1
|
Byrne CJ, Keogh K, Kenny DA. Review: Role of early life nutrition in regulating sexual development in bulls. Animal 2023; 17 Suppl 1:100802. [PMID: 37567659 DOI: 10.1016/j.animal.2023.100802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 08/13/2023] Open
Abstract
The availability of high-quality semen from genetically elite bulls is essential to support continued genetic gain and the sustainability of cattle production worldwide. While reducing the age at which usable semen is available also reduces the generation interval, it is dependent on timely onset of puberty in young bulls. There is now good evidence that hastened sexual development in bulls is achieved through enhancing nutrition in early life. This review will cover the physiological and molecular-based response to prevailing diet in key organs that orchestrate the ontogeny of sexual development in the bull calf. Given the central importance of the interaction between metabolic status and neuronal function to the progression of sexual development, we will discuss how communication between metabolic organs, reproductive organs and the brain are mediated via molecular and physiological processes. The availability of high-throughput nucleic acid and protein sequencing technologies and innovative data analytics have allowed us to improve our understanding of molecular regulation of puberty and sexual development. Analysing data from a number of organs, simultaneously, allows for a better understanding of the underlying biology and biochemical interactions that are influencing sexual development. Specifically, we can determine how early life nutritional interventions augment changes in potential key molecules regulating sexual development. Ultimately, a greater understanding of the inherent regulation of postnatal sexual development in the bull calf and how strategically targeted nutritional management can advance the ontogeny of this process, will facilitate the timely availability of high-quality semen from genetically elite animals, thus supporting more economically and environmentally sustainable beef and dairy production systems.
Collapse
Affiliation(s)
- C J Byrne
- Animal and Bioscience Department, Teagasc, Dunsany, Co. Meath C15 PW93, Ireland
| | - K Keogh
- Animal and Bioscience Department, Teagasc, Dunsany, Co. Meath C15 PW93, Ireland
| | - D A Kenny
- Animal and Bioscience Department, Teagasc, Dunsany, Co. Meath C15 PW93, Ireland; School of Agriculture and Food Science, University College Dublin, Belfield, Dublin D04 F6X4, Ireland.
| |
Collapse
|
2
|
Xu S, Zhou L, Guo S, Hu Q, Shi X, Xia C, Zhang H, Ye C, Jia Y, Hu G. Different pituitary action of NK3Ra and NK3Rb in grass carp. Gen Comp Endocrinol 2021; 313:113829. [PMID: 34087185 DOI: 10.1016/j.ygcen.2021.113829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/03/2021] [Accepted: 05/31/2021] [Indexed: 10/21/2022]
Abstract
In mammals, NK3R is the specific receptor for NKB, which played an important role in reproduction. Recently, two NK3R isoforms, namely NK3Ra and NK3Rb, have been identified in fish. However, little is known about the pituitary actions of the two NK3R isoforms in fish. In this study, both NK3Ra and NK3Rb were isolated from grass carp pituitary. Although their sequence similarity was only 61.6%, the two NK3R isoforms displayed similar ligand selectivity and binding affinity to TAC3 gene products (NKBa, NKBRPa and NKBRPb). In addition, both NK3Ra and NK3Rb displayed similar signaling pathways, including PKA, PKC, MAPK and Ca2+ cascades. Tissue distribution indicated that both NK3Ra and NK3Rb were highly detected in grass carp pituitary. Further study found that NK3Ra was mainly located in pituitary LHβ cells, while NK3Rb was only detected in pituitary SLα cells. Furthermore, NK3Ra and NK3Rb activation could induce LHβ and SLα promoter activity, respectively. These results suggested that the two NK3R isoforms displayed different pituitary actions in fish. Using grass carp pituitary cells as model, we found that PACAP could significantly reduce NK3Ra, but induce NK3Rb mRNA expression coupled with cAMP/PKA and PLC/PKC pathways. Interestingly, PACAP could also significantly inhibit LHβ, but stimulate SLα mRNA expression in grass carp pituitary cells. Furthermore, NK3R antagonist could not only inhibit LHβ mRNA expression, but also block PACAP-induced SLα mRNA expression in grass carp pituitary cells. These results suggested that NK3Ra and NK3Rb could mediate PACAP-reduced LHβ and -induced SLα mRNA expression in grass carp pituitary, respectively.
Collapse
Affiliation(s)
- Shaohua Xu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Lingling Zhou
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuming Guo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiongyao Hu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuetao Shi
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Chuanhui Xia
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Huiying Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Cheng Ye
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongyi Jia
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China.
| | - Guangfu Hu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
3
|
Delfin L, Mete O, Asa SL. Follicular cells in pituitary neuroendocrine tumors. Hum Pathol 2021; 114:1-8. [PMID: 33991528 DOI: 10.1016/j.humpath.2021.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022]
Abstract
Follicular cells (FCs) are thought to be agranular, non-hormone-producing stellate cells distributed throughout the adenohypophysis, occasionally arranged around colloid-filled follicles, and thought to be more prominent in the vicinity of necrosis and apoptotic cells. A distinct but similar cell type, the folliculostellate cell (FSC), is a sustentacular cell that is negative for keratins and stains for S100, GFAP, and SOX10. While several studies have examined FSCs in pituitary neuroendocrine tumors (PitNETs), the distribution and derivation of FCs in these lesions is unclear. We examined the presence and distribution of FCs in 104 PitNETs obtained by trans-sphenoidal surgery, using immunohistochemistry for keratins as well as the full complement of immunohistochemical stains for tumor characterization. The tumors included 9 somatotroph, 5 mammosomatotroph, 7 lactotroph, 7 immature PIT1-lineage, 2 acidophil stem cell, 17 corticotroph, 53 gonadotroph, 2 null cell, and 2 unusual plurihormonal tumors. CK-positive FCs were only identified in gonadotroph PitNETs and were found in 12 (23%) of those tumors; all other tumor types were negative for FCs. FCs express keratins identified by CAM5.2, AE1/AE3, CK18, and CK19 antibodies. FCs were identified scattered singly among hormone-producing neuroendocrine cells, in small clusters of 3-5 cells and surrounding colloid-filled follicles, as well as linearly along intratumoral blood vessels. Sequential stains showed that FCs express nuclear SF1 and GATA3, transcription factors of gonadotrophs, and multiplex immunohistochemistry confirmed colocalization of SF1 in the nucleus of keratin-positive FCs. In this series, FCs were exclusively found in gonadotroph PitNETs and occurred in 23% of those tumors. Co-expression of gonadotroph transcription factors in FCs supports the concept of cellular plasticity and transformation of neoplastic hormone-producing neuroendocrine cells to FCs. Further studies are required to determine if and why gonadotrophs alone undergo this transformation, the function of these cells and whether they have prognostic value.
Collapse
Affiliation(s)
- Luvy Delfin
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA; Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Ozgur Mete
- Department of Pathology, University Health Network, University of Toronto, Toronto, M5G 2C4, Canada
| | - Sylvia L Asa
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA; Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
4
|
Xue Z, Zhang Y, Liu Y, Zhang C, Shen XD, Gao F, Busuttil RW, Zheng S, Kupiec-Weglinski JW, Ji H. PACAP neuropeptide promotes Hepatocellular Protection via CREB-KLF4 dependent autophagy in mouse liver Ischemia Reperfusion Injury. Am J Cancer Res 2020; 10:4453-4465. [PMID: 32292507 PMCID: PMC7150481 DOI: 10.7150/thno.42354] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/02/2020] [Indexed: 12/13/2022] Open
Abstract
Organ ischemia reperfusion injury (IRI), associated with acute hepatocyte death, remains an unresolved problem in clinical orthotopic liver transplantation (OLT). Autophagy, an intracellular self-digesting progress, is responsible for cell reprograming required to regain post-stress homeostasis. Methods: Here, we analyzed the cytoprotective mechanism of pituitary adenylate cyclase-activating polypeptide (PACAP)-promoted hepatocellular autophagy in a clinically relevant mouse model of extended hepatic cold storage (4 °C UW solution for 20 h) followed by syngeneic OLT. Results: In contrast to 41.7% of liver graft failure by day 7 post-transplant in control group, PACAP treatment significantly improved graft survival (91.7% by day 14), and promoted autophagy-associated regeneration programs in OLT. In parallel in vitro studies, PACAP-enhanced autophagy ameliorated cellular damage (LDH/ALT levels), and diminished necrosis in H2O2-stressed primary hepatocytes. Interestingly, PACAP not only induced nuclear cAMP response element-binding protein (CREB), but also triggered reprogramming factor Kruppel-like factor 4 (KLF4) expression in IR-stressed OLT. Indeed, CREB inhibition attenuated hepatic autophagy and recreated hepatocellular injury in otherwise PACAP-protected livers. Furthermore, CREB inhibition suppressed PACAP-induced KLF4 expression, whereas KLF4 blockade abolished PACAP-promoted autophagy and neutralized PACAP-mediated hepatoprotection both in vivo and in vitro. Conclusion: Current study documents the essential neural regulation of PACAP-promoted autophagy in hepatocellular homeostasis in OLT, which provides the emerging therapeutic principle to combat hepatic IRI in OLT.
Collapse
|
5
|
Köves K, Szabó E, Kántor O, Heinzlmann A, Szabó F, Csáki Á. Current State of Understanding of the Role of PACAP in the Hypothalamo-Hypophyseal Gonadotropin Functions of Mammals. Front Endocrinol (Lausanne) 2020; 11:88. [PMID: 32210912 PMCID: PMC7067695 DOI: 10.3389/fendo.2020.00088] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/11/2020] [Indexed: 01/25/2023] Open
Abstract
PACAP was discovered 30 years ago in Dr. Akira Arimura's laboratory. In the past three decades since then, it has become evident that this peptide plays numerous crucial roles in mammalian organisms. The most important functions of PACAP are the following: 1. neurotransmitter, 2. neuromodulator, 3. hypophysiotropic hormone, 4. neuroprotector. This paper reviews the accumulated data regarding the distribution of PACAP and its receptors in the mammalian hypothalamus and pituitary gland, the role of PACAP in the gonadotropin hormone secretion of females and males. The review also summarizes the interaction between PACAP, GnRH, and sex steroids as well as hypothalamic peptides including kisspeptin. The possible role of PACAP in reproductive functions through the biological clock is also discussed. Finally, the significance of PACAP in the hypothalamo-hypophysial system is considered and the facts missing, that would help better understand the function of PACAP in this system, are also highlighted.
Collapse
Affiliation(s)
- Katalin Köves
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Enikő Szabó
- Department of Conservative Dentistry, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
| | - Orsolya Kántor
- Department of Molecular Embryology, Medical Faculty, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany
| | - Andrea Heinzlmann
- Department of Anatomy and Histology, University of Veterinary Sciences, Budapest, Hungary
| | - Flóra Szabó
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA, United States
| | - Ágnes Csáki
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
6
|
Kojima R, Horiguchi K, Mochimaru Y, Musha S, Murakami S, Deai M, Mogi C, Sato K, Okajima F, Tomura H. Characterization of molecular mechanisms of extracellular acidification-induced intracellular Ca 2+ increase in LβT2 cells. Biochem Biophys Res Commun 2019; 517:636-641. [PMID: 31400852 DOI: 10.1016/j.bbrc.2019.07.083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 07/22/2019] [Indexed: 12/30/2022]
Abstract
Extracellular acidification regulates endocrine cell functions. Ovarian cancer G protein-coupled receptor 1 (OGR1), also known as GPR68, is a proton-sensing G protein-coupled receptor and is activated by extracellular acidification, resulting in the activation of multiple intracellular signaling pathways. In the present study, we found that OGR1 was expressed in some gonadotropic cells in rat anterior pituitary and in LβΤ2 cells, which are used as a model of gonadotropic cells. When we reduced extracellular pH, a transient intracellular Ca2+ increase was detected in LβT2 cells. The Ca2+ increase was inhibited by a Gq/11 inhibitor and Cu2+, which is known as an OGR1 antagonist. We also found that extracellular acidification enhanced GnRH-induced Gaussia luciferase secretion from LβT2 cells. These results suggest that OGR1 may play a role in the regulation of gonadotropic cell function such as its hormone secretion.
Collapse
Affiliation(s)
- Ryotaro Kojima
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan
| | - Kotaro Horiguchi
- Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, Tokyo, 192-8503, Japan
| | - Yuta Mochimaru
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan
| | - Shiori Musha
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan
| | - Syo Murakami
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan
| | - Masahito Deai
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan
| | - Chihiro Mogi
- Laboratory of Integrated Signaling Systems, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, 371-8512, Japan
| | - Koichi Sato
- Laboratory of Medical Neuroscience, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, 371-8512, Japan
| | - Fumikazu Okajima
- Laboratory of Pathophysiology, Faculty of Pharmacy, Aomori University, Aomori, 030-0943, Japan
| | - Hideaki Tomura
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan; Institute of Endocrinology, Meiji University, Kawasaki, 214-8571, Japan.
| |
Collapse
|
7
|
Yeh DM, Coss D. PACAP induces FSHβ gene expression via EPAC. Mol Cell Endocrinol 2019; 492:110438. [PMID: 31034837 PMCID: PMC7141571 DOI: 10.1016/j.mce.2019.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 01/01/2023]
Abstract
Gonadotropins, luteinizing hormone (LH) and follicle-stimulating hormone (FSH), are heterodimers of a common α subunit and unique β subunits. Regulation of their levels, primarily by GnRH, is critical for reproductive function. Several other hormones modulate gonadotropin expression, either independently or by modifying the responsiveness to GnRH. Pituitary adenylate cyclase activating peptide (PACAP) is one such hormone. Four-hour treatment of female mouse primary pituitary cells by either GnRH or PACAP induced FSHβ expression, while 24-h treatment repressed FSHβ. Both PACAP and GnRH caused FSH secretion into the medium. In the gonadotropes, PACAP activates primarily Gαs and increases concentration of cAMP, while GnRH primarily functions via Gαq and increases calcium concentration. Herein, we compared PACAP and GnRH signaling pathways that lead to the induction of FSHβ expression. Interestingly, constitutively active Gαs represses LHβ and induces FSHβ expression, while Gαq induces both β-subunits. We determined that FSHβ induction by PACAP requires functional EPAC, a cAMP sensor protein that serves as a guanine exchange factors for small G proteins that then bridges cAMP signaling to MAPK pathway. We further demonstrate that in addition to the prototypical small G protein Ras, two members of the Rho subfamily, Rac and CDC42 are also necessary for PACAP induction of FSHβ, likely via activation of p38 MAPK that leads to induction of cFOS, a critical transcription factor that is necessary and sufficient for FSHβ induction. Therefore, PACAP-induced cAMP pathway leads to MAPK activation that stimulates cFOS induction, to induce the expression of FSHβ subunit and increase FSH concentration.
Collapse
Affiliation(s)
| | - Djurdjica Coss
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
8
|
Tao W, Chen J, Tan D, Yang J, Sun L, Wei J, Conte MA, Kocher TD, Wang D. Transcriptome display during tilapia sex determination and differentiation as revealed by RNA-Seq analysis. BMC Genomics 2018; 19:363. [PMID: 29764377 PMCID: PMC5952695 DOI: 10.1186/s12864-018-4756-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/02/2018] [Indexed: 11/20/2022] Open
Abstract
Background The factors determining sex in teleosts are diverse. Great efforts have been made to characterize the underlying genetic network in various species. However, only seven master sex-determining genes have been identified in teleosts. While the function of a few genes involved in sex determination and differentiation has been studied, we are far from fully understanding how genes interact to coordinate in this process. Results To enable systematic insights into fish sexual differentiation, we generated a dynamic co-expression network from tilapia gonadal transcriptomes at 5, 20, 30, 40, 90, and 180 dah (days after hatching), plus 45 and 90 dat (days after treatment) and linked gene expression profiles to both development and sexual differentiation. Transcriptomic profiles of female and male gonads at 5 and 20 dah exhibited high similarities except for a small number of genes that were involved in sex determination, while drastic changes were observed from 90 to 180 dah, with a group of differently expressed genes which were involved in gonadal differentiation and gametogenesis. Weighted gene correlation network analysis identified changes in the expression of Borealin, Gtsf1, tesk1, Zar1, Cdn15, and Rpl that were correlated with the expression of genes previously known to be involved in sex differentiation, such as Foxl2, Cyp19a1a, Gsdf, Dmrt1, and Amh. Conclusions Global gonadal gene expression kinetics during sex determination and differentiation have been extensively profiled in tilapia. These findings provide insights into the genetic framework underlying sex determination and sexual differentiation, and expand our current understanding of developmental pathways during teleost sex determination. Electronic supplementary material The online version of this article (10.1186/s12864-018-4756-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jinlin Chen
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Dejie Tan
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jing Yang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Lina Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jing Wei
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Matthew A Conte
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, MD, USA.
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
9
|
Coss D. Regulation of reproduction via tight control of gonadotropin hormone levels. Mol Cell Endocrinol 2018; 463:116-130. [PMID: 28342855 PMCID: PMC6457911 DOI: 10.1016/j.mce.2017.03.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/16/2017] [Accepted: 03/21/2017] [Indexed: 01/04/2023]
Abstract
Mammalian reproduction is controlled by the hypothalamic-pituitary-gonadal axis. GnRH from the hypothalamus regulates synthesis and secretion of gonadotropins, LH and FSH, which then control steroidogenesis and gametogenesis. In females, serum LH and FSH levels exhibit rhythmic changes throughout the menstrual or estrous cycle that are correlated with pulse frequency of GnRH. Lack of gonadotropins leads to infertility or amenorrhea. Dysfunctions in the tightly controlled ratio due to levels slightly outside the normal range occur in a larger number of women and are correlated with polycystic ovaries and premature ovarian failure. Since the etiology of these disorders is largely unknown, studies in cell and mouse models may provide novel candidates for investigations in human population. Hence, understanding the mechanisms whereby GnRH regulates gonadotropin hormone levels will provide insight into the physiology and pathophysiology of the reproductive system. This review discusses recent advances in our understanding of GnRH regulation of gonadotropin synthesis.
Collapse
Affiliation(s)
- Djurdjica Coss
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, United States.
| |
Collapse
|
10
|
Jiang Q, Zhang Q, Lian A, Xu Y. Irisin stimulates gonadotropins gene expression in tilapia (Oreochromis niloticus) pituitary cells. Anim Reprod Sci 2017; 185:140-147. [DOI: 10.1016/j.anireprosci.2017.06.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/18/2017] [Accepted: 06/26/2017] [Indexed: 12/18/2022]
|
11
|
Janjic MM, Stojilkovic SS, Bjelobaba I. Intrinsic and Regulated Gonadotropin-Releasing Hormone Receptor Gene Transcription in Mammalian Pituitary Gonadotrophs. Front Endocrinol (Lausanne) 2017; 8:221. [PMID: 28928715 PMCID: PMC5591338 DOI: 10.3389/fendo.2017.00221] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/16/2017] [Indexed: 12/14/2022] Open
Abstract
The hypothalamic decapeptide gonadotropin-releasing hormone (GnRH), acting via its receptors (GnRHRs) expressed in pituitary gonadotrophs, represents a critical molecule in control of reproductive functions in all vertebrate species. GnRH-activated receptors regulate synthesis of gonadotropins in a frequency-dependent manner. The number of GnRHRs on the plasma membrane determines the responsiveness of gonadotrophs to GnRH and varies in relation to age, sex, and physiological status. This is achieved by a complex control that operates at transcriptional, translational, and posttranslational levels. This review aims to overview the mechanisms of GnRHR gene (Gnrhr) transcription in mammalian gonadotrophs. In general, Gnrhr exhibits basal and regulated transcription activities. Basal Gnrhr transcription appears to be an intrinsic property of native and immortalized gonadotrophs that secures the presence of a sufficient number GnRHRs to preserve their functionality independently of the status of regulated transcription. On the other hand, regulated transcription modulates GnRHR expression during development, reproductive cycle, and aging. GnRH is crucial for regulated Gnrhr transcription in native gonadotrophs but is ineffective in immortalized gonadotrophs. In rat and mouse, both basal and GnRH-induced Gnrhr transcription rely primarily on the protein kinase C signaling pathway, with subsequent activation of mitogen-activated protein kinases. Continuous GnRH application, after a transient stimulation, shuts off regulated but not basal transcription, suggesting that different branches of this signaling pathway control transcription. Pituitary adenylate cyclase-activating polypeptide, but not activins, contributes to the regulated transcription utilizing the protein kinase A signaling pathway, whereas a mechanisms by which steroid hormones modulate Gnrhr transcription has not been well characterized.
Collapse
Affiliation(s)
- Marija M. Janjic
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, Belgrade, Serbia
| | - Stanko S. Stojilkovic
- Section on Cellular Signaling, Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Ivana Bjelobaba
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, Belgrade, Serbia
- *Correspondence: Ivana Bjelobaba,
| |
Collapse
|
12
|
|
13
|
Choi SG, Wang Q, Jia J, Chikina M, Pincas H, Dolios G, Sasaki K, Wang R, Minamino N, Salton SRJ, Sealfon SC. Characterization of Gonadotrope Secretoproteome Identifies Neurosecretory Protein VGF-derived Peptide Suppression of Follicle-stimulating Hormone Gene Expression. J Biol Chem 2016; 291:21322-21334. [PMID: 27466366 DOI: 10.1074/jbc.m116.740365] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Indexed: 01/21/2023] Open
Abstract
Reproductive function is controlled by the pulsatile release of hypothalamic gonadotropin-releasing hormone (GnRH), which regulates the expression of the gonadotropins luteinizing hormone and FSH in pituitary gonadotropes. Paradoxically, Fshb gene expression is maximally induced at lower frequency GnRH pulses, which provide a very low average concentration of GnRH stimulation. We studied the role of secreted factors in modulating gonadotropin gene expression. Inhibition of secretion specifically disrupted gonadotropin subunit gene regulation but left early gene induction intact. We characterized the gonadotrope secretoproteome and global mRNA expression at baseline and after Gαs knockdown, which has been found to increase Fshb gene expression (1). We identified 1077 secreted proteins or peptides, 19 of which showed mRNA regulation by GnRH or/and Gαs knockdown. Among several novel secreted factors implicated in Fshb gene regulation, we focused on the neurosecretory protein VGF. Vgf mRNA, whose gene has been implicated in fertility (2), exhibited high induction by GnRH and depended on Gαs In contrast with Fshb induction, Vgf induction occurred preferentially at high GnRH pulse frequency. We hypothesized that a VGF-derived peptide might regulate Fshb gene induction. siRNA knockdown or extracellular immunoneutralization of VGF augmented Fshb mRNA induction by GnRH. GnRH stimulated the secretion of the VGF-derived peptide NERP1. NERP1 caused a concentration-dependent decrease in Fshb gene induction. These findings implicate a VGF-derived peptide in selective regulation of the Fshb gene. Our results support the concept that signaling specificity from the cell membrane GnRH receptor to the nuclear Fshb gene involves integration of intracellular signaling and exosignaling regulatory motifs.
Collapse
Affiliation(s)
| | - Qian Wang
- From the Departments of Neurology and
| | | | | | | | | | - Kazuki Sasaki
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center Research Institute, Osaka 565-8565, Japan
| | | | - Naoto Minamino
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center Research Institute, Osaka 565-8565, Japan
| | - Stephen R J Salton
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029 and
| | - Stuart C Sealfon
- From the Departments of Neurology and Center for Advanced Research on Diagnostic Assays, and
| |
Collapse
|
14
|
González-Navarro FF, Belanche-Muñoz LA, Gámez-Moreno MG, Flores-Ríos BL, Ibarra-Esquer JE, López-Morteo GA. Gene discovery for facioscapulohumeral muscular dystrophy by machine learning techniques. Genes Genet Syst 2016; 90:343-56. [PMID: 26960968 DOI: 10.1266/ggs.15-00017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a neuromuscular disorder that shows a preference for the facial, shoulder and upper arm muscles. FSHD affects about one in 20-400,000 people, and no effective therapeutic strategies are known to halt disease progression or reverse muscle weakness or atrophy. Many genes may be incorrectly regulated in affected muscle tissue, but the mechanisms responsible for the progressive muscle weakness remain largely unknown. Although machine learning (ML) has made significant inroads in biomedical disciplines such as cancer research, no reports have yet addressed FSHD analysis using ML techniques. This study explores a specific FSHD data set from a ML perspective. We report results showing a very promising small group of genes that clearly separates FSHD samples from healthy samples. In addition to numerical prediction figures, we show data visualizations and biological evidence illustrating the potential usefulness of these results.
Collapse
|
15
|
Gajewska A, Zielinska-Gorska M, Wolinska-Witort E, Siawrys G, Baran M, Kotarba G, Biernacka K. Intracellular mechanisms involved in copper-gonadotropin-releasing hormone (Cu-GnRH) complex-induced cAMP/PKA signaling in female rat anterior pituitary cells in vitro. Brain Res Bull 2015; 120:75-82. [PMID: 26551063 DOI: 10.1016/j.brainresbull.2015.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/31/2015] [Accepted: 11/03/2015] [Indexed: 01/24/2023]
Abstract
The copper-gonadotropin-releasing hormone molecule (Cu-GnRH) is a GnRH analog, which preserves its amino acid sequence, but which contains a Cu(2+) ion stably bound to the nitrogen atoms including that of the imidazole ring of Histidine(2). A previous report indicated that Cu-GnRH was able to activate cAMP/PKA signaling in anterior pituitary cells in vitro, but raised the question of which intracellular mechanism(s) mediated the Cu-GnRH-induced cAMP synthesis in gonadotropes. To investigate this mechanism, in the present study, female rat anterior pituitary cells in vitro were pretreated with 0.1 μM antide, a GnRH antagonist; 0.1 μM cetrorelix, a GnRH receptor antagonist; 0.1 μM PACAP6-38, a PAC-1 receptor antagonist; 2 μM GF109203X, a protein kinase C inhibitor; 50 mM PMA, a protein kinase C activator; the protein kinase A inhibitors H89 (30 μM) and KT5720 (60 nM); factors affecting intracellular calcium activity: 2.5 mM EGTA; 2 μM thapsigargin; 5 μM A23187, a Ca(2+) ionophore; or 10 μg/ml cycloheximide, a protein synthesis inhibitor. After one of the above pretreatments, cells were incubated in the presence of 0.1 μM Cu-GnRH for 0.5, 1, and 3 h. Radioimmunoassay analysis of cAMP confirmed the functional link between Cu-GnRH stimulation and cAMP/PKA signal transduction in rat anterior pituitary cells, demonstrating increased intracellular cAMP, which was reduced in the presence of specific PKA inhibitors. The stimulatory effect of Cu-GnRH on cAMP production was partly dependent on GnRH receptor activation. In addition, an indirect and Ca(2+)-dependent mechanism might be involved in intracellular adenylate cyclase stimulation. Neither activation of protein kinase C nor new protein synthesis was involved in the Cu-GnRH-induced increase of cAMP in the rat anterior pituitary primary cultures. Presented data indicate that conformational changes of GnRH molecule resulting from cooper ion coordination affect specific pharmacological properties of Cu-GnRH molecule including specific pattern of intracellular activity induced by complex in anterior pituitary cells in vitro.
Collapse
Affiliation(s)
- Alina Gajewska
- Department of Neuroendocrinology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jablonna n. Warsaw, Poland.
| | - Marlena Zielinska-Gorska
- Department of Neuroendocrinology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jablonna n. Warsaw, Poland
| | - Ewa Wolinska-Witort
- Neuroendocrinology Department, Medical Centre for Postgraduate Education, Marymoncka 99/103 st., 01-813 Warsaw, Poland
| | - Gabriela Siawrys
- Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A st. 10-719 Olsztyn, Poland
| | - Marta Baran
- Department of Neuroendocrinology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jablonna n. Warsaw, Poland
| | - Grzegorz Kotarba
- Department of Neuroendocrinology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jablonna n. Warsaw, Poland
| | - Katarzyna Biernacka
- Department of Neuroendocrinology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jablonna n. Warsaw, Poland
| |
Collapse
|
16
|
Winters SJ, Ghooray DT, Yang RQ, Holmes JB, O'Brien AR, Morgan J, Moore JP. Dopamine-2 receptor activation suppresses PACAP expression in gonadotrophs. Endocrinology 2014; 155:2647-57. [PMID: 24823390 PMCID: PMC4060190 DOI: 10.1210/en.2013-2147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is expressed at a high level in the fetal pituitary and decreases profoundly between embryonic day 19 and postnatal day 1 (PN1), with a further decrease from PN1 to PN4. In this series of experiments, we investigated the hypothesis that dopamine 2 receptor (Drd2) activation interrupts a cAMP-dependent feed-forward loop that maintains PACAP expression at a high level in the fetal pituitary. Using single-cell RT-PCR of pituitary cell cultures from newborn rats, Drd2 mRNA was identified in gonadotrophs that were also positive for PACAP mRNA. PACAP expression in pituitary cultures from embryonic day 19 rats was suppressed by the PACAP6-38 antagonist and by the Drd2 agonist bromocriptine. Increasing concentrations of bromocriptine inhibited cAMP production as well as cAMP signaling based on cAMP response element-luciferase activity, decreased PACAP promoter activity, and decreased PACAP mRNA levels in αT3-1 gonadotroph cells. Furthermore, blockade of dopamine receptors by injecting haloperidol into newborn rat pups partially reversed the developmental decline in pituitary PACAP mRNA that occurs between PN1 and PN4. These results provide evidence that dopamine receptor signaling regulates PACAP expression under physiological conditions and lend support to the hypothesis that a rise in hypothalamic dopamine at birth abrogates cAMP signaling in fetal gonadotrophs to interrupt a feed-forward mechanism that maintains PACAP expression at a high level in the fetal pituitary. We propose that this perinatal decline in pituitary PACAP reduces pituitary follistatin which permits GnRH receptors and FSH-β to increase to facilitate activation of the neonatal gonad.
Collapse
Affiliation(s)
- Stephen J Winters
- Division of Endocrinology, Metabolism & Diabetes (S.J.W., D.T.G., J.B.H., A.R.W.O., J.M., J.P.M.), and Department of Anatomy and Neurobiology (R.Q.Y., J.P.M.), University of Louisville, Louisville, Kentucky 40202
| | | | | | | | | | | | | |
Collapse
|
17
|
Köves K, Kántor O, Lakatos A, Szabó E, Kirilly E, Heinzlmann A, Szabó F. Advent and recent advances in research on the role of pituitary adenylate cyclase-activating polypeptide (PACAP) in the regulation of gonadotropic hormone secretion of female rats. J Mol Neurosci 2014; 54:494-511. [PMID: 24696167 DOI: 10.1007/s12031-014-0294-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/20/2014] [Indexed: 02/06/2023]
Abstract
PACAP (ADCYAP1) was isolated from ovine hypothalami. PACAP activates three distinct receptor types: G-protein coupled PAC1, VPAC1, and VPAC2 with seven transmembrane domains. Eight splice variants of PAC1 receptor are described. A part of the hypothalamic PACAP is released into the hypophyseal portal circulation. Both hypothalamic and pituitary PACAP are involved in the dynamic control of gonadotropic hormone secretion. In female rats, PACAP in the paraventricular nucleus is upregulated in the morning and pituitary PACAP is upregulated in the late evening of the proestrus stage of the reproductive cycle. PACAP mRNA peak in the hypothalamic PVN precedes the LHRH release into the portal circulation. It is supposed that PACAP peak is evoked by the elevated estrogen on proestrous morning. At the beginning of the so-called critical period of the same day, PACAP level starts to decline allowing LHRH release into the portal circulation, resulting in the LH surge that evokes ovulation. Just before the critical period, icv-administered exogenous PACAP blocks the LH surge and ovulation. The blocking effect of PACAP is mediated through CRF and endogenous opioids. The effect of the pituitary-born PACAP depends on the intracellular cross-talk between PACAP and LHRH.
Collapse
Affiliation(s)
- Katalin Köves
- Department of Human Morphology and Developmental Biology, Faculty of Medicine, Semmelweis University, Tűzoltó u. 58, H-1094, Budapest, Hungary,
| | | | | | | | | | | | | |
Collapse
|
18
|
Shin DH, Lee HJ, Cho S, Kim HJ, Hwang JY, Lee CK, Jeong J, Yoon D, Kim H. Deleted copy number variation of Hanwoo and Holstein using next generation sequencing at the population level. BMC Genomics 2014; 15:240. [PMID: 24673797 PMCID: PMC4051123 DOI: 10.1186/1471-2164-15-240] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 03/03/2014] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Copy number variation (CNV), a source of genetic diversity in mammals, has been shown to underlie biological functions related to production traits. Notwithstanding, there have been few studies conducted on CNVs using next generation sequencing at the population level. RESULTS Illumina NGS data was obtained for ten Holsteins, a dairy cattle, and 22 Hanwoo, a beef cattle. The sequence data for each of the 32 animals varied from 13.58-fold to almost 20-fold coverage. We detected a total of 6,811 deleted CNVs across the analyzed individuals (average length = 2732.2 bp) corresponding to 0.74% of the cattle genome (18.6 Mbp of variable sequence). By examining the overlap between CNV deletion regions and genes, we selected 30 genes with the highest deletion scores. These genes were found to be related to the nervous system, more specifically with nervous transmission, neuron motion, and neurogenesis. We regarded these genes as having been effected by the domestication process. Further analysis of the CNV genotyping information revealed 94 putative selected CNVs and 954 breed-specific CNVs. CONCLUSIONS This study provides useful information for assessing the impact of CNVs on cattle traits using NGS at the population level.
Collapse
Affiliation(s)
- Dong-Hyun Shin
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Hyun-Jeong Lee
- Division of Animal Genomics and Bioinformatics, National Institute of Animal science, Rural Development Administration, #564 Omockchun-dong, Suwon 441-706, Korea
| | - Seoae Cho
- C&K genomics, Seoul National University Mt.4-2, Main Bldg. #514, SNU Research Park, NakSeoungDae, Gwanakgu, Seoul 151-919, Republic of Korea
| | - Hyeon Jeong Kim
- C&K genomics, Seoul National University Mt.4-2, Main Bldg. #514, SNU Research Park, NakSeoungDae, Gwanakgu, Seoul 151-919, Republic of Korea
| | - Jae Yeon Hwang
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Chang-Kyu Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - JinYoung Jeong
- Division of Animal Genomics and Bioinformatics, National Institute of Animal science, Rural Development Administration, #564 Omockchun-dong, Suwon 441-706, Korea
| | - Duhak Yoon
- Department of Animal Science, Kyungpook National University, Sangju 742-711, Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
- C&K genomics, Seoul National University Mt.4-2, Main Bldg. #514, SNU Research Park, NakSeoungDae, Gwanakgu, Seoul 151-919, Republic of Korea
| |
Collapse
|
19
|
Perrett RM, McArdle CA. Molecular mechanisms of gonadotropin-releasing hormone signaling: integrating cyclic nucleotides into the network. Front Endocrinol (Lausanne) 2013; 4:180. [PMID: 24312080 PMCID: PMC3834291 DOI: 10.3389/fendo.2013.00180] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/06/2013] [Indexed: 01/21/2023] Open
Abstract
Gonadotropin-releasing hormone (GnRH) is the primary regulator of mammalian reproductive function in both males and females. It acts via G-protein coupled receptors on gonadotropes to stimulate synthesis and secretion of the gonadotropin hormones luteinizing hormone and follicle-stimulating hormone. These receptors couple primarily via G-proteins of the Gq/ll family, driving activation of phospholipases C and mediating GnRH effects on gonadotropin synthesis and secretion. There is also good evidence that GnRH causes activation of other heterotrimeric G-proteins (Gs and Gi) with consequent effects on cyclic AMP production, as well as for effects on the soluble and particulate guanylyl cyclases that generate cGMP. Here we provide an overview of these pathways. We emphasize mechanisms underpinning pulsatile hormone signaling and the possible interplay of GnRH and autocrine or paracrine regulatory mechanisms in control of cyclic nucleotide signaling.
Collapse
Affiliation(s)
- Rebecca M. Perrett
- Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Craig A. McArdle
- Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Bristol, UK
- *Correspondence: Craig A. McArdle, Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, 1 Whitson Street, Bristol BS1 3NY, UK e-mail:
| |
Collapse
|
20
|
Levy G, Degani G. The role of brain peptides in the reproduction of blue gourami males (Trichogaster trichopterus). ACTA ACUST UNITED AC 2013; 319:461-70. [PMID: 23857782 DOI: 10.1002/jez.1809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 05/22/2013] [Accepted: 06/09/2013] [Indexed: 11/09/2022]
Abstract
In all vertebrates, reproduction and growth are closely linked and both are controlled by complex hormonal interactions at the brain-pituitary level. In this study, we focused on the reciprocal interactions between brain peptides that regulate growth and reproductive functions in a teleostei fish (blue gourami Trichogaster trichopterus). An increase in gonadotropin-releasing hormone 1 (GnRH1) gene expression was detected during ontogeny, and this peptide increased growth hormone (GH) and β follicle-stimulating hormone (βFSH) gene expression in pituitary cell culture. However, although no change in gonadotropin-releasing hormone 2 (GnRH2) gene expression during the reproductive cycle or sexual behavior was detected, a stimulatory effect of this peptide on β gonadotropins (βGtH) gene expression was observed. In addition, pituitary adenylate cyclase-activating polypeptide 38 (PACAP-38) inhibited GnRH-analog-induced βFSH gene expression, and co-treatment of cells with GnRH-analog and PACAP-38 inhibited GnRH-analog-stimulatory and PACAP-38-inhibitory effects on GH gene expression. These findings together with previous studies were used to create a model summarizing the mechanism of brain peptides (GnRH, PACAP and its related peptide) and the relationship to reproduction and growth through pituitary hormone gene expression during ontogenesis and reproductive stages in blue gourami.
Collapse
Affiliation(s)
- Gal Levy
- School of Science and Technology, Tel-Hai College, Upper Galilee, Israel; MIGAL-Galilee Technology Center, Kiryat Shmona, Israel; Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
21
|
Grafer CM, Halvorson LM. Androgen receptor drives transcription of rat PACAP in gonadotrope cells. Mol Endocrinol 2013; 27:1343-56. [PMID: 23798575 DOI: 10.1210/me.2012-1378] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Gonadotropin expression is precisely regulated within the hypothalamic-pituitary-gonadal axis through the complex interaction of neuropeptides, gonadal steroids. and both gonadal- and pituitary-derived peptides. In the anterior pituitary gland, the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) modulates gonadotropin biosynthesis and secretion, acting both alone and in conjunction with GnRH. Steroid hormone feedback also influences gonadotropin expression via both direct and indirect mechanisms. Evidence from nonpituitary tissues suggests that PACAP may be a target for gonadal steroid regulation. In the present study, we show that androgen markedly stimulates rat (r) PACAP promoter-reporter activity in the LβT2 mature mouse gonadotrope cell line. 5'-Serial deletion analysis of reporter constructs identifies 2 regions of androgen responsiveness located at (-915 to -818) and (-308 to -242) of the rPACAP promoter. Androgen receptor (AR) binds directly to DNA cis-elements in each of these regions in vitro. Site-directed mutagenesis of 3 conserved hormone response element half-sites straddling the (-308 to -242) region dramatically blunts androgen-dependent PACAP promoter activity and prevents AR binding at the mutated promoter element. Chromatin immunoprecipitation demonstrates that endogenous AR binds the homologous region on mouse chromatin in LβT2 cells in both the presence and absence of androgen. These data demonstrate that androgen stimulates PACAP gene expression in the pituitary gonadotrope via direct binding of AR to a specific cluster of evolutionarily conserved hormone response elements in the proximal rPACAP gene promoter. Thus, androgen regulation of pituitary PACAP expression may provide an additional layer of control over gonadotropin expression within the hypothalamic-pituitary-gonadal axis.
Collapse
Affiliation(s)
- Constance M Grafer
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9032, USA
| | | |
Collapse
|
22
|
Zheng W, Grafer CM, Halvorson LM. Interaction of gonadal steroids and gonadotropin-releasing hormone on pituitary adenylate cyclase-activating polypeptide (PACAP) and PACAP receptor expression in cultured rat anterior pituitary cells. Reprod Sci 2013; 21:41-51. [PMID: 23690336 DOI: 10.1177/1933719113488454] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptors are expressed in the hypothalamus, the gonadotrope cells of the anterior pituitary gland, and the gonads, forming an autocrine-paracrine system in these tissues. Within the pituitary, PACAP functions either alone or synergistically with gonadotropin-releasing hormone (GnRH) to stimulate gonadotropin gene expression and secretion. Our goal was to define the hormonal regulation of pituitary PACAP and PACAP receptor (PAC1) gene expression by dihydrotestosterone (DHT), estradiol, and progesterone alone or in conjunction with GnRH. Treatment of adult male rat pituitary cell cultures with DHT or progesterone augmented GnRH-mediated increase in PACAP messenger RNA (mRNA) levels, but neither had an effect when present alone. Conversely, estradiol treatment blunted PACAP gene expression but did not alter GnRH effects on PACAP expression. Expression of PACAP receptor mRNA was decreased by GnRH treatment, minimally increased by DHT treatment, but not altered by the addition of estradiol or progesterone. DHT and GnRH together blunted PACAP receptor gene expression. Taken together, these results suggest that the activity of the intrapituitary PACAP-PAC1 system is regulated via the complex interaction of gonadal steroids and hypothalamic GnRH.
Collapse
Affiliation(s)
- Weiming Zheng
- 1Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | |
Collapse
|
23
|
Rudolf FO, Kadokawa H. Expression of estradiol receptor, GPR30, in bovine anterior pituitary and effects of GPR30 agonist on GnRH-induced LH secretion. Anim Reprod Sci 2013; 139:9-17. [PMID: 23642498 DOI: 10.1016/j.anireprosci.2013.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 02/26/2013] [Accepted: 04/09/2013] [Indexed: 01/14/2023]
Abstract
G-protein - coupled receptor 30 (GPR30) is an estradiol receptor located on the plasma membrane, and it initiates several rapid, non-genomic signaling events. GPR30 has recently been identified in rat anterior pituitary (AP); however, little is known about the role of GPR30 in controlling luteinizing hormone (LH) secretion from gonadotropes in animals. To fill this research gap, we hypothesized that GPR30 is expressed in bovine AP and mediates estradiol inhibition of gonadotropin-releasing hormone (GnRH)-induced LH release. We confirmed the expressions of GPR30 mRNA and protein by RT-PCR, western blotting, and immunohistochemistry. We cultured bovine AP cells (n=8) for 3 days in steroid-free conditions and then treated them with increasing concentrations (0.001nM, 0.01nM, 0.1nM, 1nM, and 10nM) of estradiol or a GPR30-specific agonist, G1, for 5min before GnRH stimulation. As expected, estradiol at 0.001-0.1nM inhibited the GnRH-stimulated LH secretion. However, we found also that G1 at 0.001nM was able to inhibit this secretion (P<0.05). In contrast, both estradiol and G1 at higher doses were less efficient in suppressing the GnRH-stimulated LH secretion. Neither estradiol nor G1 suppressed GnRH-stimulated follicle-stimulating hormone secretion. In separate experiments, fluorescent immunohistochemistry and immunocytochemistry revealed that approximately 50% of GPR30-positive cells express LH, and about 30% of LH-positive cells express GPR30. In conclusion, GPR30 is expressed in bovine gonadotropes and other AP cells and may partially contribute to rapid negative estradiol feedback of GnRH-induced LH secretion.
Collapse
Affiliation(s)
- Faidiban O Rudolf
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi-shi, Yamaguchi-ken 1677-1, Japan
| | | |
Collapse
|
24
|
Blechman J, Levkowitz G. Alternative Splicing of the Pituitary Adenylate Cyclase-Activating Polypeptide Receptor PAC1: Mechanisms of Fine Tuning of Brain Activity. Front Endocrinol (Lausanne) 2013; 4:55. [PMID: 23734144 PMCID: PMC3659299 DOI: 10.3389/fendo.2013.00055] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 04/24/2013] [Indexed: 12/11/2022] Open
Abstract
Alternative splicing of the precursor mRNA encoding for the neuropeptide receptor PAC1/ADCYAP1R1 generates multiple protein products that exhibit pleiotropic activities. Recent studies in mammals and zebrafish have implicated some of these splice isoforms in control of both cellular and body homeostasis. Here, we review the regulation of PAC1 splice variants and their underlying signal transduction and physiological processes in the nervous system.
Collapse
Affiliation(s)
- Janna Blechman
- Department of Molecular Cell Biology, Weizmann Institute of ScienceRehovot, Israel
| | - Gil Levkowitz
- Department of Molecular Cell Biology, Weizmann Institute of ScienceRehovot, Israel
- *Correspondence: Gil Levkowitz, Department of Molecular Cell Biology, Weizmann Institute of Science, P. O. Box 26, Rehovot 76100, Israel. e-mail:
| |
Collapse
|
25
|
Evans JJ, Wilkinson TM, Wall DJN. A Two-Pathway Mathematical Model of the LH Response to GnRH that Predicts Self-Priming. Int J Endocrinol 2013; 2013:410348. [PMID: 24319456 PMCID: PMC3844275 DOI: 10.1155/2013/410348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/02/2013] [Indexed: 11/30/2022] Open
Abstract
An acute response of LH to a stimulatory pulse of GnRH is modelled as a result of a pathway (Pathway I) that consists of two compartments including a single (rate limiting) intermediate. In addition, a second pathway (Pathway II) was added, consisting of an intermediate transcription factor and subsequently a synthesised protein. Pathway II had a delayed effect on LH release due to the time taken to produce the intermediate protein. The model included synergism between these two pathways, which yielded an augmented response. The model accounts for a number of observations, including GnRH self-priming and the biphasic pattern of LH response. The same model was used to fit the data of the LH response when gonadotrophs responded to the addition of oxytocin in the response with a shoulder on the profile. Pathway I is able to be conceptualised as the basic Ca(2+)-mediated pathway. Pathway II contains features characteristic of the cAMP-mediated pathway. Thus, we have provided an explanation for details of the nature of the profile of LH secretion and additionally enabled incorporation of cAMP in an integrating model. The study investigated the possibility of two interacting pathways being at the basis of both the shoulder on the LH surges and self-priming, and the model illustrates that this appears to be highly likely.
Collapse
Affiliation(s)
- J. J. Evans
- Centre for Neuroendocrinology, University of Otago, Christchurch, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanoengineering, University of Otago, Christchurch, New Zealand
- Department of Obstetrics and Gynaecology, University of Otago, Christchurch, New Zealand
- *J. J. Evans:
| | - T. M. Wilkinson
- Department of Obstetrics and Gynaecology, University of Otago, Christchurch, New Zealand
- Biomathematics Research Centre, University of Canterbury, Christchurch, New Zealand
| | - D. J. N. Wall
- Biomathematics Research Centre, University of Canterbury, Christchurch, New Zealand
- Department of Mathematics, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
26
|
Sharma TP, Nett TM, Karsch FJ, Phillips DJ, Lee JS, Herkimer C, Padmanabhan V. Neuroendocrine control of FSH secretion: IV. Hypothalamic control of pituitary FSH-regulatory proteins and their relationship to changes in FSH synthesis and secretion. Biol Reprod 2012; 86:171. [PMID: 22423050 PMCID: PMC3386145 DOI: 10.1095/biolreprod.111.098442] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/04/2012] [Accepted: 02/27/2012] [Indexed: 11/01/2022] Open
Abstract
The current dogma is that the differential regulation of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) synthesis and secretion is modulated by gonadotropin-releasing hormone (GnRH) pulse frequency and by changes in inhibins, activins, and follistatins both at the pituitary and at the peripheral level. To date no studies have looked at the overlapping function of these regulators in a combined setting. We tested the hypothesis that changes in GnRH pulse frequency alter the relative abundance of these regulators at the pituitary and peripheral levels in a manner consistent with changes in pituitary and circulating concentrations of FSH; that is, an increase in FSH will be accompanied by increased stimulatory input (activin) and/or reduced follistatin and inhibin. Ovariectomized ewes were subjected to a combination hypothalamic pituitary disconnection (HPD)-hypophyseal portal blood collection procedure. Hypophyseal portal and jugular blood samples were collected for a 6-h period from non-HPD ewes, HPD ewes, or HPD ewes administered GnRH hourly or every 3 h for 4 days. In the absence of endogenous hypothalamic and ovarian hormones that regulate gonadotropin secretion, 3-hourly pulses of GnRH increased pituitary content of FSH more than hourly GnRH, although these differences were not evident in the peripheral circulation. The results failed to support the hypothesis in that the preferential increase of pituitary content of FSH by the lower GnRH pulse frequency could be explained by changes in the pituitary content of inhibin A, follistatin, or activin B. Perhaps the effects of GnRH pulse frequency on FSH is due to changes in the balance of free versus bound amounts of these FSH regulatory proteins or to the involvement of other regulators not monitored in this study.
Collapse
Affiliation(s)
- Tejinder P. Sharma
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
- Reproductive Sciences Program, University of Michigan, Ann Arbor, Michigan
| | - Terry M. Nett
- Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado
| | - Fred J. Karsch
- Reproductive Sciences Program, University of Michigan, Ann Arbor, Michigan
| | - David J. Phillips
- Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - James S. Lee
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Carol Herkimer
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Vasantha Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
- Reproductive Sciences Program, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
27
|
Doan ND, Chatenet D, Létourneau M, Vaudry H, Vaudry D, Fournier A. Receptor-independent cellular uptake of pituitary adenylate cyclase-activating polypeptide. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:940-9. [DOI: 10.1016/j.bbamcr.2012.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 01/31/2012] [Accepted: 02/01/2012] [Indexed: 11/28/2022]
|
28
|
Levy G, Degani G. Involvement of GnRH, PACAP and PRP in the reproduction of blue gourami females (Trichogaster trichopterus). J Mol Neurosci 2012; 48:603-16. [PMID: 22399226 DOI: 10.1007/s12031-012-9730-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 02/16/2012] [Indexed: 12/11/2022]
Abstract
In vertebrates, gonadotropin-releasing hormone (GnRH) and pituitary adenylate cyclase-activating polypeptide (PACAP) are key hormones regulating growth and reproduction in the brain-pituitary axis. The regulating hormonal interactions are of great interest, therefore, the aim of this study is to provide novel insights into the involvement of brain GnRH and PACAP in oogensis and spermatogenesis in a fish model, the blue gourami (Trichogaster trichopterus). cDNA cloning of two GnRH forms combined with phylogenetic analysis revealed that three paralogous GnRH forms exist in blue gourami and evolve as a result of genome duplication. GnRH1 mRNA levels are related to final oocyte maturation (FOM), and this peptide stimulated β follicle-stimulating hormone (βFSH) and growth hormone (GH) gene expression; GnRH2 stimulated β gonadotropins (GtH) gene expression and GnRH analog combined with PACAP-38 synergistically upregulate GH and βFSH gene expression. The data presented, together with previous studies in our lab, enable suggesting mechanisms explaining the physiological relevance of these peptides in the regulation of gametogenesis and steroidogenesis in blue gourami females. These findings support the biological importance of the GnRH and PACAP hormones family, enabling them to stimulate differential biological functions in the regulation of growth and reproduction.
Collapse
Affiliation(s)
- Gal Levy
- School of Science and Technology, Tel-Hai College, Upper Galilee 12210, Israel
| | | |
Collapse
|
29
|
Yuen T, Choi SG, Pincas H, Waring DW, Sealfon SC, Turgeon JL. Optimized amplification and single-cell analysis identify GnRH-mediated activation of Rap1b in primary rat gonadotropes. Mol Cell Endocrinol 2012; 350:10-9. [PMID: 22127306 PMCID: PMC3919063 DOI: 10.1016/j.mce.2011.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 11/15/2011] [Accepted: 11/15/2011] [Indexed: 10/15/2022]
Abstract
Identifying the early gene program induced by GnRH would help understand how GnRH-activated signaling pathways modulate gonadotrope secretory response. We previously analyzed GnRH-induced early genes in LβT2 cells, however these lack GnRH self-potentiation, a physiological attribute of gonadotropes. To minimize cellular heterogeneity, rat primary pituitary cultures were enriched for gonadotropes by 40-60% using a sedimentation gradient. Given the limited number of gonadotropes, RNA was amplified prior to microarray analysis. Thirty-three genes were up-regulated 40 min after GnRH stimulation. Real-time PCR confirmed regulation of several transcripts including fosB, c-fos, egr-2 and rap1b, a small GTPase and member of the Ras family. GnRH stimulated rap1b gene expression in gonadotropes, measured by a sensitive single cell assay. Immunocytochemistry revealed increased Rap1 protein in GnRH-stimulated gonadotropes. These data establish rap1b as a novel gene rapidly induced by GnRH and a candidate to modulate gonadotropin secretion in rat gonadotropes.
Collapse
Affiliation(s)
- Tony Yuen
- Center for Translational Systems Biology and Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, United States
| | - Soon Gang Choi
- Center for Translational Systems Biology and Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, United States
| | - Hanna Pincas
- Center for Translational Systems Biology and Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, United States
| | - Dennis W. Waring
- Division of Endocrinology, Department of Internal Medicine, School of Medicine, University of California, Davis, CA 95616, United States
| | - Stuart C. Sealfon
- Center for Translational Systems Biology and Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, United States
| | - Judith L. Turgeon
- Division of Endocrinology, Department of Internal Medicine, School of Medicine, University of California, Davis, CA 95616, United States
| |
Collapse
|