAIN OUTCOME MEASURE(S) Identification of novel CNVs in 89 POF cases, using the Database of Genomic Variants as a control population. RESULT(S) A total of 198 autosomal CNVs were detected by SNP arrays, ranging in size from 0.1 Mb to 3.4 Mb. These CNVs (>0.1 Mb) included 17 novel microduplications and seven novel microdeletions, six of which contained the coding regions 8q24.13, 10p15-p14, 10q23.31, 10q26.3, 15q25.2, and 18q21.32. Most of the novel CNVs were derived from autosomes rather than the X chromosome. CONCLUSION(S) The present pilot study revealed novel microdeletions/microduplications in women with POF. Two novel microdeletions caused haploinsufficiency for SYCE1 and CPEB1, genes known to cause ovarian failure in knockout mouse models. Chromosomal microarrays may be a useful adjunct to conventional karyotyping when evaluating genomic imbalances in women with POF.
Collapse
Affiliation(s)
- Megan M McGuire
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | |
Collapse
|
9
|
Affiliation(s)
- Paula E Cohen
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| | | |
Collapse
|