1
|
Vasconcelos MW, Vieira Dada JM, Pereira VA, Zandi-Karimi A, de Castilhos Ghisi N, Oliveira De Barros FR. Scientific knowledge about gene expression in ruminants under heat stress - A scientometric review. J Therm Biol 2025; 127:104028. [PMID: 39721159 DOI: 10.1016/j.jtherbio.2024.104028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 10/11/2024] [Accepted: 11/30/2024] [Indexed: 12/28/2024]
Abstract
Heat stress can alter the expression of genes in the individual's molecular response. The identification of these genes makes it possible to better understand the molecular response, identifying biomarker genes and indirect response pathways that can help with genetic improvement studies, animal welfare, separating more thermotolerant varieties and mitigating the effects of heat stress. The aim of this scientometric review was to characterize the state of the art of scientific research into gene expression in ruminants under heat stress, to define the most studied species, biology systems and genes, as well as the related biological pathways and processes. The articles for the dataset were compiled in the Web of Science database, refined individually and analyzed using the CiteSpace, RStudio, Excel and GraphPad Prism programs and the KEGG (Kyoto Encyclopedia of Genes and Genomes) database. The publications formed a data set containing 271 articles and an H-index of 37. The number of publications increased from 2011. The countries with the highest frequency of publications are India, the United States, China and Brazil, the ruminant species are cattle, buffaloes, sheep and goats, all zootechnical interest, and biology systems was reproduction, blood and lactation, due to the economic importance of the quality and quantity of production, to the ease of collecting and possibility of studies in vitro. Cattle have been extensively studied in comparison to other ruminants. The HSP70 gene has been the most studied, followed by the HSP family, HSF, BAX, TLR and BCL-2, these genes can be molecular markers of heat stress. The main pathways and biological processes of genes were in cattle the cancer pathway; in goats the Mixed, incl. myd88-dependent toll-like receptor signaling pathway, and lipopolys; in sheep the oxidoreductase; and in buffalo it was the BCL-2 family. The molecular responses are still recent and have not been established.
Collapse
Affiliation(s)
| | - Julia Morgana Vieira Dada
- Graduate Program in Animal Science (PPZ) - Unioeste/Universidade Tecnológica Federal Do Paraná, Dois Vizinhos, Paraná, Brazil.
| | - Vitória Alves Pereira
- Graduate Program in Animal Science (PPZ) - Unioeste/Universidade Tecnológica Federal Do Paraná, Dois Vizinhos, Paraná, Brazil.
| | - Ali Zandi-Karimi
- Graduate Program in Animal Science (PPZ) - Unioeste/Universidade Tecnológica Federal Do Paraná, Dois Vizinhos, Paraná, Brazil.
| | - Nédia de Castilhos Ghisi
- Graduate Program in Biotechnology (PPGBIOTEC), Universidade Tecnológica Federal Do Paraná, Campus Dois Vizinhos (UTFPR-DV), Brazil.
| | | |
Collapse
|
2
|
Jiao Y, Zhu Y, Guo J, Jiang X, Liu X, Chen Y, Cong P, He Z. FecB B mutation enhances follicle stimulating hormone sensitivity of granulosa cells by up-regulating the SMAD1/5-USF1-FSHR signaling pathway. Int J Biol Macromol 2024; 280:135697. [PMID: 39288861 DOI: 10.1016/j.ijbiomac.2024.135697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
The FecBB mutation, a single-point mutation (c.A746G; p.Q249R) in bone morphogenetic protein receptor type 1 B (BMPR1B), is associated with increased ovulation quotas and litter size in sheep. However, the regulatory mechanism of the FecBB mutation in increased fecundity remains to be elucidated. Therefore, creating an immortal cell model harboring the FecBB mutation would elucidate the regulatory mechanism of this mutation. Here, we report the creation of a human granulosa cell, COV434, model containing a homozygous FecBB mutation through homology-directed repair (HDR) induced by clustered, regularly-interspaced, short palindromic repeats-CRISPR-associated protein 9 along with a single-stranded oligodeoxynucleotide (ssODN) template. We found that the FecBB mutation enhanced the basal SMAD1/5 signaling activity in COV434 cells, leading to increased expression of FSHR, probably through increased formation of the SMAD1/5-SMAD4 complex to bind to the SBE element, which in turn promotes the binding of USF1 to the regulatory element E-box in the promoter of FSHR. Furthermore, the FecBB mutation substantially enhanced estradiol (E2) synthesis in granulosa cells under follicle stimulating hormone (FSH) stimulation, indicating an enhanced sensitivity to FSH, which may promote the growth of more small follicles into mature follicles, leading to increased fecundity. Our study provides novel insights into the possible regulatory mechanisms of FecBB mutations in increased fecundity.
Collapse
Affiliation(s)
- Yafei Jiao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Yizhou Zhu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Jinming Guo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Xintong Jiang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Peiqing Cong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
3
|
Arimura S, Wong MKS, Inoue R, Kawano M, Shimoyama K, Fujimori C, Tokunaga K, Takagi W, Hyodo S. Functional characterization of follicle-stimulating hormone and luteinizing hormone receptors in cloudy catshark, Scyliorhinus torazame. Gen Comp Endocrinol 2024; 354:114542. [PMID: 38685391 DOI: 10.1016/j.ygcen.2024.114542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/08/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
The follicle-stimulating hormone receptor (FSHR) and luteinizing hormone receptor (LHR) in cloudy catshark were cloned, and recombinant FSHR and LHR were expressed for characterization. Ventral lobe extract (VLE) from the pituitary contains homologous FSH and LH, and it stimulated the cAMP signaling of FSHR and LHR dose-dependently. Two transcript variants of LHR (LHR-L with exon 10 and LHR-S without) were identified, and LHR-S was the dominant form with higher basal cAMP activity without VLE stimulation. Among various developmental stages of follicles, FSHR expression was mainly associated with the pre-vitellogenic and early white follicles. When follicles were recruited into vitellogenesis, the expression of FSHR decreased while of LHR was upregulated reciprocally, suggesting that LHR may also be responsible for the control of vitellogenesis in chondrichthyans. The expression of LHR-L was upregulated among maturing follicles before ovulation, indicating LHR-L could have a specific role in receiving the LH surge signal for final maturation. Plasma LH-like activity was transiently increased prior to the progesterone (P4)-surge and testosterone-drop at the beginning of P4-phase, supporting a pituitary control of follicle-maturation via LH signaling in chondrichthyans. The expression of follicular LHR was downregulated during the P4-phase when LH-like activity was high, indicating that the LH-dependent downregulation of LHR is conserved in chondrichthyans as it is in other vertebrate lineages. (213 words).
Collapse
Affiliation(s)
- Shogo Arimura
- Laboratory of Physiology, Department of Marine Biosciences, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan.
| | - Marty Kwok Shing Wong
- Laboratory of Physiology, Department of Marine Biosciences, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan; Center for Earth Surface System Dynamics, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan.
| | - Ryotaro Inoue
- Laboratory of Physiology, Department of Marine Biosciences, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan.
| | - Mai Kawano
- Laboratory of Physiology, Department of Marine Biosciences, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan.
| | - Koya Shimoyama
- Laboratory of Physiology, Department of Marine Biosciences, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan.
| | - Chika Fujimori
- Laboratory of Physiology, Department of Marine Biosciences, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan; Department of Biological Sciences, Faculty of Science, Hokkaido University, Kita-10 Nishi-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan.
| | - Kotaro Tokunaga
- Ibaraki Prefectural Oarai Aquarium, Oarai, Ibaraki 311-1301, Japan.
| | - Wataru Takagi
- Laboratory of Physiology, Department of Marine Biosciences, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan.
| | - Susumu Hyodo
- Laboratory of Physiology, Department of Marine Biosciences, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan; Center for Earth Surface System Dynamics, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan.
| |
Collapse
|
4
|
Chandra Sekar PK, Veerabathiran R. Genes linked to obesity-related infertility: bridging the knowledge gap. REPRODUCTIVE AND DEVELOPMENTAL MEDICINE 2024; 8:121-129. [DOI: 10.1097/rd9.0000000000000096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
Genetic factors play a pivotal role in the complex relationship between obesity and infertility. This article delves into the genetics of obesity-related infertility, focusing on the essential genes and mechanisms in both sexes. We explored infertility factors in obese females, focusing on polycystic ovary syndrome (PCOS) and the influence of genes like insulin receptor (INSR), androgen receptor (AR), and follicle-stimulating hormone receptor (FSHR). Epigenetic changes are believed to contribute to PCOS-related infertility. The impact of adipokines and inflammation on obesity-related infertility has been discussed, with genes such as fat mass and obesity (FTO) and melanocortin-4-receptor (MC4R) playing significant roles. Genetic factors affecting sperm quality and function, including nuclear receptor subfamily 3 group C member 1 (NR3C1) and methylenetetrahydrofolate reductase (MTHFR), have been investigated in obesity-related infertility in males. Hormonal dysregulation influenced by genetic markers, such as leptin receptor (LEPR), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6), was also examined. Genetic factors play a vital role in obesity-related infertility in both sexes. Genes involved in metabolism, hormonal regulation, and inflammation contribute to the complex association between obesity and infertility. Epigenetic changes further complicate the relationship. Understanding these genetic mechanisms is essential to address obesity-related infertility and develop personalized interventions.
Collapse
Affiliation(s)
- Praveen Kumar Chandra Sekar
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu 603103, India
| | - Ramakrishnan Veerabathiran
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu 603103, India
| |
Collapse
|
5
|
Sharma P, Kumar Singh A, Senapati S, Singh Kapoor H, Devi Goyal L, Kaur B, Kamra P, Khetarpal P. Genetic Variants of Steroidogenesis and Gonadotropin Pathways and Polycystic Ovary Syndrome Susceptibility: A Systematic Review and Meta-analysis. Metab Syndr Relat Disord 2024; 22:15-26. [PMID: 37878274 DOI: 10.1089/met.2023.0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023] Open
Abstract
Genetic variants are predisposing factors to polycystic ovary syndrome (PCOS), a multifactorial condition that often gets triggered due to various environmental factors. The study investigates the association of the variants of genes that are involved in the steroidogenesis pathway or gonadotropin pathway with the risk of PCOS. Appropriate keywords for predetermined genes were used to search in PubMed, Google Scholar, Science Direct, and Central Cochrane Library up to January 11, 2023. PROSPERO (CRD42022275425). Inclusion criteria: (a) case-control study; (b) genotype or allelic data. Exclusion criteria were: (a) duplicate studies; (b) clinical trials, systematic reviews, meta-analysis or conference abstract, case reports; (c) other than the English language; (d) having insufficient data; e) genetic variants for which meta-analysis has been reported recently and does not have a scope of the update. Various genetic models were applied as per data availability. Overall 12 variants of 7 genes were selected for the analysis. Relevant data were extracted from 47 studies which include 10,584 PCOS subjects and 16,150 healthy controls. Meta-analysis indicates a significant association between TOX3 rs4784165 [ORs = 1.08, 95% CI (1.00-1.16)], HMGA2 rs2272046 [ORs = 2.73, 95% CI (1.97-3.78)], YAP1 rs1894116 [OR = 1.22, 95% CI (1.13-1.33)] and increased risk of PCOS. Whereas FSHR rs2268361 [ORs = 0.84, 95% CI (0.78-0.89)] is associated with decreased PCOS risk. When sensitivity analysis was carried out, the association became significant for CYP19 rs700519 and FSHR rs6165 under an additive model. In addition, C9Orf3 rs3802457 became significantly associated with decreased PCOS risk with the removal of one study. Insignificant association was observed for CYP19A (rs2470152), FSHR (rs2349415, rs6166), C9Orf3 (rs4385527), GnRH1 (rs6185) and risk of PCOS. Our findings suggest association of CYP19A (rs700519), TOX3 (rs4784165), HMGA2 (rs2272046), FSHR (rs6165, rs2268361), C9orf3 (rs3802457), and YAP1 (rs1894116) with risk for PCOS.
Collapse
Affiliation(s)
- Priya Sharma
- Laboratory for Reproductive and Developmental Disorders, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Abhilash Kumar Singh
- Department of Human Genetics and Molecular Medicine, School of Health Science, Central University of Punjab, Bathinda, India
| | - Sabyasachi Senapati
- Department of Human Genetics and Molecular Medicine, School of Health Science, Central University of Punjab, Bathinda, India
| | | | - Lajya Devi Goyal
- Department of Obstetrics and Gynaecology, AIIMS, Bathinda, India
| | - Balpreet Kaur
- Department of Obstetrics and Gynaecology, AIIMS, Bathinda, India
| | - Pooja Kamra
- Department of Obstetrics and Gynaecology, Kamra Hospital, Malout, India
| | - Preeti Khetarpal
- Laboratory for Reproductive and Developmental Disorders, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| |
Collapse
|
6
|
De los Reyes M, Dettleff P, Palomino J, Peralta OA, Vergara A. Dynamic Expression of Follicle-Stimulating Hormone and Estrogen mRNA Receptors Associated with microRNAs 34a and -let-7c in Canine Follicles during the Estrous Cycle. Animals (Basel) 2024; 14:214. [PMID: 38254383 PMCID: PMC10812696 DOI: 10.3390/ani14020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
The genes encoding for estrogen receptor (ESR2) and follicle-stimulating hormone receptor (FSHR) play crucial roles in ovarian follicular development. This study aimed to determine the expression levels of miRNAs predicted against FSHR and ESR2 mRNAs in follicular cells related to their target genes during the estrous cycle in canines. Antral follicles were dissected from 72 ovaries following ovariohysterectomies. MiRNAs regulating FSHR and ESR2 genes were selected from miRNA databases, and mature miRNA and mRNA expression profiling was performed using real-time polymerase chain reaction (PCR). The best miRNA for each target gene was selected considering the quantitative PCR (qPCR) performance and target prediction probability, selecting only miRNAs with a binding p-value of 1.0, and choosing cfa-miR-34a and cfa-let-7c for FSHR and ESR2, respectively. The expression levels comparing the different phases of the estrous cycle were evaluated using ANOVA. Pearson correlations between the expression pattern of each miRNA and their target genes were performed. Each miRNA and its target genes were expressed in the granulosa cells in all estrous phases. FSHR remained low in anestrus and proestrus, increased (p < 0.05) to the highest level in estrus, and decreased (p < 0.05) in diestrus. ESR2 showed the same trend as FSHR, with the highest (p < 0.05) expression in estrus and the lowest (p < 0.05) in anestrus and proestrus. A tendency for an inverse relationship was observed between the expression of miR-34a and FSHR only in the anestrus phase, while an inverse correlation (r = -0.8) was found between miRNA-7c and ESR2 (p < 0.01). The expression profile of miR-34a and miR-let-7c and their predicted target genes of dog ovarian follicles throughout the estrous cycle observed in this study suggest a role in the transcriptional regulation of FSHR and ESR2, which is the first evidence of the involvement of these miRNAs in the canine follicular function.
Collapse
Affiliation(s)
- Monica De los Reyes
- Laboratory of Animal Reproduction, Faculty of Veterinary Sciences, University of Chile, Santiago 8820000, Chile;
| | - Phillip Dettleff
- School of Veterinary Medicine, Faculty of Agronomy and Natural Systems, Faculty of Biological Sciences and Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8320165, Chile; (P.D.); (O.A.P.)
| | - Jaime Palomino
- School of Veterinary Medicine, Faculty of Medical Sciences, Bernardo O’Higgins University, Santiago 8370993, Chile;
| | - Oscar A. Peralta
- School of Veterinary Medicine, Faculty of Agronomy and Natural Systems, Faculty of Biological Sciences and Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8320165, Chile; (P.D.); (O.A.P.)
| | - Ana Vergara
- Laboratory of Animal Reproduction, Faculty of Veterinary Sciences, University of Chile, Santiago 8820000, Chile;
| |
Collapse
|
7
|
Ajibare AJ, Akintoye OO, Folawiyo MA, Babalola KT, Omotuyi OI, Oladun BT, Aransi-ola KT, Odetayo AF, Olayaki LA. Therapeutic potential of virgin coconut oil in mitigating sodium benzoate- model of male infertility: Role of Nrf2/Hmox-1/NF-kB signaling pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:543-551. [PMID: 38629097 PMCID: PMC11017850 DOI: 10.22038/ijbms.2024.71288.15484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/17/2023] [Indexed: 04/19/2024]
Abstract
Objectives Male infertility is a major public health issue due to increased prevalence, so there is an urgent need for a therapeutic solution. The search for a natural dietary substance that could modulate redox balance and inflammation and protect testicular function is in demand. Virgin Coconut Oil (VCO) has found use in the treatment of diabetes, and cancer owing to the presence of polyphenols. However, there is a dearth of information on its effect on testicular toxicity. The present study investigated VCO as a possible treatment for testicular toxicity in the Sodium Benzoate (SB) model of male infertility by evaluating the oxidative and inflammatory status, circulating hormonal levels, and key sperm indices. Materials and Methods Twenty adult male rats were randomly assigned to four groups of 5 rats each and were treated with normal saline, sodium benzoate, sodium benzoate+5% VCO, and sodium benzoate+15% VCO for 30 days respectively. Biochemical analysis of reproductive hormones was assessed. Sperm parameters assessed include sperm function tests and sperm kinematics. One-way analysis of variance (ANOVA) followed by post hoc Tukey tests was performed. Results 5% VCO reverts the deranged serum reproductive hormones caused by sodium benzoate. 5% VCO was more potent as an antioxidant and anti-inflammatory treatment than 15% VCO. However, both doses prevented SB's effect on the sperm function test and kinematics. Conclusion VCO-supplemented diet can ameliorate SB-induced testicular toxicity by inhibiting its mechanisms of toxicity that are related to oxidative stress, apoptosis, and inflammation.
Collapse
Affiliation(s)
- Ayodeji Johnson Ajibare
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine and Health Sciences, Lead City University Ibadan, Oyo State, Nigeria
| | | | | | - Kabirat Temitope Babalola
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine and Health Sciences, Lead City University Ibadan, Oyo State, Nigeria
| | - Olaposi Idowu Omotuyi
- Department of Pharmacology& Toxicology, College of Pharmacy, Afe Babalola University, Ado-Ekiti, Ekiti-State, Nigeria
| | - Busayo Timothy Oladun
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine and Health Sciences, Lead City University Ibadan, Oyo State, Nigeria
| | - Kafilat Temidayo Aransi-ola
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine and Health Sciences, Lead City University Ibadan, Oyo State, Nigeria
| | | | - Luqman Aribidesi Olayaki
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin. Nigeria
| |
Collapse
|
8
|
Hayes E, Winston N, Stocco C. Molecular crosstalk between insulin-like growth factors and follicle-stimulating hormone in the regulation of granulosa cell function. Reprod Med Biol 2024; 23:e12575. [PMID: 38571513 PMCID: PMC10988955 DOI: 10.1002/rmb2.12575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024] Open
Abstract
Background The last phase of folliculogenesis is driven by follicle-stimulating hormone (FSH) and locally produced insulin-like growth factors (IGFs), both essential for forming preovulatory follicles. Methods This review discusses the molecular crosstalk of the FSH and IGF signaling pathways in regulating follicular granulosa cells (GCs) during the antral-to-preovulatory phase. Main findings IGFs were considered co-gonadotropins since they amplify FSH actions in GCs. However, this view is not compatible with data showing that FSH requires IGFs to stimulate GCs, that FSH renders GCs sensitive to IGFs, and that FSH signaling interacts with factors downstream of AKT to stimulate GCs. New evidence suggests that FSH and IGF signaling pathways intersect at several levels to regulate gene expression and GC function. Conclusion FSH and locally produced IGFs form a positive feedback loop essential for preovulatory follicle formation in all species. Understanding the mechanisms by which FSH and IGFs interact to control GC function will help design new interventions to optimize follicle maturation, perfect treatment of ovulatory defects, improve in vitro fertilization, and develop new contraceptive approaches.
Collapse
Affiliation(s)
- Emily Hayes
- Department of Physiology and BiophysicsUniversity of Illinois Chicago College of MedicineChicagoIllinoisUSA
| | - Nicola Winston
- Department of Obstetrics and GynecologyUniversity of Illinois Chicago College of MedicineChicagoIllinoisUSA
| | - Carlos Stocco
- Department of Physiology and BiophysicsUniversity of Illinois Chicago College of MedicineChicagoIllinoisUSA
- Department of Obstetrics and GynecologyUniversity of Illinois Chicago College of MedicineChicagoIllinoisUSA
| |
Collapse
|
9
|
Qian L, Zhang Y, Jiang J, Li L, Miao S, Huang X, Che Z, Chen G, Liu S. Assessment of reproductive toxicity in adult zebrafish (Danio rerio) following sublethal exposure to penthiopyrad. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115721. [PMID: 38000300 DOI: 10.1016/j.ecoenv.2023.115721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023]
Abstract
Penthiopyrad (PO), a succinate dehydrogenase inhibitor (SDHI) fungicide, poses a potential risk to fish. Here, we investigated the adverse effects of PO on endocrine regulation and reproductive capacity in zebrafish during a 21-d sublethal exposure to PO concentrations ranging from 0.02 to 2.00 mg/L. Following exposure to PO (0.20 and 2.00 mg/L), female-specific effects including follicle necrosis, structural disturbance of the yolk follicle, fusion of cortical follicles appeared in ovarian tissue of adult females, which led to a significant reduction in fertility. Correspondingly, 0.20 and 2.00 mg/L PO led to a marked reduction in the GSI values of females, and 2.00 mg/L PO caused a 31% decline in the proportion of perinucleolar oocytes (PCO) in oocytes. In addition, testosterone (T) level was obviously suppressed and 17β-estradiol (E2) level was increased in females after exposure to 2.00 mg/L PO. Male zebrafish treated with 0.20 and 2.00 mg/L of PO exhibited significant interstitial enlargement, edema in the testes, and reduced diameter of seminiferous tubules, along with a thinner basement membrane. The effects of PO on males were associated with significant increase in E2 level, suggesting that PO has an estrogenic effect on male fish. Greater E2 levels in serum were further supported by increased transcription levels of genes linked to the hypothalamic-pituitary-gonad-liver (HPGL) axis. Notably, transcription levels of cyp19a, er2b, era, and cyp19b was remarkably increased, exhibiting a clear link with variations in E2 levels. Overall, the present study demonstrates that PO induces reproductive impairment in zebrafish by promoting steroidogenesis.
Collapse
Affiliation(s)
- Le Qian
- College of Horticulture and plant protection, Henan University of Science and Technology, Luoyang, Henan Province, China.
| | - Yikai Zhang
- College of Horticulture and plant protection, Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Jia Jiang
- College of Horticulture and plant protection, Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Luyi Li
- College of Horticulture and plant protection, Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Shufei Miao
- College of Horticulture and plant protection, Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Xiaobo Huang
- College of Horticulture and plant protection, Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Zhiping Che
- College of Horticulture and plant protection, Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Genqiang Chen
- College of Horticulture and plant protection, Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Shengming Liu
- College of Horticulture and plant protection, Henan University of Science and Technology, Luoyang, Henan Province, China.
| |
Collapse
|
10
|
Torkzadeh T, Asadi Z, Jafari Atrabi M, Eivazkhani F, Khodadi M, Hajiaghalou S, Akbarinejad V, Fathi R. Optimisation of hormonal treatment to improve follicular development in one-day-old mice ovaries cultured under in vitro condition. Reprod Fertil Dev 2023; 35:733-749. [PMID: 37995332 DOI: 10.1071/rd23027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023] Open
Abstract
CONTEXT Base medium containing knock-out serum replacement (KSR) has been found to support formation and maintenance of follicles in one-day-old mice ovaries, but has not been shown to properly support activation and growth of primordial follicles. AIMS The present study was conducted to tailor the hormonal content of base medium containing KSR to enhance development of primordial follicles in neonatal ovaries. METHODS One-day-old mice ovaries were initially cultured with base medium for four days, and then, different hormonal treatments were added to the culture media and the culture was proceeded for four additional days until day eight. Ovaries were collected for histological and molecular assessments on days four and eight. KEY RESULTS In experiment I, the main and interactive effects of FSH and testosterone were investigated and FSH promoted activation of primordial follicles and development of primary and preantral follicles, and upregulated genes of phosphoinositide 3-kinase (Pi3k ), KIT ligand (Kitl ), growth differentiation factor 9 (Gdf9 ) and follicle stimulating hormone receptor (Fshr ) (P Bmp15 ), Connexin-43 (Cx43 ) and luteinising hormone and choriogonadotropin receptor (Lhcgr ) (P P Lhcgr (P P >0.05). CONCLUSIONS Supplementation of culture medium containing KSR with gonadotropins, particularly hMG, could improve follicular growth and expression of factors regulating follicular development. IMPLICATIONS This study was a step forward in formulating an optimal medium for development of follicles in cultured one-day-old mice ovaries.
Collapse
Affiliation(s)
- Tahoura Torkzadeh
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Zahra Asadi
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran; and Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73014, USA
| | - Mohammad Jafari Atrabi
- Institute of Pharmacology and Toxicology, University Medical Center, Georg August University, Göttingen, Germany; and Platform Degenerative Diseases, German Primate Center, Leibniz Institute for Primate Research (DPZ), Göttingen, Germany
| | - Farideh Eivazkhani
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Maryam Khodadi
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Samira Hajiaghalou
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Vahid Akbarinejad
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
11
|
Shah MZUH, Shrivastva VK, Mir MA, Sheikh WM, Ganie MA, Rather GA, Shafi M, Bashir SM, Ansari MA, Al-Jafary MA, Al-Qhtani MH, Homeida AM, Al-Suhaimi EA. Effect of quercetin on steroidogenesis and folliculogenesis in ovary of mice with experimentally-induced polycystic ovarian syndrome. Front Endocrinol (Lausanne) 2023; 14:1153289. [PMID: 37670876 PMCID: PMC10476101 DOI: 10.3389/fendo.2023.1153289] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/07/2023] [Indexed: 09/07/2023] Open
Abstract
INTRODUCTION Polycystic Ovary syndrome (PCOS) affects the health of many women around theworld. Apart from fundamental metabolic problems connected to PCOS, focus of our study is on the role of quercetin on genes relevant to steroidogenesis and folliculogenesis. METHODS Eighteen mature parkes strain mice (4-5 weeks old) weighing18-21 g were randomly divided into three groups of six each as follows: Group I serves as the control and was given water and a regular chow diet ad lib for 66 days; group II was given oral gavage administration of letrozole (LETZ) (6 mg/kgbw) for 21 days to induce PCOS and was left untreated for 45 days; For three weeks, Group III received oral gavage dose of LETZ (6 mg/kg), after which it received Quercetin (QUER) (125 mg/kg bw orally daily) for 45 days. RESULTS In our study we observed that mice with PCOS had irregular estrous cycle with increased LH/FSH ratio, decreased estrogen level and decline in expression of Kitl, Bmp1, Cyp11a1, Cyp19a1, Ar, lhr, Fshr and Esr1 in ovary. Moreover, we observed increase in the expression of CYP17a1, as well as increase in cholesterol, triglycerides, testosterone, vascular endothelial growth factor VEGF and insulin levels. All these changes were reversed after the administration of quercetin in PCOS mice. DISCUSSION Quercetin treatment reversed the molecular, functional and morphological abnormalities brought on due to letrozole in pathological and physiological setting, particularly the issues of reproduction connected to PCOS. Quercetin doesn't act locally only but it acts systematically as it works on Pituitary (LH/FSH)- Ovary (gonad hormones) axis. the Side effects of Quercetin have to be targeted in future researches. Quercetin may act as a promising candidate for medical management of human PCOS.
Collapse
Affiliation(s)
- Mohd Zahoor Ul Haq Shah
- Laboratory of Endocrinology, Department of Bioscience Barkatullah University Bhopal, Madhya Pradesh, India
| | - Vinoy Kumar Shrivastva
- Laboratory of Endocrinology, Department of Bioscience Barkatullah University Bhopal, Madhya Pradesh, India
| | - Manzoor Ahmad Mir
- Department of Bioresources, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Wajid Mohammad Sheikh
- Biochemistry & Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir, India
| | - Mohd Ashraf Ganie
- Department of Endocrinology and Metabolism, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, Jammu and Kashmir, India
| | - Gulzar Ahmed Rather
- Department of Biomedical Engineering Sathyabama Institute of Science & Technology, Chennai, Tamil Nadu, India
| | - Majid Shafi
- Division of Veterinary Pathology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir, India
| | - Showkeen Muzamil Bashir
- Biochemistry & Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir, India
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Meneerah A. Al-Jafary
- Biology Department, College of Science and Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammad H. Al-Qhtani
- Department of Paediatrics, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Abdalelgadir Musa Homeida
- Department of Environmental Health Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ebtesam A. Al-Suhaimi
- Biology Department, College of Science and Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
12
|
Ul Haq Shah MZ, Shrivastava VK, Olaniyi KS. Role of diacerein on steroidogenesis and folliculogenesis related genes in ovary of letrozole-induced PCOS mice. Chem Biol Interact 2023; 377:110468. [PMID: 37030623 DOI: 10.1016/j.cbi.2023.110468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/12/2023] [Accepted: 03/28/2023] [Indexed: 04/10/2023]
Abstract
Polycystic ovary syndrome (PCOS), an intricate and multifaceted metabolic-endocrine disorder that typically affects 6-20% of women of reproductive age and accounts for 70-80% of all occurrences of infertility globally. In this study we focussed on the effect of diacerein (DIC) on steroidogenesis and follicle development in addition to the basic metabolic and endocrine problems which are associated with PCOS. Eighteen mature female parkes strain mice were separated into three groups at random with 6 animals in a group as follows: Group I, received water and normal diet for 66 days; group II received letrozole (LETZ) (6 mg/kg bw) for the induction of PCOS; Group III received LETZ (6 mg/kg) for 3 weeks followed by the administration of DIC (35mg/kg) for 45 days. In our study we observed that mice with PCOS had irregular estrous cycle with increased LH/FSH, estrogen level and decline in expression of Kitl, Bmp, Cyp11a1, CYP19a1, Ar, lhr, Fshr and Esr1 as well as decreased SOD and CAT activity in ovary. Moreover, we observed increase in the expression of CYP17a1, as well as increase in serum cholesterol, triglycerides, testosterone, LH, VEGF and insulin levels. All these changes were reversed after the administration of DIC in PCOS mice. Diacerin administration reversed abnormalities in mice with PCOS by modulating the regulation of genes which are related to steroidogenesis and folliculogenesis.
Collapse
Affiliation(s)
- Mohd Zahoor Ul Haq Shah
- Laboratory of Endocrinology, Department of Bioscience, Barkatullah University Bhopal, Madhya predesh, 462026, India
| | - Vinoy Kumar Shrivastava
- Laboratory of Endocrinology, Department of Bioscience, Barkatullah University Bhopal, Madhya predesh, 462026, India
| | - Kehinde S Olaniyi
- Laboratory of Endocrinology, Department of Bioscience, Barkatullah University Bhopal, Madhya predesh, 462026, India; Cardio/Repro-metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria.
| |
Collapse
|
13
|
Chlorogenic Acid Restores Ovarian Functions in Mice with Letrozole-Induced Polycystic Ovarian Syndrome Via Modulation of Adiponectin Receptor. Biomedicines 2023; 11:biomedicines11030900. [PMID: 36979879 PMCID: PMC10045653 DOI: 10.3390/biomedicines11030900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
Around the world, polycystic ovary syndrome (PCOS) is a complex endocrine-metabolic condition that typically affects 6–20% of females. Our study’s major goal was to examine how chlorogenic acid (CGA) affected mice with endocrine and metabolic problems brought on by letrozole-induced PCOS. Group I served as the control for 81 days; Group II was given Letrozole (LETZ) orally at a dose of 6 mg/kg bw for 21 days to induce PCOS; Group III was given LETZ (6 mg/kg) for 21 days, followed by treatment with CGA (50 mg/kg bw daily) for 60 days. The study indicated that LETZ-treated mice displayed symptoms of PCOS, such as dyslipidemia, hyperinsulinemia, elevated testosterone, increases in inflammatory markers and malonaldehyde, and a decline in antioxidants (Ar, lhr, fshr, and esr2) in the ovaries. These alterations were affected when the mice were given CGA and were associated with reduced levels of adiponectin. Adiponectin showed interactions with hub genes, namely MLX interacting protein like (MLXIPL), peroxisome proliferator-activated receptor gamma Coactivator 1- alpha (PPARGC1), peroxisome proliferator-activated receptor gamma (Pparg), and adiponectin receptor 1 (Adipor1). Lastly, the gene ontology of adiponectin revealed that adiponectin was highly involved in biological processes. The findings from our research suggest that adiponectin has direct impacts on metabolic and endocrine facets of PCOS.
Collapse
|
14
|
Rotimi OA, De Campos OC, Adelani IB, Olawole TD, Rotimi SO. Early-life AFB1 exposure: DNA methylation and hormone alterations. VITAMINS AND HORMONES 2023; 122:237-252. [PMID: 36863796 DOI: 10.1016/bs.vh.2022.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Aflatoxins are secondary metabolites of mold that contaminate food and feedstuff. They are found in various food including grains, nuts, milk and eggs. Aflatoxin B1 (AFB1) is the most poisonous and commonly found of the various types of aflatoxins. Exposures to AFB1 start early in life viz. in utero, during breastfeeding, and during weaning through the waning foods which are mainly grain based. Several studies have shown that early-life exposures to various contaminants may have various biological effects. In this chapter, we reviewed the effects of early-life AFB1 exposures on changes in hormone and DNA methylation. In utero AFB1 exposure results in alterations in steroid and growth hormones. Specifically, the exposure results in a reduction in testosterone levels later in life. The exposure also affects the methylation of various genes that are significant in growth, immune, inflammation, and signaling pathways.
Collapse
|
15
|
Liu W, Chen Z, Li R, Zheng M, Pang X, Wen A, Yang B, Wang S. High and low dose of luzindole or 4-phenyl-2-propionamidotetralin (4-P-PDOT) reverse bovine granulosa cell response to melatonin. PeerJ 2023; 11:e14612. [PMID: 36684672 PMCID: PMC9851050 DOI: 10.7717/peerj.14612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/30/2022] [Indexed: 01/18/2023] Open
Abstract
Background Communication between oocytes and granulosa cells ultimately dictate follicle development or atresia. Melatonin is also involved in follicle development. This study aimed to investigate the effects of melatonin and its receptor antagonists on hormone secretion, as well as gene expression related to hormone synthesis, TGF-β superfamily, and follicle development in bovine granulosa cells, and assess the effects of melatonin in the presence of 4-P-PDOT and luzindole. Methods Bovine ovaries were collected from a local abattoir and follicular fluid (follicle diameter 5-8 mm) was collected for granulosa cell isolation and culture. Granulosa cells and culture medium were collected 48 h after treatment with melatonin at high dose concentrations (10-5 M) and low dose concentrations (10-9 M) in the absence/presence of 4-P-PDOT and luzindole (10-5 M or 10-9 M). Furthermore, the expression level of genes related to hormonal synthesis (CYP11A1, CYP19A1, StAR, and RUNX2), TGF-β superfamily (BMP6, INHA, INHBA, INHBB, and TGFBR3), and development (EGFR, DNMT1A, and FSHR) were detected in each experimental group by real-time quantitative PCR. In addition, the level of hormones in culture medium were detected using ELISA. Results Both 10-5 M and 10-9 M melatonin doses promoted the secretion of inhibin A and progesterone without affecting the production of inhibin B and estradiol. In addition, both promoted the gene expression of INHA, StAR, RUNX2, TGFBR3, EGFR, and DNMT1A, and inhibited the expression of BMP6, INHBB, CYP11A1, CYP19A1, and FSHR. When combined with different doses of 4-P-PDOT and luzindole, they exhibited different effects on the secretion of inhibin B, estradiol, inhibin A, and progesterone, and the expression of CYP19A1, RUNX2, BMP6, INHBB, EGFR, and DNMT1A induced by melatonin. Conclusion High and low dose melatonin receptor antagonists exhibited different effects in regulating hormone secretion and the expression of various genes in response to melatonin. Therefore, concentration effects must be considered when using luzindole or 4-P-PDOT.
Collapse
Affiliation(s)
- Wenju Liu
- College of Life and Health Science, Anhui Science and Technology University, Fengyang, China,Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Zhihao Chen
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - Rui Li
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - Menghao Zheng
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - Xunsheng Pang
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - Aiyou Wen
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - Bing Yang
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - Shujuan Wang
- College of Animal Science, Anhui Science and Technology University, Fengyang, China,Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Fengyang, China
| |
Collapse
|
16
|
Chhabria S, Takle V, Sharma N, Kharkar P, Pansare K, Tripathi A, Tripathi A, Bhartiya D. Extremely Active Nano-formulation of Resveratrol (XAR™) attenuates and reverses chemotherapy-induced damage in mice ovaries and testes. J Ovarian Res 2022; 15:115. [PMID: 36271409 PMCID: PMC9585716 DOI: 10.1186/s13048-022-01043-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/23/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Fertility preservation and restoration in cancer patients/survivors is the need of present times when increased numbers of patients get cured of cancer but face infertility as a serious side effect. Resveratrol has beneficial effects on chemoablated ovaries and testes in mice but has failed to enter the clinics because of extremely poor bioavailability. The present study was undertaken to evaluate the protective and curative effects of Extremely active Resveratrol (XAR™)- a nano-formulation of resveratrol with significantly improved bioavailability- on mouse ovary and testis after chemotherapy. Effects of XAR™ and FSH were compared on stimulation of follicle growth in adult mice ovaries. XAR™ (25 mg/kg) was administered for two days prior to chemotherapy to study the protective effects on the mouse gonads. XAR™ was also administered for 14 days post chemoablation to study the regenerative effects. Besides effect on numbers of primordial and growing follicles and spermatogenesis, the effect of XAR™ was also evaluated on the transcripts specific for ovarian/testicular stem/progenitor/germ cells, their proliferation, differentiation, meiosis, and the antioxidant indices. RESULTS Similar to FSH, XAR™ increased the numbers of primordial follicles (PF) as well as growing follicles. It protected the gonads from the adverse effects of chemotherapy and showed the ability to regenerate non-functional, chemoablated gonads. Besides stimulating follicle growth in adult ovaries similar to FSH, XAR™ also protected the testes from the adverse effects of chemotherapy and improved spermatogenesis. This was accompanied by improved anti-oxidant indices. CONCLUSIONS The results of the present study potentiate the use of XAR™ in pilot clinical studies to protect gonadal function during oncotherapy and also regenerate non-functional gonads in cancer survivors by improving antioxidant indices and stem cell-based tissue regeneration.
Collapse
Affiliation(s)
- Sagar Chhabria
- Epigeneres Biotech Pvt. Ltd., Sun Mill Compound, Ikon House, B-Block, Senapati Bapat Marg, Lower Parel, Mumbai, Maharashtra, 400013, India
| | - Vaishnavi Takle
- Epigeneres Biotech Pvt. Ltd., Sun Mill Compound, Ikon House, B-Block, Senapati Bapat Marg, Lower Parel, Mumbai, Maharashtra, 400013, India
| | - Nripen Sharma
- Epigeneres Biotech Pvt. Ltd., Sun Mill Compound, Ikon House, B-Block, Senapati Bapat Marg, Lower Parel, Mumbai, Maharashtra, 400013, India
| | - Prashant Kharkar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400 019, India
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Vile Parle (West), Mumbai, 400 056, India
| | - Kshama Pansare
- Epigeneres Biotech Pvt. Ltd., Sun Mill Compound, Ikon House, B-Block, Senapati Bapat Marg, Lower Parel, Mumbai, Maharashtra, 400013, India
| | - Anish Tripathi
- Epigeneres Biotech Pvt. Ltd., Sun Mill Compound, Ikon House, B-Block, Senapati Bapat Marg, Lower Parel, Mumbai, Maharashtra, 400013, India
| | - Ashish Tripathi
- Epigeneres Biotech Pvt. Ltd., Sun Mill Compound, Ikon House, B-Block, Senapati Bapat Marg, Lower Parel, Mumbai, Maharashtra, 400013, India
| | - Deepa Bhartiya
- Epigeneres Biotech Pvt. Ltd., Sun Mill Compound, Ikon House, B-Block, Senapati Bapat Marg, Lower Parel, Mumbai, Maharashtra, 400013, India.
| |
Collapse
|
17
|
Bello SF, Adeola AC, Nie Q. The study of candidate genes in the improvement of egg production in ducks – a review. Poult Sci 2022; 101:101850. [PMID: 35544958 PMCID: PMC9108513 DOI: 10.1016/j.psj.2022.101850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 11/01/2022] Open
Abstract
Duck is the second-largest poultry species aside from chicken. The rate of egg production is a major determinant of the economic income of poultry farmers. Among the reproductive organs, the ovary is a major part of the female reproductive system which is highly important for egg production. Based on the importance of this organ, several studies have been carried out to identify candidate genes at the transcriptome level, and also the expression level of these genes at different tissues or egg-laying conditions, and single nucleotide polymorphism (SNPs) of genes associated with egg production in duck. In this review, expression profile and association study analyses at SNPs level of different candidate genes with egg production traits of duck were highlighted. Furthermore, different studies on transcriptome analysis, Quantitative Trait Loci (QTL) mapping, and Genome Wide Association Study (GWAS) approach used to identify potential candidate genes for egg production in ducks were reported. This review would widen our knowledge on molecular markers that are associated or have a positive correlation to improving egg production in ducks, for the increasing world populace.
Collapse
|
18
|
Dolatkhah MA, Khezri S, Shokoohi M, Alihemmati A. The effect of Fumaria parviflora on the expression of sexual hormones along with their receptors in testicles of adult rats induced by varicocele. Andrologia 2022; 54:e14512. [PMID: 35753722 DOI: 10.1111/and.14512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/26/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022] Open
Abstract
Varicocele (VCL) is a pathological dilation of the venous pampiniform plexus of the spermatic cord and is also classified as male factor infertility. The current experiment aimed to examine the protective effect of Fumaria parviflora (FP), as a powerful antioxidant, against reproductive damage induced by VCL. In this experimental study, 32 male rats were randomly allocated into four groups, namely sham (simple laparotomy without additional intervention), FP (healthy rats administered 250 mg/kg FP), VCL + FP (underwent VCL and received 250 mg/kg FP), VCL (underwent VCL without receiving any treatment). The results showed that the number of Sertoli and germ cells were markedly reduced in the VCL group in comparison to the FP-treated and sham groups. The VCl + FP group had significantly higher serum levels of testosterone (T), FSH, and LH hormones than the VCL group. The quality and motility of spermatozoa were reduced in the VCL group compared with other groups (p ≤ 0.05). Moreover, our findings demonstrated that the administration of FP considerably enhanced the mRNA levels of CatSper-1 and -2, SF-1, 3β-HSD, 17β-HSD3, LHCGR, and FSHR (p ≤ 0.05). Based on the obtained results, treatment with FP is capable of preventing testicular dysfunction and elevating the concentration of hormones and some crucial genes, such as CatSper1 and 2, SF-1, 3β-HSD, 17β-HSD3, LHCGR, and FSHR that contribute to the spermatogenesis process.
Collapse
Affiliation(s)
- Mohammad Amin Dolatkhah
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Valiasr Hospital, Department of Radiotherapy, Tabriz, Iran
| | - Shiva Khezri
- Department of Biology, Faculty of Science, Urmia, Iran
| | - Majid Shokoohi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Alihemmati
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Histology and Embryology, Faculty of Medicine, Tabriz, Iran
| |
Collapse
|
19
|
Zhang W, Ren W, Han D, Zhao G, Wang H, Guo H, Zheng Y, Ji Z, Gao W, Yuan B. LncRNA-m18as1 competitively binds with miR-18a-5p to regulate follicle-stimulating hormone secretion through the Smad2/3 pathway in rat primary pituitary cells. J Zhejiang Univ Sci B 2022; 23:502-514. [PMID: 35686528 DOI: 10.1631/jzus.b2101052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Long noncoding RNAs (lncRNAs) are expressed in different species and different tissues, and perform different functions, but little is known about their involvement in the synthesis or secretion of follicle-stimulating hormone (FSH). In general, we have revealed lncRNA‒microRNA (miRNA)‒messenger RNA (mRNA) interactions that may play important roles in rat primary pituitary cells. In this study, a new lncRNA was identified for the first time. First, we analyzed the gene expression of lncRNA-m18as1 in different tissues and different stages by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and observed the localization of lncRNA-m18as1 with fluorescence in situ hybridization, which indicated that this lncRNA was distributed mainly in the cytoplasm. Next, we used RT-qPCR and enzyme-linked immunosorbent assay (ELISA) to analyze the regulation of FSH synthesis and secretion after overexpression or knockdown of lncRNA-m18as1 and found that lncRNA-m18as1 was positively correlated with FSH synthesis and secretion. In addition, mothers against decapentaplegic homolog 2 (Smad2) was highly expressed in our sequencing results. We also screened miR-18a-5p from our sequencing results as a miRNA that may bind to lncRNA-m18as1 and Smad2. We used RNA immunoprecipitation-qPCR (RIP-qPCR) and/or dual luciferase assays to confirm that lncRNA-m18as1 interacted with miR-18a-5p and miR-18a-5p interacted with Smad2. Fluorescence in situ hybridization (FISH) showed that lncRNA-m18as1 and miR-18a-5p were localized mainly in the cytoplasm. Finally, we determined the relationship among lncRNA-m18as1, miR-18a-5p, and the Smad2/3 pathway. Overall, we found that lncRNA-m18as1 acts as a molecular sponge of miR-18a-5p to regulate the synthesis and secretion of FSH through the Smad2/3 pathway.
Collapse
Affiliation(s)
- Weidi Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Wenzhi Ren
- Jilin Provincial Model Animal Engineering Research Center, Jilin University, Changchun 130062, China
| | - Dongxu Han
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Guokun Zhao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Haoqi Wang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Haixiang Guo
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Yi Zheng
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Zhonghao Ji
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Wei Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China.
| | - Bao Yuan
- Jilin Provincial Model Animal Engineering Research Center, Jilin University, Changchun 130062, China. ,
| |
Collapse
|
20
|
High steroid content in conditioned medium of granulosa cells may disrupt primordial follicles formation in in vitro cultured one-day-old murine ovaries. Reprod Biol 2022; 22:100613. [DOI: 10.1016/j.repbio.2022.100613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/09/2022] [Accepted: 02/03/2022] [Indexed: 11/19/2022]
|
21
|
Fawzy AM, Ibrahim S, Mahmoud K, Heleil BA, El-Kon II, Almadaly EA, Ramoun AA. Gene expression profiles in the oocyte and granulosa cells and concomitant follicular fluid steroid hormone concentrations in pregnant versus non-pregnant she-camels. Small Rumin Res 2021. [DOI: 10.1016/j.smallrumres.2021.106514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Elias D, Gimenez L, Poletta F, Campaña H, Gili J, Ratowiecki J, Pawluk M, Rittler M, Santos MR, Uranga R, Heisecke SL, Cosentino V, Saleme C, Gadow E, Krupitzki H, Camelo JSL. Preterm birth and genitourinary tract infections: assessing gene-environment interaction. Pediatr Res 2021; 90:678-683. [PMID: 33070163 DOI: 10.1038/s41390-020-01200-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND Preterm birth (PTB) is the leading cause of perinatal morbimortality worldwide. Genetic and environmental factors could raise PTB risk. The aim of this study was to analyze the contribution of the statistical interaction between genes and vaginal-urinary tract infections (VI-UTI) to the risk of PTB by clinical subtype. METHODS Twenty-four SNPs were genotyped in 18 candidate genes from 352 fetal triads and 106 maternal triads. Statistical interactions were evaluated with conditional logistic regression models based on genotypic transmission/disequilibrium test. RESULTS In PTB-idiopathic subtype mothers exposed to UTI, fetal SNPs rs11686474 (FSHR), rs4458044 (CRHR1, allele G), rs883319 (KCNN3), and maternal SNP rs1882435 (COL4A3) showed a nominal significant increment in prematurity risk. In preterm premature rupture of membranes (PPROM), fetal SNP rs2277698 (TIMP2) showed a nominal significant risk increment. In mothers exposed to VI, fetal SNP rs5742612 (IGF1) in PTB-PPROM and maternal SNP rs4458044 (CRHR1, allele C) in spontaneous PTB showed nominal significant increment in prematurity risk. CONCLUSIONS Certain maternal and fetal genes linked to infectious/inflammatory and hormonal regulation processes increase prematurity risk according to clinical subtype when mothers are exposed to UTI or VI. These findings may help in the understanding of PTB etiology and PTB prevention. IMPACT Preterm birth is a major cause of perinatal morbimortality worldwide and its etiology remains unknown. This work provides evidence on the statistical interaction of six genes with gestational vaginal or urinary infections leading to the occurrence of preterm births. Statistical interactions vary according to infection type, genotype (maternal and fetal), and clinical subtype of prematurity. Certain maternal and fetal genetic variants of genes linked to infectious/inflammatory and hormonal regulation processes would increase the risk of prematurity according to clinical subtype and infection type. Our findings may help in the study of etiology of preterm birth and its prevention.
Collapse
Affiliation(s)
- Dario Elias
- Laboratorio de Epidemiología Genética Centro de Educación Médica e Investigaciones Clínicas-Consejo Nacional de Investigaciones Científicas y Técnicas (CEMIC-CONICET), Centro de Educación Médica e Investigaciones Clínicas-Consejo Nacional de Investigaciones Científicas y Técnicas (CEMIC-CONICET), Ciudad Autónoma de Buenos Aires, Argentina.,Estudio Colaborativo Latino Americano de Malformaciones Congénitas, CEMIC-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lucas Gimenez
- Laboratorio de Epidemiología Genética Centro de Educación Médica e Investigaciones Clínicas-Consejo Nacional de Investigaciones Científicas y Técnicas (CEMIC-CONICET), Centro de Educación Médica e Investigaciones Clínicas-Consejo Nacional de Investigaciones Científicas y Técnicas (CEMIC-CONICET), Ciudad Autónoma de Buenos Aires, Argentina.,Estudio Colaborativo Latino Americano de Malformaciones Congénitas, CEMIC-CONICET, Ciudad Autónoma de Buenos Aires, Argentina.,Instituto Nacional de Genética Médica Populacional, CEMIC-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Fernando Poletta
- Laboratorio de Epidemiología Genética Centro de Educación Médica e Investigaciones Clínicas-Consejo Nacional de Investigaciones Científicas y Técnicas (CEMIC-CONICET), Centro de Educación Médica e Investigaciones Clínicas-Consejo Nacional de Investigaciones Científicas y Técnicas (CEMIC-CONICET), Ciudad Autónoma de Buenos Aires, Argentina.,Estudio Colaborativo Latino Americano de Malformaciones Congénitas, CEMIC-CONICET, Ciudad Autónoma de Buenos Aires, Argentina.,Instituto Nacional de Genética Médica Populacional, CEMIC-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Hebe Campaña
- Laboratorio de Epidemiología Genética Centro de Educación Médica e Investigaciones Clínicas-Consejo Nacional de Investigaciones Científicas y Técnicas (CEMIC-CONICET), Centro de Educación Médica e Investigaciones Clínicas-Consejo Nacional de Investigaciones Científicas y Técnicas (CEMIC-CONICET), Ciudad Autónoma de Buenos Aires, Argentina.,Estudio Colaborativo Latino Americano de Malformaciones Congénitas, CEMIC-CONICET, Ciudad Autónoma de Buenos Aires, Argentina.,Comisión de Investigaciones Científicas, Buenos Aires, Argentina
| | - Juan Gili
- Laboratorio de Epidemiología Genética Centro de Educación Médica e Investigaciones Clínicas-Consejo Nacional de Investigaciones Científicas y Técnicas (CEMIC-CONICET), Centro de Educación Médica e Investigaciones Clínicas-Consejo Nacional de Investigaciones Científicas y Técnicas (CEMIC-CONICET), Ciudad Autónoma de Buenos Aires, Argentina.,Estudio Colaborativo Latino Americano de Malformaciones Congénitas, CEMIC-CONICET, Ciudad Autónoma de Buenos Aires, Argentina.,Instituto Académico Pedagógico de Ciencias Humanas, Universidad Nacional de Villa María, Córdoba, Argentina
| | - Julia Ratowiecki
- Laboratorio de Epidemiología Genética Centro de Educación Médica e Investigaciones Clínicas-Consejo Nacional de Investigaciones Científicas y Técnicas (CEMIC-CONICET), Centro de Educación Médica e Investigaciones Clínicas-Consejo Nacional de Investigaciones Científicas y Técnicas (CEMIC-CONICET), Ciudad Autónoma de Buenos Aires, Argentina.,Estudio Colaborativo Latino Americano de Malformaciones Congénitas, CEMIC-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Mariela Pawluk
- Laboratorio de Epidemiología Genética Centro de Educación Médica e Investigaciones Clínicas-Consejo Nacional de Investigaciones Científicas y Técnicas (CEMIC-CONICET), Centro de Educación Médica e Investigaciones Clínicas-Consejo Nacional de Investigaciones Científicas y Técnicas (CEMIC-CONICET), Ciudad Autónoma de Buenos Aires, Argentina.,Estudio Colaborativo Latino Americano de Malformaciones Congénitas, CEMIC-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Monica Rittler
- Laboratorio de Epidemiología Genética Centro de Educación Médica e Investigaciones Clínicas-Consejo Nacional de Investigaciones Científicas y Técnicas (CEMIC-CONICET), Centro de Educación Médica e Investigaciones Clínicas-Consejo Nacional de Investigaciones Científicas y Técnicas (CEMIC-CONICET), Ciudad Autónoma de Buenos Aires, Argentina.,Estudio Colaborativo Latino Americano de Malformaciones Congénitas, CEMIC-CONICET, Ciudad Autónoma de Buenos Aires, Argentina.,Hospital Materno Infantil Ramón Sarda, Buenos Aires, Argentina
| | - Maria R Santos
- Laboratorio de Epidemiología Genética Centro de Educación Médica e Investigaciones Clínicas-Consejo Nacional de Investigaciones Científicas y Técnicas (CEMIC-CONICET), Centro de Educación Médica e Investigaciones Clínicas-Consejo Nacional de Investigaciones Científicas y Técnicas (CEMIC-CONICET), Ciudad Autónoma de Buenos Aires, Argentina.,Estudio Colaborativo Latino Americano de Malformaciones Congénitas, CEMIC-CONICET, Ciudad Autónoma de Buenos Aires, Argentina.,Comisión de Investigaciones Científicas, Buenos Aires, Argentina.,Instituto Multidisciplinario de Biología Celular, Buenos Aires, Argentina
| | - Rocio Uranga
- Laboratorio de Epidemiología Genética Centro de Educación Médica e Investigaciones Clínicas-Consejo Nacional de Investigaciones Científicas y Técnicas (CEMIC-CONICET), Centro de Educación Médica e Investigaciones Clínicas-Consejo Nacional de Investigaciones Científicas y Técnicas (CEMIC-CONICET), Ciudad Autónoma de Buenos Aires, Argentina.,Estudio Colaborativo Latino Americano de Malformaciones Congénitas, CEMIC-CONICET, Ciudad Autónoma de Buenos Aires, Argentina.,Hospital San Juan de Dios, Buenos Aires, Argentina
| | - Silvina L Heisecke
- Laboratorio de Epidemiología Genética Centro de Educación Médica e Investigaciones Clínicas-Consejo Nacional de Investigaciones Científicas y Técnicas (CEMIC-CONICET), Centro de Educación Médica e Investigaciones Clínicas-Consejo Nacional de Investigaciones Científicas y Técnicas (CEMIC-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Viviana Cosentino
- Laboratorio de Epidemiología Genética Centro de Educación Médica e Investigaciones Clínicas-Consejo Nacional de Investigaciones Científicas y Técnicas (CEMIC-CONICET), Centro de Educación Médica e Investigaciones Clínicas-Consejo Nacional de Investigaciones Científicas y Técnicas (CEMIC-CONICET), Ciudad Autónoma de Buenos Aires, Argentina.,Estudio Colaborativo Latino Americano de Malformaciones Congénitas, CEMIC-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Cesar Saleme
- Instituto de Maternidad y Ginecología Nuestra Señora de las Mercedes, Tucumán, Argentina
| | - Enrique Gadow
- Laboratorio de Epidemiología Genética Centro de Educación Médica e Investigaciones Clínicas-Consejo Nacional de Investigaciones Científicas y Técnicas (CEMIC-CONICET), Centro de Educación Médica e Investigaciones Clínicas-Consejo Nacional de Investigaciones Científicas y Técnicas (CEMIC-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Hugo Krupitzki
- Laboratorio de Epidemiología Genética Centro de Educación Médica e Investigaciones Clínicas-Consejo Nacional de Investigaciones Científicas y Técnicas (CEMIC-CONICET), Centro de Educación Médica e Investigaciones Clínicas-Consejo Nacional de Investigaciones Científicas y Técnicas (CEMIC-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Jorge S Lopez Camelo
- Laboratorio de Epidemiología Genética Centro de Educación Médica e Investigaciones Clínicas-Consejo Nacional de Investigaciones Científicas y Técnicas (CEMIC-CONICET), Centro de Educación Médica e Investigaciones Clínicas-Consejo Nacional de Investigaciones Científicas y Técnicas (CEMIC-CONICET), Ciudad Autónoma de Buenos Aires, Argentina. .,Estudio Colaborativo Latino Americano de Malformaciones Congénitas, CEMIC-CONICET, Ciudad Autónoma de Buenos Aires, Argentina. .,Instituto Nacional de Genética Médica Populacional, CEMIC-CONICET, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
23
|
Ostróżka-Cieślik A, Dolińska B, Ryszka F. Effectiveness Assessment of a Modified Preservation Solution Containing Thyrotropin or Follitropin Based on Biochemical Analysis in Perfundates and Homogenates of Isolated Porcine Kidneys after Static Cold Storage. Int J Mol Sci 2021; 22:ijms22168360. [PMID: 34445068 PMCID: PMC8395071 DOI: 10.3390/ijms22168360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 12/15/2022] Open
Abstract
In this paper, we assess the nephroprotective effects of thyrotropin and follitropin during ischaemia. The studies were performed in vitro in a model of isolated porcine kidneys stored in Biolasol (FZNP, Biochefa, Sosnowiec, Poland) and modified Biolasol (TSH: 1 µg/L; FSH 1 µg/L). We used the static cold storage method. The study was carried out based on 30 kidneys. The kidneys were placed in 500 mL of preservation solution chilled to 4 °C. The samples for biochemical tests were collected during the first kidney perfusion (after 2 h of storage) and during the second perfusion (after 48 h of storage). The results of ALT, AST, and LDH activities confirm the effectiveness of Biolasol + p-TSH in maintaining the structural integrity of renal cell membranes. Significantly reduced biochemical parameters of kidney function, i.e., creatinine and protein concentrations were also observed after 48 h storage. The protective effect of Biasol + p-TSH is most pronounced after 2 h of storage, suggesting a mild course of damage thereafter. A mild deterioration of renal function was observed after 48 h. The results of our analyses did not show any protective effect of Biolasol + p-FSH on the kidneys during ischaemia.
Collapse
Affiliation(s)
- Aneta Ostróżka-Cieślik
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Kasztanowa 3, 41-200 Sosnowiec, Poland;
- Correspondence:
| | - Barbara Dolińska
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Kasztanowa 3, 41-200 Sosnowiec, Poland;
- “Biochefa” Pharmaceutical Research and Production Plant, Kasztanowa 3, 41-200 Sosnowiec, Poland;
| | - Florian Ryszka
- “Biochefa” Pharmaceutical Research and Production Plant, Kasztanowa 3, 41-200 Sosnowiec, Poland;
| |
Collapse
|
24
|
Hua G, George JW, Clark KL, Jonas KC, Johnson GP, Southekal S, Guda C, Hou X, Blum HR, Eudy J, Butnev VY, Brown AR, Katta S, May JV, Bousfield GR, Davis JS. Hypo-glycosylated hFSH drives ovarian follicular development more efficiently than fully-glycosylated hFSH: enhanced transcription and PI3K and MAPK signaling. Hum Reprod 2021; 36:1891-1906. [PMID: 34059912 PMCID: PMC8213452 DOI: 10.1093/humrep/deab135] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 03/31/2021] [Indexed: 12/22/2022] Open
Abstract
STUDY QUESTION Does hypo-glycosylated human recombinant FSH (hFSH18/21) have greater in vivo bioactivity that drives follicle development in vivo compared to fully-glycosylated human recombinant FSH (hFSH24)? SUMMARY ANSWER Compared with fully-glycosylated hFSH, hypo-glycosylated hFSH has greater bioactivity, enabling greater follicular health and growth in vivo, with enhanced transcriptional activity, greater activation of receptor tyrosine kinases (RTKs) and elevated phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and Mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling. WHAT IS KNOWN ALREADY Glycosylation of FSH is necessary for FSH to effectively activate the FSH receptor (FSHR) and promote preantral follicular growth and formation of antral follicles. In vitro studies demonstrate that compared to fully-glycosylated recombinant human FSH, hypo-glycosylated FSH has greater activity in receptor binding studies, and more effectively stimulates the PKA pathway and steroidogenesis in human granulosa cells. STUDY DESIGN, SIZE, DURATION This is a cross-sectional study evaluating the actions of purified recombinant human FSH glycoforms on parameters of follicular development, gene expression and cell signaling in immature postnatal day (PND) 17 female CD-1 mice. To stimulate follicle development in vivo, PND 17 female CD-1 mice (n = 8-10/group) were treated with PBS (150 µl), hFSH18/21 (1 µg/150 µl PBS) or hFSH24 (1 µg/150 µl PBS) by intraperitoneal injection (i.p.) twice daily (8:00 a.m. and 6:00 p.m.) for 2 days. Follicle numbers, serum anti-Müllerian hormone (AMH) and estradiol levels, and follicle health were quantified. PND 17 female CD-1 mice were also treated acutely (2 h) in vivo with PBS, hFSH18/21 (1 µg) or hFSH24 (1 µg) (n = 3-4/group). One ovary from each mouse was processed for RNA sequencing analysis and the other ovary processed for signal transduction analysis. An in vitro ovary culture system was used to confirm the relative signaling pathways. PARTICIPANTS/MATERIALS, SETTING, METHODS The purity of different recombinant hFSH glycoforms was analyzed using an automated western blot system. Follicle numbers were determined by counting serial sections of the mouse ovary. Real-time quantitative RT-PCR, western blot and immunofluorescence staining were used to determine growth and apoptosis markers related with follicle health. RNA sequencing and bioinformatics were used to identify pathways and processes associated with gene expression profiles induced by acute FSH glycoform treatment. Analysis of RTKs was used to determine potential FSH downstream signaling pathways in vivo. Western blot and in vitro ovarian culture system were used to validate the relative signaling pathways. MAIN RESULTS AND THE ROLE OF CHANCE Our present study shows that both hypo- and fully-glycosylated recombinant human FSH can drive follicular growth in vivo. However, hFSH18/21 promoted development of significantly more large antral follicles compared to hFSH24 (P < 0.01). In addition, compared with hFSH24, hFSH18/21 also promoted greater indices of follicular health, as defined by lower BAX/BCL2 ratios and reduced cleaved Caspase 3. Following acute in vivo treatment with FSH glycoforms RNA-sequencing data revealed that both FSH glycoforms rapidly induced ovarian transcription in vivo, but hypo-glycosylated FSH more robustly stimulated Gαs and cAMP-mediated signaling and members of the AP-1 transcription factor complex. Moreover, hFSH18/21 treatment induced significantly greater activation of RTKs, PI3K/AKT and MAPK/ERK signaling compared to hFSH24. FSH-induced indices of follicle growth in vitro were blocked by inhibition of PI3K and MAPK. LARGE SCALE DATA RNA sequencing of mouse ovaries. Data will be shared upon reasonable request to the corresponding author. LIMITATIONS, REASONS FOR CAUTION The observations that hFSH glycoforms have different bioactivities in the present study employing a mouse model of follicle development should be verified in nonhuman primates. The gene expression studies reflect transcriptomes of whole ovaries. WIDER IMPLICATIONS OF THE FINDINGS Commercially prepared recombinant human FSH used for ovarian stimulation in human ART is fully-glycosylated FSH. Our findings that hypo-glycosylated hFSH has greater bioactivity enabling greater follicular health and growth without exaggerated estradiol production in vivo, demonstrate the potential for its development for application in human ART. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by NIH 1P01 AG029531, NIH 1R01 HD 092263, VA I01 BX004272, and the Olson Center for Women's Health. JSD is the recipient of a VA Senior Research Career Scientist Award (1IK6 BX005797). This work was also partially supported by National Natural Science Foundation of China (No. 31872352). The authors declared there are no conflicts of interest.
Collapse
Affiliation(s)
- Guohua Hua
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Department of Obstetrics and Gynecology, Olson Center for Women’s Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jitu W George
- Department of Obstetrics and Gynecology, Olson Center for Women’s Health, University of Nebraska Medical Center, Omaha, NE, USA
- Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE, USA
| | - Kendra L Clark
- Department of Obstetrics and Gynecology, Olson Center for Women’s Health, University of Nebraska Medical Center, Omaha, NE, USA
- Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE, USA
| | - Kim C Jonas
- Department of Women and Children’s Health, School of Life Course Sciences, King’s College London, Guy’s Campus, London, UK
| | - Gillian P Johnson
- Department of Women and Children’s Health, School of Life Course Sciences, King’s College London, Guy’s Campus, London, UK
| | - Siddesh Southekal
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Xiaoying Hou
- Department of Obstetrics and Gynecology, Olson Center for Women’s Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Haley R Blum
- Department of Obstetrics and Gynecology, Olson Center for Women’s Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - James Eudy
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Viktor Y Butnev
- Department of Biological Sciences, Wichita State University, Wichita, KS, USA
| | - Alan R Brown
- Department of Biological Sciences, Wichita State University, Wichita, KS, USA
| | - Sahithi Katta
- Department of Biological Sciences, Wichita State University, Wichita, KS, USA
| | - Jeffrey V May
- Department of Biological Sciences, Wichita State University, Wichita, KS, USA
| | - George R Bousfield
- Department of Biological Sciences, Wichita State University, Wichita, KS, USA
| | - John S Davis
- Department of Obstetrics and Gynecology, Olson Center for Women’s Health, University of Nebraska Medical Center, Omaha, NE, USA
- Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE, USA
| |
Collapse
|
25
|
Differential molecular and hormonal changes in oocytes, granulosa cells and follicular fluid of pregnant and non-pregnant camels. ZYGOTE 2021; 29:427-434. [PMID: 33823953 DOI: 10.1017/s096719942000091x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study aimed to compare the expression of genes regulating follicles development, survival and steroid hormones secretion in oocytes and granulosa cells (GCs) and study the correlation between their expression and follicular fluid (FF) levels of progesterone (P4) in pregnant and non-pregnant camels. In total, 138 ovarian pairs from slaughtered camels were used. Gene expression and hormonal assay were determined using real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. The obtained results revealed that the number of follicles (3-8 mm) was significantly (P < 0.05) lower in pregnant, compared with non-pregnant, camels. P4 level in the FF was significantly (P < 0.05) higher in pregnant, compared with non-pregnant, camels. However, no significant (P > 0.05) difference was noticed in the oestradiol (E2) level. STAR, PTEN, IGF1 and BCL2 mRNA levels were significantly higher in GCs and significantly lower in oocytes of pregnant, compared with non-pregnant, camels. However, follicle-stimulating hormone receptor (FSHR) mRNA level was significantly lower in GCs and oocytes, and the BMP15 mRNA level was significantly lower in oocytes of pregnant, compared with non-pregnant, camels. P4 level in FF was positively correlated with STAR, PTEN, IGF1 and BCL2 mRNA levels in GCs and negatively correlated with BMP15 mRNA levels in oocytes and FSHR mRNA levels in GCs and oocytes of pregnant camels. It could be concluded that pregnancy-induced variations in oocytes and GC expression of BMP15, IGF1, FSHR, STAR, BCL2, and PTEN genes might be associated with a decrease in the number of follicles and an increase in the FF level of P4.
Collapse
|
26
|
Cottrez F, Leblanc V, Boitel E, Groux H, Alépée N. The EyeIRR-IS assay: Development and evaluation of an in vitro assay to measure the eye irritation sub-categorization of liquid chemicals. Toxicol In Vitro 2021; 71:105072. [DOI: 10.1016/j.tiv.2020.105072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/27/2020] [Accepted: 12/17/2020] [Indexed: 11/30/2022]
|
27
|
Banerjee AA, Joseph S, Mahale SD. From cell surface to signalling and back: the life of the mammalian FSH receptor. FEBS J 2020; 288:2673-2696. [DOI: 10.1111/febs.15649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/17/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Antara A. Banerjee
- Division of Structural Biology National Institute for Research in Reproductive Health (Indian Council of Medical Research) Parel India
| | - Shaini Joseph
- Genetic Research Center National Institute for Research in Reproductive Health (Indian Council of Medical Research) Parel India
| | - Smita D. Mahale
- Division of Structural Biology National Institute for Research in Reproductive Health (Indian Council of Medical Research) Parel India
- ICMR Biomedical Informatics Centre National Institute for Research in Reproductive Health (Indian Council of Medical Research) Parel India
| |
Collapse
|
28
|
Thayil AJ, Wang X, Bhandari P, vom Saal FS, Tillitt DE, Bhandari RK. Bisphenol A and 17α-ethinylestradiol-induced transgenerational gene expression differences in the brain-pituitary-testis axis of medaka, Oryzias latipes†. Biol Reprod 2020; 103:1324-1335. [PMID: 32940650 PMCID: PMC7711903 DOI: 10.1093/biolre/ioaa169] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/15/2020] [Accepted: 09/15/2020] [Indexed: 11/13/2022] Open
Abstract
Endocrine disrupting chemicals (EDCs), such as bisphenol A (BPA) and 17α-ethinylestradiol (EE2), can have far reaching health effects, including transgenerational abnormalities in offspring that never directly contacted either chemical. We previously reported reduced fertilization rates and embryo survival at F2 and F3 generations caused by 7-day embryonic exposure (F0) to 100 μg/L BPA or 0.05 μg/L EE2 in medaka. Crossbreeding of fish in F2 generation indicated subfertility in males. To further understand the mechanisms underlying BPA or EE2-induced adult onset and transgenerational reproductive defects in males, the present study examined the expression of genes regulating the brain-pituitary-testis (BPT) axis in the same F0 and F2 generation male medaka. Embryonic exposure to BPA or EE2 led to hyperactivation of brain and pituitary genes, which are actively involved in reproduction in adulthood of the F0 generation male fish, and some of these F0 effects continued to the F2 generation (transgenerational effects). Particularly, the F2 generation inherited the hyperactivated state of expression for kisspeptin (kiss1 and kiss2) and their receptors (kiss1r and kiss2r), and gnrh and gnrh receptors. At F2 generation, expression of DNA methyltransferase 1 (dnmt1) decreased in brain of the BPA treatment lineage, while EE2 treatment lineage showed increased dnmt3bb expression. Global hypomethylation pattern was observed in the testis of both F0 and F2 generation fish. Taken together, these results demonstrated that BPA or EE2-induced transgenerational reproductive impairment in the F2 generation was associated with alterations of reproductive gene expression in brain and testis and global DNA methylation in testis.
Collapse
Affiliation(s)
- Albert J Thayil
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, USA
| | - Xuegeng Wang
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, USA
| | - Pooja Bhandari
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, USA
| | | | - Donald E Tillitt
- United States Geological Survey, Columbia Environmental Research Center, Columbia, MO, USA
| | - Ramji K Bhandari
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, USA
| |
Collapse
|
29
|
Chen Y, Wang X, Yang C, Liu Q, Ran Z, Li X, He C. A mouse model reveals the events and underlying regulatory signals during the gonadotrophin-dependent phase of follicle development. Mol Hum Reprod 2020; 26:920-937. [PMID: 33063120 DOI: 10.1093/molehr/gaaa069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/07/2020] [Indexed: 12/13/2022] Open
Abstract
During folliculogenesis, the gonadotrophin (GTH)-dependent phase begins at the small antral follicle stage and ends with Graafian follicles. In this study, pregnant mare's serum GTH was used to induce GTH-dependent folliculogenesis in mice, following which the developmental events that follicles undergo, as well as the underlying regulatory signals, were investigated at both the morphological and transcriptomic level. GTH-dependent folliculogenesis consisted of three phases: preparation, rapid growth and decelerated growth. In the preparation phase, comprising the first 12 h, granulosa cells completed the preparations for proliferation and differentiation, shifted energy metabolism to glycolysis, and reduced protein synthesis and processing. The rapid growth phase lasted from 12 to 24 h; in this phase, granulosa cells completed their proliferation, and follicles acquired the capacity for estradiol secretion and ovulation. Meanwhile, the decelerating growth phase occurred between 24 and 48 h of GTH-dependent folliculogenesis. In this phase, the proliferation and expansion of the follicular antrum were reduced, energy metabolism was shifted to oxidative phosphorylation, and cell migration and lipid metabolism were enhanced in preparation for luteinization. We also revealed the key signaling pathways that regulate GTH-dependent folliculogenesis and elucidated the activation sequence of these pathways. A comparison of our RNA-sequencing data with that reported for humans suggested that the mechanisms involved in mouse and human folliculogenesis are evolutionarily conserved. In this study, we draw a detailed atlas of GTH-dependent folliculogenesis, thereby laying the foundation for further investigation of the regulatory mechanisms underlying this process.
Collapse
Affiliation(s)
- Yingjun Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,National Center for International Research on Animal Genetics, Breeding and reproduction, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xiaodong Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,National Center for International Research on Animal Genetics, Breeding and reproduction, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Chan Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,National Center for International Research on Animal Genetics, Breeding and reproduction, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Qinghua Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,National Center for International Research on Animal Genetics, Breeding and reproduction, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zaohong Ran
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,National Center for International Research on Animal Genetics, Breeding and reproduction, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xiang Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,National Center for International Research on Animal Genetics, Breeding and reproduction, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Changjiu He
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,National Center for International Research on Animal Genetics, Breeding and reproduction, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|
30
|
Madogwe E, Tanwar DK, Taibi M, Schuermann Y, St-Yves A, Duggavathi R. Global analysis of FSH-regulated gene expression and histone modification in mouse granulosa cells. Mol Reprod Dev 2020; 87:1082-1096. [PMID: 32892476 DOI: 10.1002/mrd.23419] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 07/31/2020] [Accepted: 08/15/2020] [Indexed: 12/12/2022]
Abstract
Follicle-stimulating hormone (FSH) regulates ovarian follicular development through a specific gene expression program. We analyzed FSH-regulated transcriptome and histone modification in granulosa cells during follicular development. We used super-stimulated immature mice and collected granulosa cells before and 48 h after stimulation with equine chorionic gonadotropin (eCG). We profiled the transcriptome using RNA-sequencing (N = 3/time-point) and genome-wide trimethylation of lysine 4 of histone H3 (H3K4me3; an active transcription marker) using chromatin immunoprecipitation and sequencing (ChIP-Seq; N = 2/time-point). Across the mouse genome, 14,583 genes had an associated H3K4me3 peak and 63-66% of these peaks were observed within ≤1 kb promoter region. There were 72 genes with differential H3K4me3 modification at 48 h eCG (absolute log fold change > 1; false discovery rate [FDR] < 0.05) relative to 0 h eCG. Transcriptome data analysis showed 1463 differentially expressed genes at 48 h eCG (absolute log fold change > 1; FDR < 0.05). Among the 20 genes with differential expression and altered H3K4me3 modification, Lhcgr had higher H3K4me3 abundance and expression, while Nrip2 had lower H3K4me3 abundance and expression. Using ChIP-qPCR, we showed that FSH-regulated expression of Lhcgr, Cyp19a1, Nppc, and Nrip2 through regulation of H3K4me3 at their respective promoters. Transcript isoform analysis using Kallisto-Sleuth tool revealed 875 differentially expressed transcripts at 48 h eCG (b > 1; FDR < 0.05). Pathway analysis of RNA-seq data demonstrated that TGF-β signaling and steroidogenic pathways were regulated at 48 h eCG. Thus, FSH regulates gene expression in granulosa cells through multiple mechanisms namely altered H3K4me3 modification and inducing specific transcripts. These data form the basis for further studies investigating how these specific mechanisms regulate granulosa cell functions.
Collapse
Affiliation(s)
- Ejimedo Madogwe
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Qubec, Canada
| | - Deepak K Tanwar
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Qubec, Canada.,Present address: Laboratory of Neuroepigenetics, Department of Health Sciences and Technology of the Swiss Federal Institute of Technology, Medical Faculty of the University of Zürich, Statistical Bioinformatics Group, Swiss Institute of Bioinformatics, Zürich, CH-8057, Switzerland
| | - Milena Taibi
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Qubec, Canada
| | - Yasmin Schuermann
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Qubec, Canada
| | - Audrey St-Yves
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Qubec, Canada
| | - Raj Duggavathi
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Qubec, Canada
| |
Collapse
|
31
|
Liang A, Plewes MR, Hua G, Hou X, Blum HR, Przygrodzka E, George JW, Clark KL, Bousfield GR, Butnev VY, May JV, Davis JS. Bioactivity of recombinant hFSH glycosylation variants in primary cultures of porcine granulosa cells. Mol Cell Endocrinol 2020; 514:110911. [PMID: 32553947 PMCID: PMC7418035 DOI: 10.1016/j.mce.2020.110911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 12/16/2022]
Abstract
Previous studies have reported hypo-glycosylated FSH and fully-glycosylated FSH to be naturally occurring in humans, and these glycoforms exist in changing ratios over a woman's lifespan. The precise cellular and molecular effects of recombinant human FSH (hFSH) glycoforms, FSH21 and FSH24, have not been documented in primary granulosa cells. Herein, biological responses to FSH21 and FSH24 were compared in primary porcine granulosa cells. Hypo-glycosylated hFSH21 was significantly more effective than fully-glycosylated hFSH24 at stimulating cAMP accumulation and protein kinase A (PKA) activity, leading to the higher phosphorylation of CREB and β-Catenin. Compared to fully-glycosylated hFSH24, hypo-glycosylated hFSH21 also induced greater levels of transcripts for HSD3B, STAR and INHA, and higher progesterone production. Our results demonstrate that hypo-glycosylated hFSH21 exerts more robust activation of intracellular signals associated with steroidogenesis than fully-glycosylated hFSH24 in primary porcine granulosa cells, and furthers our understanding of the differing bioactivities of FSH glycoforms in the ovary.
Collapse
Affiliation(s)
- Aixin Liang
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Michele R Plewes
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Veterans Affairs Nebraska Western Iowa Health Care System, 4101 Woolworth Ave, Omaha, NE, 68105, USA
| | - Guohua Hua
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoying Hou
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Haley R Blum
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Emilia Przygrodzka
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jitu W George
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Veterans Affairs Nebraska Western Iowa Health Care System, 4101 Woolworth Ave, Omaha, NE, 68105, USA
| | - Kendra L Clark
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Veterans Affairs Nebraska Western Iowa Health Care System, 4101 Woolworth Ave, Omaha, NE, 68105, USA
| | - George R Bousfield
- Department of Biological Sciences, Wichita State University, Wichita, KS, 67260, USA
| | - Viktor Y Butnev
- Department of Biological Sciences, Wichita State University, Wichita, KS, 67260, USA
| | - Jeffrey V May
- Department of Biological Sciences, Wichita State University, Wichita, KS, 67260, USA
| | - John S Davis
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Veterans Affairs Nebraska Western Iowa Health Care System, 4101 Woolworth Ave, Omaha, NE, 68105, USA.
| |
Collapse
|
32
|
Shobana N, Kumar MK, Navin AK, Akbarsha MA, Aruldhas MM. Prenatal exposure to excess chromium attenuates transcription factors regulating expression of androgen and follicle stimulating hormone receptors in Sertoli cells of prepuberal rats. Chem Biol Interact 2020; 328:109188. [PMID: 32679048 DOI: 10.1016/j.cbi.2020.109188] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 06/06/2020] [Accepted: 06/25/2020] [Indexed: 01/06/2023]
Abstract
We have reported that gestational exposure to hexavalent chromium (CrVI) represses androgen receptor (Ar) and follicle stimulating hormone receptor (Fshr) in Sertoli cells (SCs) of adult rats, while the mechanism underlying remains obscure. We tested the hypothesis "transient gestational exposure to CrVI during the critical embryonic windows of testicular differentiation and growth may have adverse impact on transcription factors controlling the expression of Ar and Fshr in SCs of the F1 progeny". CrVI (K2Cr2O7) was given through drinking water (50 ppm, 100 ppm and 200 ppm), to pregnant rats from gestational day 9-14 (testicular differentiation) and 15 to 21 (prenatal differentiation and proliferation of SC); male progenies were sacrificed on postnatal day 30 (Completion of postnatal SC maturation). A significant increase in free radicals and decrease in enzymatic and non-enzymatic antioxidants were observed in SCs of experimental rats. Real time PCR and western blot data showed decreased expression of Ar, Fshr, Inhibin B, Transferrin, Androgen binding protein, Claudin 11 and Occludin in SCs of experimental rats; concentrations of lactate, pyruvate and retinoic acid also decreased. Serum FSH, luteinizing hormone and estradiol increased, whereas testosterone and prolactin decreased in experimental rats. Western blot detection revealed decreased levels of transcription factors regulating Fshr viz., USF-1, USF-2, SF-1, c-fos, c-jun and GATA 1, and those of Ar viz., Sp-1, ARA54, SRC-1 and CBP in experimental rats, whereas the levels of cyclinD1 and p53, repressors of Ar increased. ChIP assay detected decreased USF-1 and USF-2 binding to Fshr promoter, and binding of Sp-1 to Ar promoter. We conclude that gestational exposure to CrVI affects SC structure and function in F1 progeny by inducing oxidative stress and diminishing the expression of Ar and Fshr through attenuation of their specific transcriptional regulators and their interaction with the respective promoter.
Collapse
Affiliation(s)
- Navaneethabalakrishnan Shobana
- Department of Endocrinology, Dr.A.L.M Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600113, India
| | - Mani Kathiresh Kumar
- Department of Endocrinology, Dr.A.L.M Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600113, India
| | - Ajit Kumar Navin
- Department of Endocrinology, Dr.A.L.M Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600113, India
| | | | - Mariajoseph Michael Aruldhas
- Department of Endocrinology, Dr.A.L.M Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600113, India.
| |
Collapse
|
33
|
Armouti M, Winston N, Hatano O, Hobeika E, Hirshfeld-Cytron J, Liebermann J, Takemori H, Stocco C. Salt-inducible Kinases Are Critical Determinants of Female Fertility. Endocrinology 2020; 161:5826400. [PMID: 32343771 PMCID: PMC7286620 DOI: 10.1210/endocr/bqaa069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/21/2020] [Indexed: 12/28/2022]
Abstract
Follicle development is the most crucial step toward female fertility and is controlled mainly by follicle-stimulating hormone (FSH). In ovarian granulosa cells (GCs), FSH activates protein kinase A by increasing 3',5'-cyclic adenosine 5'-monophosphate (cAMP). Since cAMP signaling is impinged in part by salt-inducible kinases (SIKs), we examined the role of SIKs on the regulation of FSH actions. Here, we report that SIKs are essential for normal ovarian function and female fertility. All SIK isoforms are expressed in human and rodent GCs at different levels (SIK3>SIK2>SIK1). Pharmacological inhibition of SIK activity potentiated the stimulatory effect of FSH on markers of GC differentiation in mouse, rat, and human GCs and estradiol production in rat GCs. In humans, SIK inhibition strongly enhanced FSH actions in GCs of patients with normal or abnormal ovarian function. The knockdown of SIK2, but not SIK1 or SIK3, synergized with FSH on the induction of markers of GC differentiation. SIK inhibition boosted gonadotropin-induced GC differentiation in vivo, while the genomic knockout of SIK2 led to a significant increase in the number of ovulated oocytes. Conversely, SIK3 knockout females were infertile, FSH insensitive, and had abnormal folliculogenesis. These findings reveal novel roles for SIKs in the regulation of GC differentiation and female fertility, and contribute to our understanding of the mechanisms regulated by FSH. Furthermore, these data suggest that specific pharmacological modulation of SIK2 activity could be of benefit to treat ovulatory defects in humans and to increase the propagation of endangered species and farm mammals.
Collapse
Affiliation(s)
- Marah Armouti
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Nicola Winston
- Department of Obstetrics and Gynecology, University of Illinois at Chicago College of Medicine. Chicago, Illinois
| | - Osamu Hatano
- Department of Basic Medicine, Nara Medical University, Nara, Japan
| | - Elie Hobeika
- Fertility Centers of Illinois, Chicago, Illinois
| | | | | | - Hiroshi Takemori
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Carlos Stocco
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
- Department of Obstetrics and Gynecology, University of Illinois at Chicago College of Medicine. Chicago, Illinois
- Correspondence: Carlos Stocco, Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612. E-mail:
| |
Collapse
|
34
|
Effect of a Diet Supplemented with the Moringa oleifera Seed Powder on the Performance, Egg Quality, and Gene Expression in Japanese Laying Quail under Heat-Stress. Animals (Basel) 2020; 10:ani10050809. [PMID: 32392810 PMCID: PMC7278701 DOI: 10.3390/ani10050809] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/01/2020] [Accepted: 04/04/2020] [Indexed: 01/04/2023] Open
Abstract
This study was conducted to evaluate the effect of three concentrations of the Moringa oleifera seed powder as a feed supplement on the productive performance and egg quality traits of laying Japanese quail (Coturnix japonica) exposed to heat stress. The expression patterns of the genes estrogen receptors (ESR2), follicle-stimulating hormone receptor (FSHR), prolactin receptor (PRLR), and steroidogenic acute regulatory protein (STAR) were estimated in ovaries, using a quantitative real-time polymerase chain reaction. A total of 200 laying quail aged seven weeks were randomly allocated to the following four experimental groups-the control (CNT), T1, T2, and T3 groups; each group comprised 50 quail females with 5 replicates (10 per group). The CNT group was fed a basal diet, whereas the T1, T2, and T3 groups were fed the basal diet supplemented with 0.1%, 0.2%, and 0.3% M. oleifera seed powder, respectively. The results revealed that the T3 group showed the highest hen-day egg production (%) as well as the highest egg yolk index. Feed intake and feed conversion ratio improved significantly (p < 0.05) with increased concentrations of the M. oleifera seed powder supplementation. Furthermore, the mRNA expressions of ESR2, FSHR, and STAR increased significantly in the T3 group, compared to those in the CNT group. Alterations in ovarian gene expressions corresponded to the reproductive patterns of the treated Japanese quail. Thus, it was concluded that the supplementation of the Japanese quail feed with 0.3% M. oleifera seed powder during the laying period might enhance resistance to heat stress and consequently improve egg productivity.
Collapse
|
35
|
Paschalidou C, Anagnostou E, Mavrogianni D, Raouasnte R, Klimis N, Drakakis P, Loutradis D. The effects of follicle-stimulating hormone receptor (FSHR) -29 and Ser680Asn polymorphisms in IVF/ICSI. Horm Mol Biol Clin Investig 2020; 41:hmbci-2019-0058. [PMID: 32114522 DOI: 10.1515/hmbci-2019-0058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/15/2020] [Indexed: 11/15/2022]
Abstract
Background The aim of this study was to analyze two different polymorphisms, Ser680Asn and -29 (G>A) promoter polymorphism, of the follicle-stimulating hormone receptor (FSHR) gene, individually but also in combination, in a sample of Greek women undergoing in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI). Materials and methods One hundred and forty-one women undergoing IVF or ICSI and 94 controls were genotyped by real-time polymerase chain reaction (RT-PCR) for the two FSHR polymorphisms. The association of the alleles with the clinical, biochemical and other parameters concerning the controlled ovarian stimulation (COS) protocol and outcome was investigated, as well as the pregnancy rate. Results The study of each polymorphism individually revealed a positive correlation of the SerSer genotype (Ser680Asn polymorphism) with higher luteinizing hormone (LH) levels on the third day of the menstrual cycle. On the other hand, the A allele for the -29 (G>A) promoter polymorphism correlated with the increased number and quality of cumulus-oocyte complexes (COCs). No differences were detected when the different genotypes of the two polymorphisms were combined - the population study was grouped according to the number of polymorphic alleles they carried (0-4 alleles). Women who presented all polymorphic alleles, AsnAsn/AA, exhibited the lowest LH levels (2.62 ± 0.68 mIU/L), but were rarely detected (n = 2, 1.4% of the studied population). Conclusions The data from this study reflect that the investigation of the combination of polymorphisms, such as FSHR -29 and Ser680Asn, could offer a valuable tool in order to evaluate and anticipate the outcome of the ovulation induction protocols, especially in the group of patients with failed attempts.
Collapse
Affiliation(s)
- Chrysa Paschalidou
- 1st Department of Obstetrics and Gynecology, Division of Human Reproduction, IVF Unit, Alexandra Hospital, Medical School of National Kapodistrian University of Athens, Athens, Greece
| | - Elli Anagnostou
- 1st Department of Obstetrics and Gynecology, Division of Human Reproduction, IVF Unit, Alexandra Hospital, Medical School of National Kapodistrian University of Athens, Athens, Greece
| | - Despoina Mavrogianni
- 1st Department of Obstetrics and Gynecology, Division of Human Reproduction, IVF Unit, Alexandra Hospital, Medical School of National Kapodistrian University of Athens, Athens, Greece
| | - Rami Raouasnte
- 1st Department of Obstetrics and Gynecology, Division of Human Reproduction, IVF Unit, Alexandra Hospital, Medical School of National Kapodistrian University of Athens, Athens, Greece
| | - Nikiforos Klimis
- 1st Department of Obstetrics and Gynecology, Division of Human Reproduction, IVF Unit, Alexandra Hospital, Medical School of National Kapodistrian University of Athens, Athens, Greece
| | - Peter Drakakis
- 1st Department of Obstetrics and Gynecology, Division of Human Reproduction, IVF Unit, Alexandra Hospital, Medical School of National Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Loutradis
- 1st Department of Obstetrics and Gynecology, Division of Human Reproduction, IVF Unit, Alexandra Hospital, Medical School of National Kapodistrian University of Athens, 62 Sirinon Str, Athens 17562, P. Faliro, Greece, Phone: 0030 210 9833576
| |
Collapse
|
36
|
de Lima LG, de Souza NOB, Rios RR, de Melo BA, dos Santos LTA, Silva KDM, Murphy TW, Fraga AB. Advances in molecular genetic techniques applied to selection for litter size in goats (Capra hircus): a review. JOURNAL OF APPLIED ANIMAL RESEARCH 2020. [DOI: 10.1080/09712119.2020.1717497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Luciano Gomes de Lima
- Northeastern Network in Biotechnology (known as RENORBIO in Portuguese), the Federal University of Alagoas, Maceió, Brazil
| | | | - Raisa Rodrigues Rios
- Northeastern Network in Biotechnology (known as RENORBIO in Portuguese), the Federal University of Alagoas, Maceió, Brazil
| | - Breno Araújo de Melo
- Northeastern Network in Biotechnology (known as RENORBIO in Portuguese), the Federal University of Alagoas, Maceió, Brazil
| | - Lays Thayse Alves dos Santos
- Animal Science of the Graduation Program, Agrarian Science Center, Federal University of Alagoas, Rio Largo, Brazil
| | - Kleibe de Moraes Silva
- Research Scientist Brazilian Agricultural Research Corporation - Goats and Sheep, Sobral, Brazil
| | - Thomas Wayne Murphy
- Department of Animal and Range Sciences, Montana State University, Bozeman, MT, USA
| | | |
Collapse
|
37
|
Asiamah Amponsah C, Zou K, Lu LL, Zhang SW, Xue Y, Su Y, Zhao Z. Genetic effects of polymorphisms of candidate genes associated with ovary development and egg production traits in ducks. Anim Reprod Sci 2019; 211:106219. [DOI: 10.1016/j.anireprosci.2019.106219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/06/2019] [Accepted: 10/23/2019] [Indexed: 11/30/2022]
|
38
|
Karamichos D, Barrientez B, Nicholas S, Ma S, Van L, Bak-Nielsen S, Hjortdal J. Gonadotropins in Keratoconus: The Unexpected Suspects. Cells 2019; 8:cells8121494. [PMID: 31766771 PMCID: PMC6953013 DOI: 10.3390/cells8121494] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/15/2019] [Accepted: 11/21/2019] [Indexed: 11/23/2022] Open
Abstract
Keratoconus (KC) is the most common ectatic corneal disease with a significant visual acuity burden. The actual burden is intangible given that KC can disrupt daily activities (reading, driving, and various career paths). Despite decades of research and clinical studies, the etiology, onset, and pathobiology of KC remain a mystery. The purpose of this study was to investigate the role of gonadotropins in KC. We recruited 86 KC patients (63 males, 23 female), and 45 healthy controls (22 male, 23 female). Plasma samples were collected and analyzed using an enzyme-linked immunosorbent assay. Corneal stromal cells from KC and healthy controls, and human epithelial corneal cells, were also investigated for gonadotropin-related markers. Our results show significant alterations of LH/FSH in KCs, compared to healthy controls. Our data also reveals, for the first time, the existence of gonadotropins and their receptors in KC. Our study is the first to demonstrate the role of LH/FSH in KCs, and expand the list of organs known to express gonadotropins, or their receptors, to include the human cornea. Our findings suggest that the human cornea is capable of responding to gonadotropins, and propose an intriguing mechanism for the onset and/or progression of KC.
Collapse
Affiliation(s)
- Dimitrios Karamichos
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, 73104 OK, USA
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, 73104 OK, USA; (B.B.); (S.N.); (S.M.); (L.V.)
- Correspondence: ; Tel.: +1-405-271-4019
| | - Brayden Barrientez
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, 73104 OK, USA; (B.B.); (S.N.); (S.M.); (L.V.)
| | - Sarah Nicholas
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, 73104 OK, USA; (B.B.); (S.N.); (S.M.); (L.V.)
| | - Symon Ma
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, 73104 OK, USA; (B.B.); (S.N.); (S.M.); (L.V.)
| | - Lyly Van
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, 73104 OK, USA; (B.B.); (S.N.); (S.M.); (L.V.)
| | - Sashia Bak-Nielsen
- Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 167, 8200 Aarhus N, Denmark; (S.B.-N.); (J.H.)
| | - Jesper Hjortdal
- Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 167, 8200 Aarhus N, Denmark; (S.B.-N.); (J.H.)
| |
Collapse
|
39
|
Rai S, Ashish, Kumari P, Singh A, Singh R. Correlation of follicle-stimulating hormone receptor gene Asn 680 Ser (rs6166) polymorphism with female infertility. J Family Med Prim Care 2019; 8:3356-3361. [PMID: 31742168 PMCID: PMC6857416 DOI: 10.4103/jfmpc.jfmpc_685_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 08/30/2019] [Accepted: 09/19/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND AIMS Female infertility is a complex multifactorial, and polygenic disease associated with genetic factors plays an essential role in its formation and follicle development, oocyte maturation, and steroidogenesis regulation in the ovary. The aim here is too study the genetic association between follicle-stimulating hormone receptor (FSHR) Asn680Ser; (rs6166) gene polymorphism with female Infertility in our population. METHODS In this prospective case-control study, we enrolled 106 infertile and 164 unrelated healthy control individuals. Genomic DNA was extracted from the 5 ml of venous blood using the modified salting-out method. A polymerase chain reaction-amplified exon 10 of FSHR and purified PCR products were sequenced on an ABI 3730XL DNA sequencer. The data were analyzed statistically. RESULTS We found that the presence of rare allele "G" and heterozygous and common homozygous genotypes significantly increased the risk of female infertility. No significant change in the FSHR 191756 G >A genotype frequency was observed, regardless of chromosomal integrity. The genotype frequency distribution of locus 680 was consistent with the Hardy-Weinberg Equilibrium (HWE) in both groups (P > 0.05). CONCLUSION No significant differences were found in allelic variants frequency and genotype distribution between each category of subjects when analyzing the FSHR SNPs in the exonic region (P value >0.05). FSHR Asn680Ser polymorphisms and female infertility (P > 0.05). Variations in FSHR gene have an essential influence on ovarian function and can account for several defects of female fertility. FSHR Asn680Ser (rs6166) gene polymorphism is associated with female infertility and can be used as a relevant molecular biomarker to identify the risk of infertility in our population. This finding can be important for disease pathogenesis.
Collapse
Affiliation(s)
- Sangeeta Rai
- Department of Obstetrics and Gynecology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashish
- Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Preeti Kumari
- Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Anup Singh
- Department of Geriatric Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Royana Singh
- Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
40
|
Lin PH, Chang CC, Wu KH, Shih CK, Chiang W, Chen HY, Shih YH, Wang KL, Hong YH, Shieh TM, Hsia SM. Dietary Glycotoxins, Advanced Glycation End Products, Inhibit Cell Proliferation and Progesterone Secretion in Ovarian Granulosa Cells and Mimic PCOS-like Symptoms. Biomolecules 2019; 9:biom9080327. [PMID: 31370285 PMCID: PMC6723748 DOI: 10.3390/biom9080327] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 12/17/2022] Open
Abstract
Women with polycystic ovary syndrome (PCOS) have been reported to have an elevated serum advanced glycation end product (AGE) level. However, the effect of AGEs on the pathophysiological ovarian granulosa cells of PCOS is still unclear. In this study, five indented BSA-derived AGE products were used to evaluate their effect on the function of human granulosa cells. We found that the proliferation of both primary human ovarian granulosa (hGC) cells and human granulosa-like tumor (KGN) cells were inhibited by treatment with these five AGE products. The progesterone secretion level was also reduced in both hGC and KGN cells by treatment with these AGE products through downregulation of LH receptor/cAMP regulatory activity. The granulosa cell layer and serum progesterone level were reduced in rats by treatment with MG-BSA; moreover, an increased number of follicle cysts and an irregular estrous cycle were observed. MG-BSA treatment had a similar effect on the phenotypes of the DHEA-induced PCOS model. Additionally, the insulin resistance and hepatic lesions seen in the DHEA-induced PCOS model were observed in the MG-BSA treatment group. Taken together, we found that AGEs exert a toxic effect on ovarian granulosa cells, ovarian morphology, and the estrous cycle that mimics the DHEA-induced PCOS phenotypes.
Collapse
Affiliation(s)
- Po-Han Lin
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Chao Chang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Kun-Hsuan Wu
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Chun-Kuang Shih
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Wenchang Chiang
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Hsin-Yuan Chen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Yin-Hwa Shih
- Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan
| | - Kei-Lee Wang
- Department of Nursing, Ching Kuo Institute of Management and Health, Keelung 20301, Taiwan
| | - Yong-Han Hong
- Department of Nutrition, I-Shou University, Kaohsiung 84001, Taiwan
| | - Tzong-Ming Shieh
- School of Dentistry, College of Dentistry, China Medical University, Taichung 40402, Taiwan
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
- School of Food and Safety, Taipei Medical University, Taipei 11031, Taiwan.
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan.
| |
Collapse
|
41
|
SHINDE GAYATRI, INGAWALE MAHESHKUMAR, KURALKAR SHAILENDRA, BANKAR PRAVIN, ALI SAJID, HAJARE SUNIL, INGOLE RANJIT. Follicle stimulating hormone receptor gene polymorphism and its association with fecundity in goats. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2019. [DOI: 10.56093/ijans.v89i7.92055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pluriparous goats (73) in between second to fifth parity with history of breeding 30 days before were selected for present study. A real time B-mode ultrasonography machine equipped with a linear array 7.5 MHz transrectal scanner was used for diagnosis of early pregnancy and twinning in goats. Out of 73 goats, 40 were detected pregnant with 22 goats with single embryo and 18 goats with twin embryos. Genomic DNA was extracted from the blood of all pregnant goats and polymerase chain reaction (PCR) with FSHR gene specific primers was carried out. The PCR product for FSHR gene was digested by restriction enzyme MSCI. Two genotypes AA and AB having amplification size (214 bp, 90 bp) and (214 bp, 90 bp and 304 bp) were detected, respectively. In AA genotype, 21 single and 9 twins were observed while 1 single and 9 twin embryos were observed in AB genotype. The percentage of single and twins was 70% and 30% in AA genotype, and 10% and 90% in AB genotype. In AA genotype, the average litter size was 1.3 while in AB genotype it was 1.9 and the difference was statistially significant. The AB genotype for the FSHR gene is responsible for more twining percentage.
Collapse
|
42
|
Arzuaga X, Walker T, Yost EE, Radke EG, Hotchkiss AK. Use of the Adverse Outcome Pathway (AOP) framework to evaluate species concordance and human relevance of Dibutyl phthalate (DBP)-induced male reproductive toxicity. Reprod Toxicol 2019; 96:445-458. [PMID: 31260805 PMCID: PMC10067323 DOI: 10.1016/j.reprotox.2019.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 06/05/2019] [Accepted: 06/25/2019] [Indexed: 12/14/2022]
Abstract
Dibutyl phthalate (DBP) is a phthalate ester used as a plasticizer, and solvent. Studies using rats consistently report that DBP exposure disrupts normal development of the male reproductive system in part via inhibition of androgen synthesis. However, studies using xenograft models report that in human fetal testis DBP exposure is unlikely to impair testosterone synthesis. These results question the validity of the rat model for assessment of male reproductive effects caused by DBP. The Adverse Outcome Pathway (AOP) framework was used to evaluate the available evidence for DBP-induced toxicity to the male reproductive system. Three relevant biological elements were identified: 1) fetal rats are more sensitive than other rodents and human fetal xenografts to DBP-induced anti-androgenic effects, 2) DBP-induced androgen-independent adverse outcomes are conserved amongst different mammalian models and human fetal testis xenografts, and 3) DBP-induced anti-androgenic effects are conserved in different mammalian species when exposure occurs during postnatal life stages.
Collapse
Affiliation(s)
- Xabier Arzuaga
- U.S. Environmental Protection Agency, National Center for Environmental Assessment, Washington, DC, United States of America.
| | - Teneille Walker
- U.S. Environmental Protection Agency, National Center for Environmental Assessment, Washington, DC, United States of America
| | - Erin E Yost
- U.S. Environmental Protection Agency, National Center for Environmental Assessment, Research Triangle Park, NC, United States of America
| | - Elizabeth G Radke
- U.S. Environmental Protection Agency, National Center for Environmental Assessment, Washington, DC, United States of America
| | - Andrew K Hotchkiss
- U.S. Environmental Protection Agency, National Center for Environmental Assessment, Research Triangle Park, NC, United States of America
| |
Collapse
|
43
|
Du X, Guo J, Cao QY, Yao W, Li QF. A haplotype variant of Hu sheep follicle-stimulating hormone receptor promoter region decreases transcriptional activity. Anim Genet 2019; 50:407-411. [PMID: 31094009 DOI: 10.1111/age.12794] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2019] [Indexed: 12/31/2022]
Abstract
In sheep, increased expression of the follicle-stimulating hormone receptor (FSHR) in the ovary is a common feature of ewes that carry the prolific allele. In this study, we demonstrated that polymorphisms in the core promoter of the FSHR gene are associated with the reproductive performance of Hu sheep and are involved in the transcriptional activity of FSHR. An approximately 1.5-kb region of the 5' flanking sequence of the Hu sheep FSHR gene was isolated and characterized, and its core promoter was located in the 5' regulatory region, from nucleotides -580 to -342. Four variants (c.-518T>C, c.-466C>T, c.-414A>G and c.-365C>T) were detected in this region, and six genotypes and three haplotypes were found in the Hu sheep population (n = 245). An association analysis revealed that these polymorphisms are associated with the litter size of Hu ewes. Furthermore, a luciferase assay showed that the T-C-A-C- and C-T-G-T-type core promoters have higher transcriptional activity than does the T-C-G-C type. Notably, the putative binding site for the transcription factor Yin Yang 1 (YY1) was present at the A allele of nucleotide -414, but YY1 can significantly increase the transcriptional activity of the FSHR core promoter, which contains three different haplotypes. Taken together, our results establish that these variants might be involved in regulating the transcriptional activity of FSHR and litter size in Hu ewes and may provide a novel candidate marker for marker-assisted selection in sheep breeding.
Collapse
Affiliation(s)
- X Du
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - J Guo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Q Y Cao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - W Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Q F Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
44
|
Shimizu K, Nakamura T, Bayasula, Nakanishi N, Kasahara Y, Nagai T, Murase T, Osuka S, Goto M, Iwase A, Kikkawa F. Molecular mechanism of FSHR expression induced by BMP15 in human granulosa cells. J Assist Reprod Genet 2019; 36:1185-1194. [PMID: 31079267 DOI: 10.1007/s10815-019-01469-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/28/2019] [Indexed: 02/04/2023] Open
Abstract
PURPOSE Follicle-stimulating hormone receptor (FSHR) expression in granulosa cells is critical in enabling follicles to achieve accelerated growth. Although FSHR expression has been reported to be epigenetically regulated, the mechanism is unclear. Cooperation between oocytes and granulosa cells is also essential for normal follicular growth. Among oocyte-derived factors, bone morphogenetic protein 15 (BMP15) promotes follicular growth and is suggested to have epigenetic effects. We examined the role of BMP15 in the acquirement of FSHR in human granulosa cells. METHODS Immortalized non-luteinized human granulosa (HGrC1) cells were stimulated with trichostatin A (TSA) or BMP15 to analyze FSHR expression, histone modifications, and USF1/2 binding at the FSHR promoter region. Histone acetyl transferase (HAT) activity and phosphorylation of Smad 1/5/8 and p38 MAPK were examined with or without BMP15, SB203580, and LDN193189. CYP19A1 expression and estradiol production were also studied. RESULTS TSA and BMP15 induced FSHR mRNA expression in a dose-dependent manner and histone modifications were observed with increased binding of USF1/2. BMP15 increased FSHR protein expression, which was suppressed by LDN193189. BMP15 increased phosphorylation of Smad 1/5/8 and significantly increased HAT activity, which was inhibited by LDN193189, but not by SB203580. BMP15 increased phosphorylation of p38 MAPK and USF1. LDN193189 suppressed BMP15-induced phosphorylation of both p38 MAPK and USF1, whereas SB203580 suppressed the phosphorylation of USF1. BMP15 increased CYP19A1 mRNA expression and estradiol production. CONCLUSION BMP15 induced FSHR expression in human granulosa cells through Smad and non-Smad pathways. This mechanism of FSHR induction by BMP15 may be utilized for controlling follicular growth.
Collapse
Affiliation(s)
- Ken Shimizu
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tomoko Nakamura
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Bayasula
- Bell Research Center for Reproductive Health and Cancer; Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Natsuki Nakanishi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yukiyo Kasahara
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takashi Nagai
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tomohiko Murase
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Satoko Osuka
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.,Department of Maternal and Perinatal Medicine, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Maki Goto
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Akira Iwase
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, 371-8511, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
45
|
Gharemirshamlu FR, Afsar M, Mokhdomi TA, Amin A, Bukhari S, Krishnan A, Kumar CV, Bamdad K, Patel TN, Qadri RA, Chikan NA, Shabir N. D224V and S128Y mutation in FSHR ED influence thumb movement differentially: An intricate insight gained by short-term molecular dynamics simulation. J Cell Biochem 2019; 120:7701-7710. [PMID: 30390320 DOI: 10.1002/jcb.28044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 10/22/2018] [Indexed: 01/24/2023]
Abstract
Follicle-stimulating hormone-follicle-stimulating hormone receptor (FSH-FSHR) interaction is one of the most thoroughly studied signaling pathways primarily because of being implicated in sexual reproduction in mammals by way of maintaining gonadal function and sexual fertility. Despite material advances in understanding the role of point mutations, their mechanistic basis in FSH-FSHR signaling is still confined to mystically altered behavior of sTYS335 (sulfated tyrosine) yet lacking a substantial theory. To understand the structural basis of receptor modulation, we choose two behaviorally contradicting mutations, namely S128Y (activating) and D224Y (inactivating), found in FSH receptor responsible for ovarian hyperstimulation syndrome and ovarian dysgenesis, respectively. Using short-term molecular dynamics simulations, the atomic scale investigations reveal that the binding pattern of sTYS with FSH and movement of the thumb region of FSHR show distinct contrasting patterns in the two mutants, which supposedly could be a critical factor for differential FSHR behavior in activating and inactivating mutations.
Collapse
Affiliation(s)
| | - Maliha Afsar
- Department of Pathology, Osmania General Hospital, Hyderabad, India
| | - Taseem A Mokhdomi
- Division of Animal Health, Computational Lab, Daskdān Biotech Solutions Ltd, Srinagar, India
| | - Asif Amin
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Shoiab Bukhari
- Division of Animal Health, Computational Lab, Daskdān Biotech Solutions Ltd, Srinagar, India
| | - Anbarasu Krishnan
- Department of Bioinformatics, School of Life Sciences, Vels University, Chennai, India
| | - Chundi Vinay Kumar
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | | | - Trupti N Patel
- Department of Medical Biotechnology, School of Bioscience and Technology, VIT University, Vellore, India
| | - Raies A Qadri
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Naveed Anjum Chikan
- Division of Animal Health, Computational Lab, Daskdān Biotech Solutions Ltd, Srinagar, India
| | - Nadeem Shabir
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-Kashmir, Shuhama, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
46
|
Li X, Lu Y, Liu X, Xie X, Wang K, Yu D. Identification of chicken FSHR gene promoter and the correlations between polymorphisms and egg production in Chinese native hens. Reprod Domest Anim 2019; 54:702-711. [PMID: 30702781 PMCID: PMC6850157 DOI: 10.1111/rda.13412] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/12/2019] [Indexed: 11/30/2022]
Abstract
Egg production is an important economic trait in poultry, and it is of great significance to study the key genes and functional SNPs that affect egg laying performance. Follicle‐stimulating hormone (FSH) plays an important physiological role in the reproductive performance of humans and animals by binding to its receptor (FSHR). Studies have shown that there are many transcriptional regulatory elements in the 5′ flanking region of the FSHR gene that interact with transcription factors to regulate FSHR transcription. In this study, DNA sequencing was used to identify SNPs in the FSHR promoter sequence in both Dongxiang and Suken chickens. To detect the activity of the chicken FSHR gene promoter, we analysed the characteristics of the sequence and constructed three deletion vectors. We confirmed that the region (−18/−544) was the core promoter. Furthermore, five polymorphisms, including a 200‐bp indel at −869, C−1684T, C−1608T, G−368A and T−238A, were detected in both the Dongxiang and Suken chickens. The age at first egg (AFE) for different genotype of −869 indel in Suken chicken was significantly different (p < 0.01). For SNP C−1684T in Dongxiang chickens, the CC genotype had higher egg number at 43 weeks of age (E43) than that of the TC genotype (p < 0.05). For SNP C−1684T in Suken chickens, the TC genotype had higher AFE than that of the CC genotype (p < 0.05). For SNP C−1608T in Suken chickens, the CC genotype had higher AFE than that of the TC genotype (p < 0.05). For SNP G−368A in Suken chickens, the AG genotype had higher AFE than that of the GG genotype (p < 0.05).
Collapse
Affiliation(s)
- Xiaopeng Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yinglin Lu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaofan Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaolei Xie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Kun Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Debing Yu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
47
|
Tu J, Cheung AHH, Chan CLK, Chan WY. The Role of microRNAs in Ovarian Granulosa Cells in Health and Disease. Front Endocrinol (Lausanne) 2019; 10:174. [PMID: 30949134 PMCID: PMC6437095 DOI: 10.3389/fendo.2019.00174] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/01/2019] [Indexed: 02/02/2023] Open
Abstract
The granulosa cell (GC) is a critical somatic component of the ovary. It is essential for follicle development by supporting the developing oocyte, proliferating and producing sex steroids and disparate growth factors. Knowledge of the GC's function in normal ovarian development and function, and reproductive disorders, such as polycystic ovary syndrome (PCOS) and premature ovarian failure (POF), is largely acquired through clinical studies and preclinical animal models. Recently, microRNAs have been recognized to play important regulatory roles in GC pathophysiology. Here, we examine the recent findings on the role of miRNAs in the GC, including four related signaling pathways (Transforming growth factor-β pathway, Follicle-stimulating hormones pathway, hormone-related miRNAs, Apoptosis-related pathways) and relevant diseases. Therefore, miRNAs appear to be important regulators of GC function in both physiological and pathological conditions. We suggest that targeting specific microRNAs is a potential therapeutic option for treating ovary-related diseases, such as PCOS, POF, and GCT.
Collapse
Affiliation(s)
- Jiajie Tu
- Institute of Clinical Pharmacology, Anhui Medical University, Anhui, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Albert Hoi-Hung Cheung
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | | | - Wai-Yee Chan
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
- *Correspondence: Wai-Yee Chan
| |
Collapse
|
48
|
Schubert M, Pérez Lanuza L, Gromoll J. Pharmacogenetics of FSH Action in the Male. Front Endocrinol (Lausanne) 2019; 10:47. [PMID: 30873114 PMCID: PMC6403134 DOI: 10.3389/fendo.2019.00047] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/21/2019] [Indexed: 11/28/2022] Open
Abstract
Male infertility is a major contributor to couple infertility, however in most cases it remains "idiopathic" and putative treatment regimens are lacking. This leads to a scenario in which intra-cytoplasmic spermatozoa injection (ICSI) is widely used in idiopathic male infertility, though the treatment burden is high for the couple and it entails considerable costs and risks. Given the crucial role of the Follicle-stimulating hormone (FSH) for spermatogenesis, FSH has been used empirically to improve semen parameters, but the response to FSH varied strongly among treated infertile men. Single nucleotide polymorphisms (SNPs) within FSH ligand/receptor genes (FSHB/FSHR), significantly influencing reproductive parameters in men, represent promising candidates to serve as pharmacogenetic markers to improve prediction of response to FSH. Consequently, several FSH-based pharmacogenetic studies have been conducted within the last years with unfortunately wide divergence concerning selection criteria, treatment and primary endpoints. In this review we therefore outline the current knowledge on single nucleotide polymorphisms (SNPs) in the FSH and FSH receptor genes and their putative functional effects. We compile and critically assess the previously performed pharmacogenetic studies in the male and propose a putative strategy that might allow identifying patients who could benefit from FSH treatment.
Collapse
Affiliation(s)
- Maria Schubert
- Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital Münster, Münster, Germany
| | - Lina Pérez Lanuza
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, Münster, Germany
| | - Jörg Gromoll
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, Münster, Germany
- *Correspondence: Jörg Gromoll
| |
Collapse
|
49
|
Marelli BE, Leiva CJM, Flores Brun RB, Ramírez CS, Failla JI, Matiller V, Amweg AN, Rey F, Ortega HH. Production and validation of a polyclonal serum against bovine FSH receptor. Reprod Biol 2018; 18:432-439. [PMID: 30220548 DOI: 10.1016/j.repbio.2018.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/18/2018] [Accepted: 09/05/2018] [Indexed: 11/25/2022]
Abstract
In ovarian granulosa cells, follicle-stimulating hormone (FSH) regulates the proliferation and differentiation events required for follicular growth and oocyte maturation. FSH actions are mediated exclusively through the FSH receptor (FSHR). In cattle, the FSHR gene expression pattern during folliculogenesis and the implications of this receptor in reproductive disorders have been extensively studied. However, the limited availability of specific antibodies against bovine FSHR has restricted FSHR protein analysis. In the present study, we developed an anti-FSHR polyclonal serum by using a 14-kDa peptide conjugated to maltose binding protein. The antiserum obtained was characterized by western blot of protein extracts from bovine follicles, BGC-1 cells and primary cultures of granulosa cells stimulated with testosterone. Also, the blocking effect of serum on estradiol secretion and cell viability after gonadotropin stimulus was characterized in a functional in vitro assay. A 76-kDa protein, consistent with the predicted molecular size of full-length FSHR, was detected in ovarian tissue. Besides, two immunoreactive bands of 60-kDa and 30-kDa (only in cultured cells) were detected. These bands would be related to some of the isoforms of the receptor. Therefore, immunohistochemical assays allowed detecting FSHR in the cytoplasm of granulosa cells and an increase in its expression as follicles progressed from primordial to large preantral follicles. These results suggest that the anti-FSHR serum here developed has good reactivity and specificity against the native FSHR. Therefore, this antiserum may serve as a valuable tool for future studies of the biological function of FSHR in physiological conditions as well as of the molecular mechanism and functional involvement of FSHR in reproductive disorders.
Collapse
Affiliation(s)
- Belkis E Marelli
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICIVET Litoral), Universidad Nacional del Litoral, Argentina (UNL) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Ciencias Veterinarias, UNL, Argentina
| | - Cristian J M Leiva
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICIVET Litoral), Universidad Nacional del Litoral, Argentina (UNL) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Ciencias Veterinarias, UNL, Argentina
| | - Rocío B Flores Brun
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
| | - Cintia S Ramírez
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Juan I Failla
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICIVET Litoral), Universidad Nacional del Litoral, Argentina (UNL) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Ciencias Veterinarias, UNL, Argentina
| | - Valentina Matiller
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICIVET Litoral), Universidad Nacional del Litoral, Argentina (UNL) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Ciencias Veterinarias, UNL, Argentina
| | - Ayelén N Amweg
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICIVET Litoral), Universidad Nacional del Litoral, Argentina (UNL) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Ciencias Veterinarias, UNL, Argentina
| | - Florencia Rey
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICIVET Litoral), Universidad Nacional del Litoral, Argentina (UNL) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Ciencias Veterinarias, UNL, Argentina
| | - Hugo H Ortega
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICIVET Litoral), Universidad Nacional del Litoral, Argentina (UNL) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Ciencias Veterinarias, UNL, Argentina.
| |
Collapse
|
50
|
Xu J, Gao X, Li X, Ye Q, Jebessa E, Abdalla BA, Nie Q. Molecular characterization, expression profile of the FSHRgene and its association with egg production traits in muscovy duck. J Genet 2018; 96:341-351. [PMID: 28674235 DOI: 10.1007/s12041-017-0783-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Follicle-stimulating hormone (FSH) and its receptor play a key role in the follicular development and regulation of steroidogenesis in the ovary and spermatogenesis in the testis. The purpose of this study was to characterize themuscovy duck FSHR gene, identify SNPs and their association with egg production traits in muscovy ducks. Here, we cloned the complementary DNA (cDNA) sequence of FSHR, and examined the expression patterns of FSHR gene in adult female muscovy duck tissues. The cloned cDNA of the muscovy duck FSHR gene shared high similarity to those of pekin duck (Anas platyrhynchos) (95.7%) and chicken (93.2%). Three different muscovy duck FSHR transcripts were identified. Quantitative real-time PCR (RT-qPCR) results showed that the FSHR gene was expressed in all the 14 tested tissues, and the highest expression level was seen in the ovary. A total of 16 SNPs were identified, among which, four SNPs were located in the coding region of FSHR. The SNP C320T is significantly associated with egg production at 59 weeks of age (P < 0.05), whereas the SNP A227G is significantly associated with age at first egg stage (P < 0.05). These results suggest that the two SNPs (A227G and C320T) of FSHR gene are associated with egg production traits and could be potential markers that can be used for marker-assisted selection programmes to increase egg production in muscovy duck.
Collapse
Affiliation(s)
- Jiguo Xu
- National-Local Joint Engineering Research Center for Livestock Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|