1
|
Valli FE, Simoncini MS, González MA, Piña CI. How do maternal androgens and estrogens affect sex determination in reptiles with temperature-dependent sex? Dev Growth Differ 2023; 65:565-576. [PMID: 37603030 DOI: 10.1111/dgd.12887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023]
Abstract
Temperature sex determination (TSD) in reptiles has been studied to elucidate the mechanisms by which temperature is transformed into a biological signal that determines the sex of the embryo. Temperature is thought to trigger signals that alter gene expression and hormone metabolism, which will determine the development of female or male gonads. In this review, we focus on collecting and discussing important and recent information on the role of maternal steroid hormones in sex determination in oviparous reptiles such as crocodiles, turtles, and lizards that possess TSD. In particular, we focus on maternal androgens and estrogens deposited in the egg yolk and their metabolites that could also influence the sex of offspring. Finally, we suggest guidelines for future research to help clarify the link between maternal steroid hormones and offspring sex.
Collapse
Affiliation(s)
- Florencia E Valli
- CICYTTP-CONICET/Prov. Entre Ríos/UADER, Diamante, Argentina
- Departamento de Ciencias Biológicas, Cátedra de Bromatología y Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Melina S Simoncini
- CICYTTP-CONICET/Prov. Entre Ríos/UADER, Diamante, Argentina
- Facultad de Ciencia y Tecnología, Universidad Autónoma de Entre Ríos, Diamante, Argentina
| | - Marcela A González
- Departamento de Ciencias Biológicas, Cátedra de Bromatología y Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Carlos I Piña
- CICYTTP-CONICET/Prov. Entre Ríos/UADER, Diamante, Argentina
- Facultad de Ciencia y Tecnología, Universidad Autónoma de Entre Ríos, Diamante, Argentina
| |
Collapse
|
2
|
Nie H, Xu Y, Zhang Y, Wen Y, Zhan J, Xia Y, Zhou Y, Wang R, Wu X. The effects of endogenous FSH and its receptor on oogenesis and folliculogenesis in female Alligator sinensis. BMC ZOOL 2023; 8:8. [PMID: 37403129 DOI: 10.1186/s40850-023-00170-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 06/26/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND The precise mechanisms of hormone action responsible for the full course of events modulating folliculogenesis in crocodilian have not been determined, although histological features have been identified. RESULTS The Alligator sinensis ovarian morphological characteristics observed at 1, 15, 30, 60, 90, and 300 days post hatching(dph) revealed that the dynamic changes in germ cells varied in different meiotic and developmental stages, confirming that the processes of folliculogenesis were protracted and asynchronous. The presence of endogenous follicle-stimulating hormone(FSH) mRNA and protein expression within the cerebrum at 1 dph, in parallel with the increase in germ cells within the germ cell nests(Nest) from 1 dph to 15 dph, suggested that endocrine regulation of the pituitary-gonad axis is an early event in oogonia division. Furthermore, the endogenous expression of FSH showed a trend of negative feedback augmentation accompanied by the exhaustion of maternal yolk E2 observed at 15 dph. Such significant elevation of endogenous FSH levels was observed to be related to pivotal events in the transition from mitosis to meiosis, as reflected by the proportion of oogonia during premeiosis interphase, with endogenous FSH levels reaching a peak at the earliest time step of 1 dph. In addition, the simultaneous upregulation of premeiotic marker STRA8 mRNA expression and the increase in endogenous FSH further verified the above speculation. The strongly FSHr-positive label in the oocytes within Pre-previtellogenic follicles was synchronized with the significant elevation of ovarian cAMP detected at 300 dph, which suggested that diplotene arrest maintenance during early vitellogenesis might be FSH dependent. In addition, preferential selection in asynchronous meiotic initiation has been supposed to act on somatic supportive cells and not directly on germ cells via regulation of FSH that in turn affects downstream estrogen levels. This suggestion was verified by the reciprocal stimulating effect of FSH and E2 on the accelerated meiotic marker SYCP3 and by the inhibited cell apoptosis demonstrated in ovarian cell culture in vitro. CONCLUSION The corresponding results contribute an expansion of the understanding of physiological processes and shed some light on the specific factors responsible for gonadotropin function in the early folliculogenesis of crocodilians.
Collapse
Affiliation(s)
- Haitao Nie
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China
| | - Yunlu Xu
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China
| | - Yuqian Zhang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China
| | - Yue Wen
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China
| | - Jixiang Zhan
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China
| | - Yong Xia
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China
| | - Yongkang Zhou
- Alligator Research Center of Anhui Province, Xuanzhou, 242000, People's Republic of China
| | - Renping Wang
- Alligator Research Center of Anhui Province, Xuanzhou, 242000, People's Republic of China
| | - Xiaobing Wu
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China.
| |
Collapse
|
3
|
Jouanneau W, Léandri-Breton DJ, Herzke D, Moe B, Nikiforov VA, Pallud M, Parenteau C, Gabrielsen GW, Chastel O. Does contaminant exposure disrupt maternal hormones deposition? A study on per- and polyfluoroalkyl substances in an Arctic seabird. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161413. [PMID: 36621503 DOI: 10.1016/j.scitotenv.2023.161413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/09/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Maternal effects are thought to be essential tools for females to modulate offspring development. The selective deposition of avian maternal hormones could therefore allow females to strategically adjust the phenotype of their offspring to the environmental situation encountered. However, at the time of egg formation, several contaminants are also transferred to the egg, including per- and polyfluoroalkyl substances (PFAS) which are ubiquitous organic contaminants with endocrine disrupting properties. It is, however, unknown if they can disrupt maternal hormone deposition. In this study we explored relationships between female PFAS burden and maternal deposition in the eggs of steroids (dihydrotestosterone, androstenedione and testosterone), glucocorticoids (corticosterone) and thyroid hormones (triiodothyronine and thyroxine) in a population of the Arctic-breeding black-legged kittiwake (Rissa tridactyla). Egg yolk hormone levels were unrelated to female hormone plasma levels. Second-laid eggs had significantly lower concentrations of androstenedione than first-laid eggs. Triiodothyronine yolk levels were decreasing with increasing egg mass but increasing with increasing females' body condition. Testosterone was the only transferred yolk hormone correlated to maternal PFAS burden: specifically, we found a positive correlation between testosterone in yolks and circulating maternal perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDcA) and perfluoroundecanoic acid (PFUnA) in first-laid eggs. This correlative study provides a first insight into the potential of some long-chain perfluoroalkyl acids to disrupt maternal hormones deposition in eggs and raises the question about the consequences of increased testosterone deposition on the developing embryo.
Collapse
Affiliation(s)
- William Jouanneau
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS - La Rochelle Université, 17031 La Rochelle, France; Norwegian Polar Institute, Fram Centre, NO-9296 Tromsø, Norway.
| | - Don-Jean Léandri-Breton
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS - La Rochelle Université, 17031 La Rochelle, France; Department of Natural Resource Sciences, McGill University, Ste Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Dorte Herzke
- NILU - Norwegian Institute for Air Research, Fram Centre, NO-9296 Tromsø, Norway
| | - Børge Moe
- NINA - Norwegian Institute for Nature Research, NO-7485 Trondheim, Norway
| | - Vladimir A Nikiforov
- NILU - Norwegian Institute for Air Research, Fram Centre, NO-9296 Tromsø, Norway
| | - Marie Pallud
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS - La Rochelle Université, 17031 La Rochelle, France
| | - Charline Parenteau
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS - La Rochelle Université, 17031 La Rochelle, France
| | | | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS - La Rochelle Université, 17031 La Rochelle, France
| |
Collapse
|
4
|
Nilsen FM, Rainwater TR, Wilkinson PM, Brunell AM, Lowers RH, Bowden JA, Guillette LJ, Long SE, Schock TB. Examining maternal and environmental transfer of mercury into American alligator eggs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:110057. [PMID: 31835046 PMCID: PMC11005113 DOI: 10.1016/j.ecoenv.2019.110057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
American alligators are exposed to mercury (Hg) throughout their natural range and may maternally transfer Hg into their eggs. Wildlife species are highly sensitive to Hg toxicity during embryonic development and neonatal life, and information on Hg transfer into eggs is critical when attempting to understand the effects of Hg exposure on developing oviparous organisms. To examine Hg transfer in alligators, the objectives of the present study were to 1) determine Hg concentrations in yolk (embryonic and neonatal food source) from wild alligator eggs collected from three locations - Yawkey Wildlife Center SC (YWC), Lake Apopka FL (LA), and Lake Woodruff FL (LW); 2) examine the relationship between THg concentrations in wild alligator nest material and egg yolk at Merritt Island National Wildlife Refuge, FL; 3) examine the Hg concentrations in wild maternal female alligators (blood) and the THg in corresponding egg yolks and embryos across three nesting seasons at a single location (YWC), and evaluate the relationship between nesting female THg concentrations (blood) and their estimated age and number of nesting years (YWC); and 4) assess the transfer of biologically-relevant Hg concentrations (based on Hg measured in maternal female blood) into embryos using an egg-dosing experiment. Mean total Hg (THg) concentrations observed at each site were 26.3 ng/g ± 11.0 ng/g (YWC), 8.8 ng/g ± 5.1 ng/g (LA), and 22.6 ng/g ± 6.3 ng/g (LW). No relationship was observed between THg in alligator nest material and corresponding yolk samples, nor between THg in maternal alligator blood and estimated age and number of nesting years of these animals. However, significant positive relationships were observed between THg in blood of nesting female alligators and THg in their corresponding egg yolk. We observed that 12.8% of the maternal blood THg is found in the corresponding egg yolk, and a highly significant correlation was observed between the two sample types (r = 0.66; p < 0.0001). The egg dosing experiment revealed that Hg did not transfer through the eggshell at developmental stage 19. Overall, this study provides new information regarding Hg transfer in American alligators which can improve biomonitoring efforts and may inform ecotoxicological investigations and population management programs in areas of high Hg contamination.
Collapse
Affiliation(s)
- Frances M Nilsen
- National Institute of Standards and Technology, Chemical Sciences Division, Hollings Marine Laboratory, Charleston, SC, USA; Medical University of South Carolina, Marine Bio-Medicine and Environmental Science Program, Charleston, SC, USA.
| | - Thomas R Rainwater
- Baruch Institute of Coastal Ecology and Forest Science, Clemson University, P.O. Box 596, Georgetown, SC, USA; Tom Yawkey Wildlife Center, South Carolina Department of Natural Resources, 1 Yawkey Way South, Georgetown, SC, USA.
| | - Phil M Wilkinson
- Tom Yawkey Wildlife Center, South Carolina Department of Natural Resources, 1 Yawkey Way South, Georgetown, SC, USA
| | - Arnold M Brunell
- Florida Fish & Wildlife Conservation Commission, 601 W. Woodward Ave., Eustis, FL, USA.
| | | | - John A Bowden
- National Institute of Standards and Technology, Chemical Sciences Division, Hollings Marine Laboratory, Charleston, SC, USA; Current Address- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA.
| | - Louis J Guillette
- Medical University of South Carolina, Marine Bio-Medicine and Environmental Science Program, Charleston, SC, USA
| | - Stephen E Long
- National Institute of Standards and Technology, Chemical Sciences Division, Hollings Marine Laboratory, Charleston, SC, USA.
| | - Tracey B Schock
- National Institute of Standards and Technology, Chemical Sciences Division, Hollings Marine Laboratory, Charleston, SC, USA.
| |
Collapse
|
5
|
Nilsen FM, Bowden JA, Rainwater TR, Brunell AM, Kassim BL, Wilkinson PM, Guillette LJ, Long SE, Schock TB. Examining toxic trace element exposure in American alligators. ENVIRONMENT INTERNATIONAL 2019; 128:324-334. [PMID: 31078001 PMCID: PMC6857802 DOI: 10.1016/j.envint.2019.04.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
Toxic trace element exposure occurs through release of the ubiquitous and naturally occurring elements arsenic (As), cadmium (Cd), lead (Pb), and mercury (Hg). The unique environmental conditions of the wetland ecosystems along the southeastern Atlantic coast of the United States lead to the accumulation of Hg which is greater than in most other ecosystems in the country. There are also point sources of As, Cd, and Pb in this region. To effectively monitor trace element concentrations, and consequently the potential human exposure, accessible local sentinel species are needed. In this study, concentrations of As, Cd, Pb, Hg and six other trace elements (Al, Ni, Cu, Zn, Se, Mo) were examined in American alligators (Alligator mississippiensis) from seven wetland sites in South Carolina and Florida and assessed for their utility as a sentinel species for human trace element exposure. Alligators were chosen as a potential sentinel as they share a common exposure with the local human population through their aquatic diet, and they are directly consumed commercially and through recreation hunting in this region. Sex was significantly related to the concentration of Zn, Mo, and Al, but not As, Pb, Hg, Cd, Se, or Cu. Site specific differences in element concentrations were observed for As, Pb, Hg, Cd, Se, Zn, and Mo. Size/age was significantly related to the element Hg and Pb concentrations observed. The observed concentration ranges for the four toxic elements, As (6-156 ng/g), Cd (0.3-1.3 ng/g), Pb (3-4872 ng/g), and Hg (39-2765 ng/g), were comparable to those previously reported in diverse human populations. In this region alligators are hunted recreationally and consumed by the local community, making them a vehicle of direct human toxic element exposure. We propose that the similarity in As, Cd, Pb, and Hg concentrations between alligators observed in this study and humans underscores how alligators can serve as a useful sentinel species for toxic element exposure.
Collapse
Affiliation(s)
- Frances M Nilsen
- National Institute of Standards and Technology, Chemical Sciences Division, Hollings Marine Laboratory, Charleston, SC, USA; Medical University of South Carolina, Marine Bio-medicine and Environmental Science Program, Charleston, SC, USA.
| | - John A Bowden
- National Institute of Standards and Technology, Chemical Sciences Division, Hollings Marine Laboratory, Charleston, SC, USA; Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA.
| | - Thomas R Rainwater
- Baruch Institute of Coastal Ecology and Forest Science, Clemson University, P.O. Box 596, Georgetown, SC, USA; Tom Yawkey Wildlife Center, South Carolina Department of Natural Resources, 1 Yawkey Way South, Georgetown, SC, USA
| | - Arnold M Brunell
- Florida Fish & Wildlife Conservation Commission, Eustis, FL, USA.
| | - Brittany L Kassim
- National Institute of Standards and Technology, Chemical Sciences Division, Hollings Marine Laboratory, Charleston, SC, USA
| | - Phil M Wilkinson
- Baruch Institute of Coastal Ecology and Forest Science, Clemson University, P.O. Box 596, Georgetown, SC, USA
| | - Louis J Guillette
- Medical University of South Carolina, Marine Bio-medicine and Environmental Science Program, Charleston, SC, USA
| | - Stephen E Long
- National Institute of Standards and Technology, Chemical Sciences Division, Hollings Marine Laboratory, Charleston, SC, USA.
| | - Tracey B Schock
- National Institute of Standards and Technology, Chemical Sciences Division, Hollings Marine Laboratory, Charleston, SC, USA.
| |
Collapse
|
6
|
Ruuskanen S, Espín S, Sánchez-Virosta P, Sarraude T, Hsu BY, Pajunen P, Costa RA, Eens M, Hargitai R, Török J, Eeva T. Transgenerational endocrine disruption: Does elemental pollution affect egg or nestling thyroid hormone levels in a wild songbird? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:725-735. [PMID: 30721863 DOI: 10.1016/j.envpol.2019.01.088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
Endocrine disrupting chemicals (EDCs) include a wide array of pollutants, such as some metals and other toxic elements, which may cause changes in hormonal homeostasis. In addition to affecting physiology of individuals directly, EDCs may alter the transfer of maternal hormones to offspring, i.e. causing transgenerational endocrine disruption. However, such effects have been rarely studied, especially in wild populations. We studied the associations between environmental elemental pollution (As, Cd, Cu, Ni, Pb) and maternally-derived egg thyroid hormones (THs) as well as nestling THs in great tits (Parus major) using extensive sampling of four pairs of polluted and reference populations across Europe (Finland, Belgium, Hungary, Portugal). Previous studies in these populations showed that breeding success, nestling growth and adult and nestling physiology were altered in polluted zones compared to reference zones. We sampled non-incubated eggs to measure maternally-derived egg THs, measured nestling plasma THs and used nestling faeces for assessing local elemental exposure. We also studied whether the effect of elemental pollution on endocrine traits is dependent on calcium (Ca) availability (faecal Ca as a proxy) as low Ca increases toxicity of some elements. Birds in the polluted zones were exposed to markedly higher levels of toxic elements than in reference zones at the populations in Finland, Belgium and Hungary. In contrast to our predictions, we did not find any associations between overall elemental pollution, or individual element concentrations and egg TH and nestling plasma TH levels. However, we found some indication that the effect of metals (Cd and Cu) on egg THs is dependent on Ca availability. In summary, our results suggest that elemental pollution at the studied populations is unlikely to cause overall TH disruption and affect breeding via altered egg or nestling TH levels with the current elemental pollution loads. Associations with Ca availability should be further studied.
Collapse
Affiliation(s)
- Suvi Ruuskanen
- Department of Biology, University of Turku, 20014, Turku, Finland.
| | - Silvia Espín
- Department of Biology, University of Turku, 20014, Turku, Finland; Area of Toxicology, Department of Socio-Sanitary Sciences, IMIB-Arrixaca, University of Murcia, Campus de Espínardo, 30100, Murcia, Spain
| | - Pablo Sánchez-Virosta
- Department of Biology, University of Turku, 20014, Turku, Finland; Area of Toxicology, Department of Socio-Sanitary Sciences, IMIB-Arrixaca, University of Murcia, Campus de Espínardo, 30100, Murcia, Spain
| | - Tom Sarraude
- Department of Biology, University of Turku, 20014, Turku, Finland; GELIFES, University of Groningen, Groningen, the Netherlands
| | - Bin-Yan Hsu
- Department of Biology, University of Turku, 20014, Turku, Finland
| | - Piia Pajunen
- Department of Biology, University of Turku, 20014, Turku, Finland
| | - Rute A Costa
- Departamento de Biologia & CESAM, Universidade de Aveiro, Aveiro, Portugal
| | - Marcel Eens
- Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Rita Hargitai
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Eötvös Loránd University, Budapest, Hungary
| | - János Török
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Eötvös Loránd University, Budapest, Hungary
| | - Tapio Eeva
- Department of Biology, University of Turku, 20014, Turku, Finland
| |
Collapse
|
7
|
Hale MD, McCoy JA, Doheny BM, Galligan TM, Guillette LJ, Parrott BB. Embryonic estrogen exposure recapitulates persistent ovarian transcriptional programs in a model of environmental endocrine disruption†. Biol Reprod 2018; 100:149-161. [DOI: 10.1093/biolre/ioy165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/12/2018] [Indexed: 11/15/2022] Open
Affiliation(s)
- Matthew D Hale
- Savannah River Ecology Laboratory, Aiken, South Carolina, USA
- Odum School of Ecology, University of Georgia, Athens, Georgia, USA
| | | | - Brenna M Doheny
- School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Thomas M Galligan
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, Virginia, USA
| | - Louis J Guillette
- Marine Biomedicine and Environmental Sciences Program, Hollings Marine Laboratory, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Benjamin B Parrott
- Savannah River Ecology Laboratory, Aiken, South Carolina, USA
- Odum School of Ecology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
8
|
McCoy KA, Roark AM, Boggs ASP, Bowden JA, Cruze L, Edwards TM, Hamlin HJ, Cantu TM, McCoy JA, McNabb NA, Wenzel AG, Williams CE, Kohno S. Integrative and comparative reproductive biology: From alligators to xenobiotics. Gen Comp Endocrinol 2016; 238:23-31. [PMID: 27013381 PMCID: PMC5497304 DOI: 10.1016/j.ygcen.2016.03.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/14/2016] [Accepted: 03/19/2016] [Indexed: 12/24/2022]
Abstract
Dr. Louis J. Guillette Jr. thought of himself as a reproductive biologist. However, his interest in reproductive biology transcended organ systems, life history stages, species, and environmental contexts. His integrative and collaborative nature led to diverse and fascinating research projects conducted all over the world. He doesn't leave us with a single legacy. Instead, he entrusts us with several. The purpose of this review is to highlight those legacies, in both breadth and diversity, and to illustrate Dr. Guillette's grand contributions to the field of reproductive biology. He has challenged the field to reconsider how we think about our data, championed development of novel and innovative techniques to measure endocrine function, helped define the field of endocrine disruption, and lead projects to characterize new endocrine disrupting chemicals. He significantly influenced our understanding of evolution, and took bold and important steps to translate all that he has learned into advances in human reproductive health. We hope that after reading this manuscript our audience will appreciate and continue Dr. Guillette's practice of open-minded and passionate collaboration to understand the basic mechanisms driving reproductive physiology and to ultimately apply those findings to protect and improve wildlife and human health.
Collapse
Affiliation(s)
- Krista A McCoy
- Department of Biology, East Carolina University, Greenville, NC 278585, USA
| | - Alison M Roark
- Department of Biology, Furman University, Greenville, SC 29613, USA
| | - Ashley S P Boggs
- Environmental Chemical Sciences, Hollings Marine Laboratory, National Institute of Standards and Technology, Charleston, SC 29412, USA
| | - John A Bowden
- Environmental Chemical Sciences, Hollings Marine Laboratory, National Institute of Standards and Technology, Charleston, SC 29412, USA
| | - Lori Cruze
- Department of Biology, Wofford College, Spartanburg, SC 29303, USA
| | - Thea M Edwards
- Department of Biology, University of the South, Sewanee, TN 37383, USA
| | - Heather J Hamlin
- School of Marine Sciences, Aquaculture Research Institute, University of Maine, Orono, ME 04469, USA
| | - Theresa M Cantu
- Department of Obstetrics and Gynecology, Marine Biomedicine and Environmental Science Center, Hollings Marine Laboratory, Medical University of South Carolina, Charleston, SC 29412, USA
| | - Jessica A McCoy
- Department of Obstetrics and Gynecology, Marine Biomedicine and Environmental Science Center, Hollings Marine Laboratory, Medical University of South Carolina, Charleston, SC 29412, USA
| | - Nicole A McNabb
- Department of Obstetrics and Gynecology, Marine Biomedicine and Environmental Science Center, Hollings Marine Laboratory, Medical University of South Carolina, Charleston, SC 29412, USA; Graduate Program in Marine Biology, University of Charleston at College of Charleston, Charleston, SC 29412, USA
| | - Abby G Wenzel
- Environmental Chemical Sciences, Hollings Marine Laboratory, National Institute of Standards and Technology, Charleston, SC 29412, USA; Department of Obstetrics and Gynecology, Marine Biomedicine and Environmental Science Center, Hollings Marine Laboratory, Medical University of South Carolina, Charleston, SC 29412, USA
| | - Cameron E Williams
- Department of Obstetrics and Gynecology, Marine Biomedicine and Environmental Science Center, Hollings Marine Laboratory, Medical University of South Carolina, Charleston, SC 29412, USA; Graduate Program in Marine Biology, University of Charleston at College of Charleston, Charleston, SC 29412, USA
| | - Satomi Kohno
- Department of Obstetrics and Gynecology, Marine Biomedicine and Environmental Science Center, Hollings Marine Laboratory, Medical University of South Carolina, Charleston, SC 29412, USA.
| |
Collapse
|
9
|
Gunderson MP, Pickett MA, Martin JT, Hulse EJ, Smith SS, Smith LA, Campbell RM, Lowers RH, Boggs ASP, Guillette LJ. Variations in hepatic biomarkers in American alligators (Alligator mississippiensis) from three sites in Florida, USA. CHEMOSPHERE 2016; 155:180-187. [PMID: 27111470 PMCID: PMC4909370 DOI: 10.1016/j.chemosphere.2016.04.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 05/21/2023]
Abstract
Sub-individual biomarkers are sub-lethal biological responses commonly used in the assessment of wildlife exposure to environmental contaminants. In this study, we examined the activity of glutathione-s-transferase (GST) and lactate dehydrogenase (LDH), and metallothionein (MT) concentrations among captive-raised alligator hatchlings, wild-caught juveniles, and wild-caught adults. Juveniles and adults were collected from three locations in Florida (USA) with varying degrees of contamination (i.e. Lake Apopka (organochlorine polluted site), Merritt Island National Wildlife Refuge (NWR) (metal polluted site), and Lake Woodruff NWR (reference site)). We examined whether changes in the response of these three biomarkers were age and sex dependent or reflected site-specific variations of environmental contaminants. Juvenile alligators from Merritt Island NWR had higher MT concentrations and lower GST activity compared to those from the other two sites. This outcome was consistent with higher metal pollution at this location. Sexually dimorphic patterns of MT and GST (F > M) were observed in juvenile alligators from all sites, although this pattern was not observed in adults. GST activity was lower in captive-raised alligators from Lake Apopka and Merritt Island NWR as compared to animals from Lake Woodruff NWR, suggesting a possible developmental modulator at these sites. No clear patterns were observed in LDH activity. We concluded that GST and MT demonstrate age and sex specific patterns in the alligators inhabiting these study sites and that the observed variation among sites could be due to differences in contaminant exposure.
Collapse
Affiliation(s)
- Mark P Gunderson
- The College of Idaho, Department of Biology, 2112 Cleveland Blvd., Caldwell, ID 83605, USA.
| | - Melissa A Pickett
- The College of Idaho, Department of Biology, 2112 Cleveland Blvd., Caldwell, ID 83605, USA
| | - Justin T Martin
- The College of Idaho, Department of Biology, 2112 Cleveland Blvd., Caldwell, ID 83605, USA
| | - Elizabeth J Hulse
- The College of Idaho, Department of Biology, 2112 Cleveland Blvd., Caldwell, ID 83605, USA
| | - Spenser S Smith
- The College of Idaho, Department of Biology, 2112 Cleveland Blvd., Caldwell, ID 83605, USA
| | - Levi A Smith
- The College of Idaho, Department of Biology, 2112 Cleveland Blvd., Caldwell, ID 83605, USA
| | - Rachel M Campbell
- The College of Idaho, Department of Biology, 2112 Cleveland Blvd., Caldwell, ID 83605, USA
| | - Russell H Lowers
- Inomedic Health Applications, Aquatics Division, Mail Code IHA-300, Kennedy Space Center, FL, USA
| | - Ashley S P Boggs
- Marine Biomedicine and Environmental Sciences Center, Department of Obstetrics and Gynecology, Medical University South Carolina, Hollings Marine Laboratory, Charleston, SC 29412, USA
| | - Louis J Guillette
- Marine Biomedicine and Environmental Sciences Center, Department of Obstetrics and Gynecology, Medical University South Carolina, Hollings Marine Laboratory, Charleston, SC 29412, USA
| |
Collapse
|
10
|
Yolk contributes steroid to the multidimensional endocrine environment of embryos of Niveoscincus metallicus, a viviparous skink with a moderately complex placenta. Comp Biochem Physiol A Mol Integr Physiol 2014; 171:51-6. [DOI: 10.1016/j.cbpa.2014.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 02/10/2014] [Accepted: 02/14/2014] [Indexed: 02/05/2023]
|
11
|
Finger JW, Gogal RM. Endocrine-disrupting chemical exposure and the American alligator: a review of the potential role of environmental estrogens on the immune system of a top trophic carnivore. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 65:704-714. [PMID: 24051988 DOI: 10.1007/s00244-013-9953-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 08/30/2013] [Indexed: 06/02/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) alter cellular and organ system homeostasis by interfering with the body's normal physiologic processes. Numerous studies have identified environmental estrogens as modulators of EDC-related processes in crocodilians, notably in sex determination. Other broader studies have shown that environmental estrogens dysregulate normal immune function in mammals, birds, turtles, lizards, fish, and invertebrates; however, the effects of such estrogenic exposures on alligator immune function have not been elucidated. Alligators occupy a top trophic status, which may give them untapped utility as indicators of environmental quality. Environmental estrogens are also prevalent in the waters they occupy. Understanding the effects of these EDCs on alligator immunity is critical for managing and assessing changes in their health and is thus the focus of this review.
Collapse
Affiliation(s)
- John W Finger
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
12
|
Offspring sex in a TSD gecko correlates with an interaction between incubation temperature and yolk steroid hormones. Naturwissenschaften 2012; 99:999-1006. [PMID: 23086395 DOI: 10.1007/s00114-012-0981-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/05/2012] [Accepted: 10/10/2012] [Indexed: 02/03/2023]
Abstract
We incubated eggs of the Japanese gecko Gekko japonicus at three temperatures, and measured yolk testosterone (T) and 17β-estradiol (E2) levels at three time points in embryonic development (oviposition, 1/3 of incubation, and 2/3 of incubation), to examine whether maternal influence on offspring sex via yolk steroid hormone deposition is significant in the species. Eggs incubated at 24 °C and 32 °C produced mostly females, and eggs incubated at 28 °C almost a 50:50 sex ratio of hatchlings. Female-producing eggs were larger than male-producing eggs. Clutches in which eggs were incubated at the same temperature produced mostly same-sex siblings. Yolk T level at laying was negatively related to eggs mass, and yolk E2/T ratio was positively related to egg mass. Results of two-way ANOVA with incubation temperature and stage as the factors show that: yolk E2 level was higher at 32 °C than at 24 °C; yolk T level was higher, whereas yolk E2/T ratio was smaller, at 28 °C than at 24 °C; yolk E2 and T levels were higher at 2/3 than at 1/3 of incubation. Our data in G. japonucus show that: (1) maternal influence on offspring sex via yolk steroid hormone deposition is significant; (2) incubation temperature affects the dynamics of developmental changes in yolk steroid hormones; (3) influences of yolk steroid hormones on offspring sex are secondary relative to incubation temperature effects; and (4) offspring sex correlates with an interaction between incubation temperature and yolk steroid hormones.
Collapse
|
13
|
Cruze L, Kohno S, McCoy MW, Guillette LJ. Towards an Understanding of the Evolution of the Chorioallantoic Placenta: Steroid Biosynthesis and Steroid Hormone Signaling in the Chorioallantoic Membrane of an Oviparous Reptile1. Biol Reprod 2012; 87:71. [DOI: 10.1095/biolreprod.112.101360] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
14
|
Moore BC, Roark AM, Kohno S, Hamlin HJ, Guillette LJ. Gene-environment interactions: the potential role of contaminants in somatic growth and the development of the reproductive system of the American alligator. Mol Cell Endocrinol 2012; 354:111-20. [PMID: 22061623 PMCID: PMC3328103 DOI: 10.1016/j.mce.2011.10.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 10/17/2011] [Accepted: 10/18/2011] [Indexed: 11/25/2022]
Abstract
Developing organisms interpret and integrate environmental signals to produce adaptive phenotypes that are prospectively suited for probable demands in later life. This plasticity can be disrupted when embryos are impacted by exogenous contaminants, such as environmental pollutants, producing potentially deleterious and long-lasting mismatches between phenotype and the future environment. We investigated the ability for in ovo environmental contaminant exposure to alter the growth trajectory and ovarian function of alligators at five months after hatching. Alligators collected as eggs from polluted Lake Apopka, FL, hatched with smaller body masses but grew faster during the first five months after hatching, as compared to reference-site alligators. Further, ovaries from Lake Apopka alligators displayed lower basal expression levels of inhibin beta A mRNA as well as decreased responsiveness of aromatase and follistatin mRNA expression levels to treatment with follicle stimulating hormone. We posit that these differences predispose these animals to increased risks of disease and reproductive dysfunction at adulthood.
Collapse
Affiliation(s)
- Brandon C Moore
- Department of Biology, 220 Bartram Hall, P.O. Box 118525, University of Florida, Gainesville, FL 32611-8525, USA.
| | | | | | | | | |
Collapse
|
15
|
Moore BC, Forouhar S, Kohno S, Botteri NL, Hamlin HJ, Guillette LJ. Gonadotropin-induced changes in oviducal mRNA expression levels of sex steroid hormone receptors and activin-related signaling factors in the alligator. Gen Comp Endocrinol 2012; 175:251-8. [PMID: 22154572 PMCID: PMC3328093 DOI: 10.1016/j.ygcen.2011.11.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 11/01/2011] [Accepted: 11/11/2011] [Indexed: 01/18/2023]
Abstract
Oviducts respond to hormonal cues from ovaries with tissue proliferation and differentiation in preparation of transporting and fostering gametes. These responses produce oviducal microenvironments conducive to reproductive success. Here, we investigated changes in circulating plasma sex steroid hormones concentrations and ovarian and oviducal mRNA expression to an in vivo gonadotropin (FSH) challenge in sexually immature, five-month-old alligators. Further, we investigated differences in these observed responses between alligators hatched from eggs collected at a heavily-polluted (Lake Apopka, FL) and minimally-polluted (Lake Woodruff, FL) site. In oviducts, we measured mRNA expression of estrogen, progesterone, and androgen receptors and also beta A and B subunits which homo- or heterodimerize to produce the transforming growth factor activin. In comparison, minimal inhibin alpha subunit mRNA expression suggests that these oviducts produce a primarily activin-dominated signaling milieu. Ovaries responded to a five-day FSH challenge with increased expression of steroidogenic enzyme mRNA which was concomitant with increased circulating sex steroid hormone concentrations. Oviducts in the FSH-challenged Lake Woodruff alligators increased mRNA expression of progesterone and androgen receptors, proliferating cell nuclear antigen, and the activin signaling antagonist follistatin. In contrast, Lake Apopka alligators displayed a diminished increase in ovarian CYP19A1 aromatase expression and no increase in oviducal AR expression, as compared to those observed in Lake Woodruff alligators. These results demonstrate that five-month-old female alligators display an endocrine-responsive ovarian-oviducal axis and environmental pollution exposure may alter these physiological responses.
Collapse
Affiliation(s)
- Brandon C Moore
- Department of Biology, 220 Bartram Hall, P.O. Box 118525, University of Florida, Gainesville, FL 32611-8525, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Hamlin HJ, Guillette LJ. Embryos as targets of endocrine disrupting contaminants in wildlife. ACTA ACUST UNITED AC 2011; 93:19-33. [PMID: 21425439 DOI: 10.1002/bdrc.20202] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Environmental contaminants are now a ubiquitous part of the ecological landscape, and a growing literature describes the ability of many of these chemicals to alter the developmental trajectory of the embryo. Because many environmental pollutants readily bioaccumulate in lipid rich tissues, wildlife can attain considerable body burdens. Embryos are often exposed to these pollutants through maternal transfer, and a growing number of studies report long-term or permanent developmental consequences. Many biological mechanisms are reportedly affected by environmental contaminants in the developing embryo and fetus, including neurodevelopment, steroidogenesis, gonadal differentiation, and liver function. Embryos are not exposed to one chemical at a time, but are chronically exposed to many chemicals simultaneously. Mixture studies show that for some developmental disorders, mixtures of chemicals cause a more deleterious response than would be predicted from their individual toxicities. Synergistic responses to low dose mixtures make it difficult to estimate developmental outcomes, and as such, traditional toxicity testing often results in an underestimate of exposure risks. In addition, the knowledge that biological systems do not necessarily respond in a dose-dependent fashion, and that very low doses of a chemical can prove more harmful than higher doses, has created a paradigm shift in studies of environmental contaminant-induced dysfunction. Although laboratory studies are critical for providing dose-response relationships and determining specific mechanisms involved in disease etiology, wildlife sentinels more accurately reflect the genetic diversity of real world exposure conditions, and continue to alert scientists and health professionals alike of the consequences of developmental exposures to environmental pollutants.
Collapse
Affiliation(s)
- Heather J Hamlin
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, USA.
| | | |
Collapse
|
17
|
Burggren WW, Reyna KS. Developmental trajectories, critical windows and phenotypic alteration during cardio-respiratory development. Respir Physiol Neurobiol 2011; 178:13-21. [PMID: 21596160 DOI: 10.1016/j.resp.2011.05.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 05/02/2011] [Accepted: 05/03/2011] [Indexed: 02/07/2023]
Abstract
Embryo-environment interactions affecting cardio-respiratory development in vertebrates have been extensively studied, but an equally extensive conceptual framework for interpreting and interrelating these developmental events has lagged behind. In this review, we consider the conceptual constructs of "developmental plasticity", "critical windows", "developmental trajectory" and related concepts as they apply to both vertebrate and invertebrate development. Developmental plasticity and the related phenomenon of "heterokairy" are considered as a subset of phenotypic plasticity, and examples of cardiovascular, respiratory and metabolic plasticity illustrate the variable outcomes of embryo-environment interactions. The concept of the critical window is revealed to be overarching in cardio-respiratory development, and events originating within a critical window, potentially mitigated by "self-repair" capabilities of the embryo, are shown to result in modified developmental trajectories and, ultimately, modified adult phenotype. Finally, epigenetics, fetal programming and related phenomena are considered in the context of potentially life-long cardio-respiratory phenotypic modification resulting from embryo-environment interactions.
Collapse
Affiliation(s)
- Warren W Burggren
- Developmental Integrative Biology Cluster, Department of Biological Sciences, University of North Texas, Denton, TX 76203-5017, USA.
| | | |
Collapse
|
18
|
Pasch B, George AS, Hamlin HJ, Guillette LJ, Phelps SM. Androgens modulate song effort and aggression in Neotropical singing mice. Horm Behav 2011; 59:90-7. [PMID: 21035450 DOI: 10.1016/j.yhbeh.2010.10.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 10/14/2010] [Accepted: 10/19/2010] [Indexed: 01/18/2023]
Abstract
Androgens are an important class of steroid hormones involved in modulating the expression and evolution of male secondary sex characters. Vocalizations used in the context of aggression and mate attraction are among the most elaborate and diverse androgen-dependent animal displays as reflected in a rich tradition of studies on bird song and anuran calls. Male Alston's singing mice (Scotinomys teguina) commonly emit trilled songs that appear to function in male-male aggression. In this study, we experimentally manipulated androgens in singing mice to assess their role in modulating aggression and song effort. Testosterone- and DHT-treated animals retained aggressive and song attributes similarly. However, castrated mice administered empty implants showed more subordinate behavior and sang fewer songs that were shorter, lower in power, higher in frequency, and less stereotyped. The extensive effects of androgens on a suite of phenotypes highlight their role in linking gonadal status with decisions about investment in reproductive behaviors.
Collapse
Affiliation(s)
- Bret Pasch
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA.
| | | | | | | | | |
Collapse
|