1
|
Wijesena HR, Nonneman DJ, Snelling WM, Rohrer GA, Keel BN, Lents CA. gBLUP-GWAS identifies candidate genes, signaling pathways, and putative functional polymorphisms for age at puberty in gilts. J Anim Sci 2023; 101:skad063. [PMID: 36848325 PMCID: PMC10016198 DOI: 10.1093/jas/skad063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/27/2023] [Indexed: 03/01/2023] Open
Abstract
Successful development of replacement gilts determines their reproductive longevity and lifetime productivity. Selection for reproductive longevity is challenging due to low heritability and expression late in life. In pigs, age at puberty is the earliest known indicator for reproductive longevity and gilts that reach puberty earlier have a greater probability of producing more lifetime litters. Failure of gilts to reach puberty and display a pubertal estrus is a major reason for early removal of replacement gilts. To identify genomic sources of variation in age at puberty for improving genetic selection for early age at puberty and related traits, gilts (n = 4,986) from a multigeneration population representing commercially available maternal genetic lines were used for a genomic best linear unbiased prediction-based genome-wide association. Twenty-one genome-wide significant single nucleotide polymorphisms (SNP) located on Sus scrofa chromosomes (SSC) 1, 2, 9, and 14 were identified with additive effects ranging from -1.61 to 1.92 d (P < 0.0001 to 0.0671). Novel candidate genes and signaling pathways were identified for age at puberty. The locus on SSC9 (83.7 to 86.7 Mb) was characterized by long range linkage disequilibrium and harbors the AHR transcription factor gene. A second candidate gene on SSC2 (82.7 Mb), ANKRA2, is a corepressor for AHR, suggesting a possible involvement of AHR signaling in regulating pubertal onset in pigs. Putative functional SNP associated with age at puberty in the AHR and ANKRA2 genes were identified. Combined analysis of these SNP showed that an increase in the number of favorable alleles reduced pubertal age by 5.84 ± 1.65 d (P < 0.001). Candidate genes for age at puberty showed pleiotropic effects with other fertility functions such as gonadotropin secretion (FOXD1), follicular development (BMP4), pregnancy (LIF), and litter size (MEF2C). Several candidate genes and signaling pathways identified in this study play a physiological role in the hypothalamic-pituitary-gonadal axis and mechanisms permitting puberty onset. Variants located in or near these genes require further characterization to identify their impact on pubertal onset in gilts. Because age at puberty is an indicator of future reproductive success, these SNP are expected to improve genomic predictions for component traits of sow fertility and lifetime productivity expressed later in life.
Collapse
Affiliation(s)
| | - Dan J Nonneman
- Genetics and Animal Breeding Research Unit, USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, USA
| | - Warren M Snelling
- Genetics and Animal Breeding Research Unit, USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, USA
| | - Gary A Rohrer
- Genetics and Animal Breeding Research Unit, USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, USA
| | - Brittney N Keel
- Genetics and Animal Breeding Research Unit, USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, USA
| | - Clay A Lents
- LivestockBio-systems Research Unit, Clay Center, NE, USA
| |
Collapse
|
2
|
Ren B, Wan S, Wu H, Qu M, Chen Y, Liu L, Jin M, Zhou Z, Shen H. Effect of different iodine levels on the DNA methylation of PRKAA2, ITGA6, THEM4 and PRL genes in PI3K-AKT signaling pathway and population-based validation from autoimmune thyroiditis patients. Eur J Nutr 2022; 61:3571-3583. [PMID: 35622138 DOI: 10.1007/s00394-022-02907-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 05/05/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE Autoimmune thyroiditis (AIT) is one of the most common autoimmune endocrine diseases. The currently recognized causes are genetic susceptibility, environmental factors and immune disorders. It is important to clarify the pathogenesis for the prevention, diagnosis, treatment of AIT and scientific iodine supplementation. This study analyzed the DNA methylation levels of PRKAA2, ITGA6, PRL and THEM4 genes related to PI3K-AKT signaling pathway, compared the DNA methylation levels between cases and controls from different water iodine levels in Shandong Province of China, and evaluated the contribution of PI3K-AKT signaling pathway-related genes in AIT. METHODS A total of 176 adult AIT patients were included from three different water iodine areas, and 176 healthy controls were included according to gender, age and BMI. According to the results of the Illumina Methylation 850 K BeadChip in our previous research, the significant methylation differences of genes on the PI3K-AKT signaling pathway related to AIT were determined. The MethylTarget™ assay was used to detect the methylation levels of the target genes, and real-time PCR experiments were used to verify the mRNA expression levels. RESULTS Compared with the control group, PRKAA2_3 and 15 CpG sites were hyper-methylated. ITGA6 gene and 2 CpG sites were hypo-methylated in AIT cases. The mRNA expression of ITGA6 gene was negatively correlated with the DNA methylation levels of ITGA6 gene and 2 CpG sites. Compared with cases and controls in areas with different water iodine levels, methylation differences were mainly in PRKAA2 and ITGA6 genes. The methylation levels of PRKAA2_1 and PRKAA2_3 were positively correlated with age. The methylation levels of PRL and THEM4 genes were negatively correlated with age. The methylation level of PRKAA2_3 was positively correlated with FT4. CONCLUSION In summary, we identified aberrant DNA methylation levels of PRKAA2 and ITGA6 genes related to PI3K-AKT signaling pathway in the blood of AIT patients. Both iodine supplementation after long-term iodine deficiency and iodine excess can affect the DNA methylation levels of PRKAA2 and ITGA6 genes, and the former affects more obviously. In ITGA6 gene, this aberrant epigenetic modification is associated with the increased mRNA expression.
Collapse
Affiliation(s)
- Bingxuan Ren
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, 150081, Heilongjiang Province, People's Republic of China.,National Health Commission and Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Siyuan Wan
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, 150081, Heilongjiang Province, People's Republic of China.,Department of Preventive Medicine, Qiqihar Medical University, Qiqihar City, 161006, Heilongjiang Province, People's Republic of China.,National Health Commission and Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Huaiyong Wu
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, 150081, Heilongjiang Province, People's Republic of China.,National Health Commission and Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Mengying Qu
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, 150081, Heilongjiang Province, People's Republic of China.,National Health Commission and Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Yao Chen
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, 150081, Heilongjiang Province, People's Republic of China.,National Health Commission and Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Lixiang Liu
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, 150081, Heilongjiang Province, People's Republic of China.,National Health Commission and Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Meihui Jin
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, 150081, Heilongjiang Province, People's Republic of China.,National Health Commission and Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Zheng Zhou
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, 150081, Heilongjiang Province, People's Republic of China.,National Health Commission and Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Hongmei Shen
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, 150081, Heilongjiang Province, People's Republic of China. .,National Health Commission and Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, China. .,Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China.
| |
Collapse
|
3
|
Forkhead Box Protein P3 (FOXP3) Represses ATF3 Transcriptional Activity. Int J Mol Sci 2021; 22:ijms222111400. [PMID: 34768829 PMCID: PMC8583784 DOI: 10.3390/ijms222111400] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/11/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022] Open
Abstract
Activating transcription factor 3 (ATF3), a transcription factor and acute stress sensor, is rapidly induced by a variety of pathophysiological signals and is essential in the complex processes in cellular stress response. FOXP3, a well-known breast and prostate tumor suppressor from the X chromosome, is a novel transcriptional repressor for several oncogenes. However, it remains unknown whether ATF3 is the target protein of FOXP3. Herein, we demonstrate that ATF3 expression is regulated by FOXP3. Firstly, we observed that overexpression of FOXP3 reduced ATF3 protein level. Moreover, knockdown FOXP3 by siRNA increased ATF3 expression. Secondly, FOXP3 dose-dependently reduced ATF3 promoter activity in the luciferase reporter assay. Since FOXP3 is regulated by post-translational modifications (PTMs), we next investigated whether PTMs affect FOXP3-mediated ATF3 expression. Interestingly, we observed that phosphorylation mutation on FOXP3 (Y342F) significantly abolished FOXP3-mediated ATF3 expression. However, other PTM mutations on FOXP3, including S418 phosphorylation, K263 acetylation and ubiquitination, and K268 acetylation and ubiquitination, did not alter FOXP3-mediated ATF3 expression. Finally, the FOXP3 binding site was found on ATF3 promoter region by deletion and mutagenesis analysis. Taken together, our results suggest that FOXP3 functions as a novel regulator of ATF3 and that this novel event may be involved in tumor development and progression.
Collapse
|
4
|
Qiu Q, Yu X, Yao C, Hao Y, Fan L, Li C, Xu P, An G, Li Z, He Z. FOXP3 pathogenic variants cause male infertility through affecting the proliferation and apoptosis of human spermatogonial stem cells. Aging (Albany NY) 2019; 11:12581-12599. [PMID: 31855573 PMCID: PMC6949051 DOI: 10.18632/aging.102589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/26/2019] [Indexed: 12/11/2022]
Abstract
Genetic causes of male infertility that is associated with aging are largely unknown. This study was designed to identify novel pathogenic variants of FOXP3 gene causing azoospermia. One homozygous (c.155 G > T) pathogenic variant of FOXP3 was identified in nine non-obstructive azoospermia patients, and one heterozygous (c.691 C > A) of FOXP3 was found in one non-obstructive azoospermia patient. Pedigrees studies indicated that the homozygous (c.155 G > T) FOXP3 pathogenic variant was inherited, while heterozygous (c.691 C > A) FOXP3 pathogenic variant was acquired. Human testis carrying pathogenic variant exhibited abnormal spermatogenesis. FOXP3 protein was expressed at a lower level or undetected in spermatocytes of mutant testis of non-obstructive azoospermia patients compared to obstructive azoospermia patients. FOXP3 stimulated the proliferation and inhibited the apoptosis of human spermatogonial stem cells, and we further analyzed the targets of FOXP3. We have identified two new pathogenic variants of FOXP3 in non-obstructive azoospermia patients with high incidence, and FOXP3 silencing inhibits the proliferation and enhances the apoptosis of human spermatogonial stem cells. This study provides new insights into the etiology of azoospermia and offers novel pathogenic variants for gene targeting of male infertility.
Collapse
Affiliation(s)
- Qianqian Qiu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xing Yu
- Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Chencheng Yao
- Department of Andrology, The Center for Men's Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yujun Hao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liqing Fan
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Chunyi Li
- Fertility Center, Shenyang Dongfang Jinghua Hospital, Shenyang, Liaoning, China
| | - Peng Xu
- Fertility Center, Shenyang Dongfang Jinghua Hospital, Shenyang, Liaoning, China
| | - Geng An
- Department of Reproductive Medicine, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zheng Li
- Department of Andrology, The Center for Men's Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zuping He
- Hunan Normal University School of Medicine, Changsha, Hunan, China.,Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai, China
| |
Collapse
|
5
|
Ren YA, Monkkonen T, Lewis MT, Bernard DJ, Christian HC, Jorgez CJ, Moore JA, Landua JD, Chin HM, Chen W, Singh S, Kim IS, Zhang XH, Xia Y, Phillips KJ, MacKay H, Waterland RA, Ljungberg MC, Saha PK, Hartig SM, Coll TF, Richards JS. S100a4-Cre-mediated deletion of Patched1 causes hypogonadotropic hypogonadism: role of pituitary hematopoietic cells in endocrine regulation. JCI Insight 2019; 5:126325. [PMID: 31265437 DOI: 10.1172/jci.insight.126325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hormones produced by the anterior pituitary gland regulate an array of important physiological functions, but pituitary hormone disorders are not fully understood. Herein we report that genetically-engineered mice with deletion of the hedgehog signaling receptor Patched1 by S100a4 promoter-driven Cre recombinase (S100a4-Cre;Ptch1fl/fl mutants) exhibit adult-onset hypogonadotropic hypogonadism and multiple pituitary hormone disorders. During the transition from puberty to adult, S100a4-Cre;Ptch1fl/fl mice of both sexes develop hypogonadism coupled with reduced gonadotropin levels. Their pituitary glands also display severe structural and functional abnormalities, as revealed by transmission electron microscopy and expression of key genes regulating pituitary endocrine functions. S100a4-Cre activity in the anterior pituitary gland is restricted to CD45+ cells of hematopoietic origin, including folliculo-stellate cells and other immune cell types, causing sex-specific changes in the expression of genes regulating the local microenvironment of the anterior pituitary. These findings provide in vivo evidence for the importance of pituitary hematopoietic cells in regulating fertility and endocrine function, in particular during sexual maturation and likely through sexually dimorphic mechanisms. These findings support a previously unrecognized role of hematopoietic cells in causing hypogonadotropic hypogonadism and provide inroads into the molecular and cellular basis for pituitary hormone disorders in humans.
Collapse
Affiliation(s)
- Yi Athena Ren
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Michael T Lewis
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.,Department of Radiology and.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Helen C Christian
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, England
| | - Carolina J Jorgez
- Department of Urology, Baylor College of Medicine, Houston, Texas, USA
| | - Joshua A Moore
- Department of Urology, Baylor College of Medicine, Houston, Texas, USA
| | - John D Landua
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.,Department of Radiology and.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | - Haelee M Chin
- Department of Biology, Rice University, Houston, Texas, USA
| | - Weiqin Chen
- Department of Physiology, Augusta University, Augusta, Georgia, USA
| | - Swarnima Singh
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | - Ik Sun Kim
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | - Xiang Hf Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | - Yan Xia
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Kevin J Phillips
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Harry MacKay
- USDA/ARS Children's Nutrition Research Center, Houston, Texas, USA
| | | | - M Cecilia Ljungberg
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Jan and Dan Duncan Neurological Research Center at Texas Children's Hospital, Houston, Texas, USA
| | - Pradip K Saha
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Sean M Hartig
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Tatiana Fiordelisio Coll
- Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, University of Montpellier, Montpellier, France.,Laboratorio de Neuroendocrinología Comparada, Departamento de Ecología y Recursos Naturales, Biología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City, Distrito Federal, México
| | - JoAnne S Richards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
6
|
Loss of Foxm1 Results in Reduced Somatotrope Cell Number during Mouse Embryogenesis. PLoS One 2015; 10:e0128942. [PMID: 26075743 PMCID: PMC4468165 DOI: 10.1371/journal.pone.0128942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 05/01/2015] [Indexed: 12/31/2022] Open
Abstract
FOXM1, a member of the forkhead box transcription factor family, plays a key role in cell cycling progression by regulating the expression of critical G1/S and G2/M phase transition genes. In vivo studies reveal that Foxm1 null mice have a 91% lethality rate at e18.5 due to significant cardiovascular and hepatic hypoplasia. Thus, FOXM1 has emerged as a key protein regulating mitotic division and cell proliferation necessary for embryogenesis. In the current study, we assess the requirement for Foxm1 in the developing pituitary gland. We find that Foxm1 is expressed in the pituitary at embryonic days 10.5-e18.5 and localizes with markers for active cell proliferation (BrdU). Interestingly, direct analysis of Foxm1 null mice at various embryonic ages, reveals no difference in gross pituitary morphology or cell proliferation. We do observe a downward trend in overall pituitary cell number and a small reduction in pituitary size in e18.5 embryos suggesting there may be subtle changes in pituitary proliferation not detected with our proliferation makers. Consistent with this, Foxm1 null mice have reductions in both the somatotrope and gonadotrope cell populations.
Collapse
|
7
|
Wang Y, Sun ZH, Zhou L, Li Z, Gui JF. Grouper tshβ promoter-driven transgenic zebrafish marks proximal kidney tubule development. PLoS One 2014; 9:e97806. [PMID: 24905828 PMCID: PMC4048157 DOI: 10.1371/journal.pone.0097806] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 04/24/2014] [Indexed: 01/09/2023] Open
Abstract
Kidney tubule plays a critical role in recovering or secreting solutes, but the detailed morphogenesis remains unclear. Our previous studies have found that grouper tshβ (gtshβ) is also expressed in kidney, however, the distribution significance is still unknown. To understand the gtshβ role and kidney tubule morphogenesis, here, we have generated a transgenic zebrafish line Tg(gtshβ:GFP) with green fluorescent protein driven by the gtshβ promoter. Similar to the endogenous tshβ in zebrafish or in grouper, the gtshβ promoter-driven GFP is expressed in pituitary and kidney, and the developing details of proximal kidney tubule are marked in the transgenic zebrafish line. The gfp initially transcribes at 16 hours post fertilization (hpf) above the dorsal mesentery, and partially co-localizes with pronephric tubular markers slc20a1a and cdh17. Significantly, the GFP specifically localizes in proximal pronephric segments during embryogenesis and resides at kidney duct epithelium in adult fish. To test whether the gtshβ promoter-driven GFP may serve as a readout signal of the tubular development, we have treated the embryos with retinoic acid signaing (RA) reagents, in which exogenous RA addition results in a distal extension of the proximal segments, while RA inhibition induces a weakness and shortness of the proximal segments. Therefore, this transgenic line provides a useful tool for genetic or chemical analysis of kidney tubule.
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, China
| | - Zhi-Hui Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
8
|
Thackray VG. Fox tales: regulation of gonadotropin gene expression by forkhead transcription factors. Mol Cell Endocrinol 2014; 385:62-70. [PMID: 24099863 PMCID: PMC3947687 DOI: 10.1016/j.mce.2013.09.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 12/16/2022]
Abstract
Luteinizing hormone (LH) and follicle-stimulating hormone (FSH) are produced by pituitary gonadotrope cells and are required for steroidogenesis, the maturation of ovarian follicles, ovulation, and spermatogenesis. Synthesis of LH and FSH is tightly regulated by a complex network of signaling pathways activated by hormones including gonadotropin-releasing hormone, activin and sex steroids. Members of the forkhead box (FOX) transcription factor family have been shown to act as important regulators of development, homeostasis and reproduction. In this review, we focus on the role of four specific FOX factors (FOXD1, FOXL2, FOXO1 and FOXP3) in gonadotropin hormone production and discuss our current understanding of the molecular function of these factors derived from studies in mouse genetic and cell culture models.
Collapse
Affiliation(s)
- Varykina G Thackray
- Department of Reproductive Medicine and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
9
|
Jasurda JS, Jung DO, Froeter ED, Schwartz DB, Hopkins TD, Farris CL, McGee S, Narayan P, Ellsworth BS. The forkhead transcription factor, FOXP3: a critical role in male fertility in mice. Biol Reprod 2014; 90:4. [PMID: 24258212 DOI: 10.1095/biolreprod.113.112375] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fertility is dependent on the hypothalamic-pituitary-gonadal axis. Each component of this axis is essential for normal reproductive function. Mice with a mutation in the forkhead transcription factor gene, Foxp3, exhibit autoimmunity and infertility. We have previously shown that Foxp3 mutant mice have significantly reduced expression of pituitary gonadotropins. To address the role of Foxp3 in gonadal function, we examined the gonadal phenotype of these mice. Foxp3 mutant mice have significantly reduced seminal vesicle and testis weights compared with Foxp3(+/Y) littermates. Spermatogenesis in Foxp3 mutant males is arrested prior to spermatid elongation. Activation of luteinizing hormone signaling in Foxp3 mutant mice by treatment with human chorionic gonadotropin significantly increases seminal vesicle and testis weights as well as testicular testosterone content and seminiferous tubule diameter. Interestingly, human chorionic gonadotropin treatments rescue spermatogenesis in Foxp3 mutant males, suggesting that their gonadal phenotype is due primarily to a loss of pituitary gonadotropin stimulation rather than an intrinsic gonadal defect.
Collapse
Affiliation(s)
- Jake S Jasurda
- Department of Physiology, Southern Illinois University, Carbondale, Illinois
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Davis SW, Ellsworth BS, Peréz Millan MI, Gergics P, Schade V, Foyouzi N, Brinkmeier ML, Mortensen AH, Camper SA. Pituitary gland development and disease: from stem cell to hormone production. Curr Top Dev Biol 2013; 106:1-47. [PMID: 24290346 DOI: 10.1016/b978-0-12-416021-7.00001-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Many aspects of pituitary development have become better understood in the past two decades. The signaling pathways regulating pituitary growth and shape have emerged, and the balancing interactions between the pathways are now appreciated. Markers for multipotent progenitor cells are being identified, and signature transcription factors have been discovered for most hormone-producing cell types. We now realize that pulsatile hormone secretion involves a 3D integration of cellular networks. About a dozen genes are known to cause pituitary hypoplasia when mutated due to their essential roles in pituitary development. Similarly, a few genes are known that predispose to familial endocrine neoplasia, and several genes mutated in sporadic pituitary adenomas are documented. In the next decade, we anticipate gleaning a deeper appreciation of these processes at the molecular level, insight into the development of the hypophyseal portal blood system, and evolution of better therapeutics for congenital and acquired hormone deficiencies and for common craniopharyngiomas and pituitary adenomas.
Collapse
Affiliation(s)
- Shannon W Davis
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
The forkhead transcription factor, Foxd1, is necessary for pituitary luteinizing hormone expression in mice. PLoS One 2012; 7:e52156. [PMID: 23284914 PMCID: PMC3526578 DOI: 10.1371/journal.pone.0052156] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 11/15/2012] [Indexed: 12/05/2022] Open
Abstract
The pituitary gland regulates numerous physiological functions including growth, reproduction, temperature and metabolic homeostasis, lactation, and response to stress. Pituitary organogenesis is dependent on signaling factors that are produced in and around the developing pituitary. The studies described in this report reveal that the forkhead transcription factor, Foxd1, is not expressed in the developing mouse pituitary gland, but rather in the mesenchyme surrounding the pituitary gland, which is an essential source of signaling factors that regulate pituitary organogenesis. Loss of Foxd1 causes a morphological defect in which the anterior lobe of the pituitary gland protrudes through the cartilage plate that is developing ventral to the pituitary at embryonic days (e)14.5, e16.5, and e18.5. The number of proliferating pituitary cells is increased at e14.5 and e16.5. Loss of Foxd1 also results in significantly decreased levels of Lhb expression at e18.5. This decrease in Lhb expression does not appear to be due to a change in the number of gonadotrope cells in the pituitary gland. Previous studies have shown that loss of the LIM homeodomain factor, Lhx3, which is activated by the FGF signaling pathway, results in loss of LH production. Although there is a difference in Lhb expression in Foxd1 null mice, the expression pattern of LHX3 is not altered in Foxd1 null mice. These studies suggest that Foxd1 is indirectly required for normal Lhb expression and cartilage formation.
Collapse
|