1
|
Kashir J, Mistry BV, Rajab MA, BuSaleh L, Abu-Dawud R, Ahmed HA, Alharbi S, Nomikos M, AlHassan S, Coskun S, Assiri AM. The mammalian sperm factor phospholipase C zeta is critical for early embryo division and pregnancy in humans and mice. Hum Reprod 2024; 39:1256-1274. [PMID: 38670547 PMCID: PMC11145019 DOI: 10.1093/humrep/deae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/13/2024] [Indexed: 04/28/2024] Open
Abstract
STUDY QUESTION Are sperm phospholipase C zeta (PLCζ) profiles linked to the quality of embryogenesis and pregnancy? SUMMARY ANSWER Sperm PLCζ levels in both mouse and humans correlate with measures of ideal embryogenesis whereby minimal levels seem to be required to result in successful pregnancy. WHAT IS KNOWN ALREADY While causative factors underlying male infertility are multivariable, cases are increasingly associated with the efficacy of oocyte activation, which in mammals occurs in response to specific profiles of calcium (Ca2+) oscillations driven by sperm-specific PLCζ. Although sperm PLCζ abrogation is extensively linked with human male infertility where oocyte activation is deficient, less is clear as to whether sperm PLCζ levels or localization underlies cases of defective embryogenesis and failed pregnancy following fertility treatment. STUDY DESIGN, SIZE, DURATION A cohort of 54 couples undergoing fertility treatment were recruited at the assisted reproductive technology laboratory at the King Faisal Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia. The recruitment criteria for males was a minimum sperm concentration of 5×106 sperm/ml, while all female patients had to have at least five oocytes. Sperm PLCζ analysis was performed in research laboratories, while semen assessments were performed, and time-lapse morphokinetic data were obtained, in the fertility clinic as part of routine treatment. The CRISPR/Cas9 system was concurrently used to induce indels and single-nucleotide mutations within the Plcζ gene to generate strains of Plcζ mutant mice. Sperm PLCζ was evaluated using immunofluorescence and immunoblotting with an antibody of confirmed consistent specificity against PLCζ. PARTICIPANTS/MATERIALS, SETTING, METHODS We evaluated PLCζ profiles in sperm samples from 54 human couples undergoing fertility treatment in the context of time-lapse morphokinetic analysis of resultant embryos, correlating such profiles to pregnancy status. Concurrently, we generated two strains of mutant Plcζ mice using CRISPR/Cas9, and performed IVF with wild type (WT) oocytes and using WT or mutant Plcζ sperm to generate embryos. We also assessed PLCζ status in WT and mutant mice sperm in the context of time-lapse morphokinetic analysis and breeding outcomes. MAIN RESULTS AND THE ROLE OF CHANCE A significant (P ≤ 0.05) positive relationship was observed between both PLCζ relative fluorescence and relative density with the times taken for both the second cell division (CC2) (r = 0.26 and r = 0.43, respectively) and the third cell division (S2) (r = 0.26). Examination of localization patterns also indicated significant correlations between the presence or absence of sperm PLCζ and CC2 (r = 0.27 and r = -0.27, respectively; P ≤ 0.025). Human sperm PLCζ levels were at their highest in the ideal times of CC2 (8-12 h) compared to time ranges outside the ideal timeframe (<8 and >12 h) where levels of human sperm PLCζ were lower. Following assignment of PLCζ level thresholds, quantification revealed a significantly higher (P ≤ 0.05) rate of successful pregnancy in values larger than the assigned cut-off for both relative fluorescence (19% vs 40%, respectively) and relative density (8% vs 54%, respectively). Immunoblotting indicated a single band for PLCζ at 74 kDa in sperm from WT mice, while a single band was also observed in sperm from heterozygous of Plcζ mutant mouse sperm, but at a diminished intensity. Immunofluorescent analysis indicated the previously reported (Kashir et al., 2021) fluorescence patterns in WT sperm, while sperm from Plcζ mutant mice exhibited a significantly diminished and dispersed pattern at the acrosomal region of the sperm head. Breeding experiments indicated a significantly reduced litter size of mutant Plcζ male mice compared to WT mice, while IVF-generated embryos using sperm from mutant Plcζ mice exhibited high rates of polyspermy, and resulted in significantly reduced numbers of these embryos reaching developmental milestones. LIMITATIONS, REASONS FOR CAUTION The human population examined was relatively small, and should be expanded to examine a larger multi-centre cohort. Infertility conditions are often multivariable, and it was not possible to evaluate all these in human patients. However, our mutant Plcζ mouse experiments do suggest that PLCζ plays a significant role in early embryo development. WIDER IMPLICATIONS OF THE FINDINGS We found that minimal levels of PLCζ within a specific range were required for optimal early embryogenesis, correlating with increased pregnancy. Levels of sperm PLCζ below specific thresholds were associated with ineffective embryogenesis and lower pregnancy rates, despite eliciting successful fertilization in both mice and humans. To our knowledge, this represents the first time that PLCζ levels in sperm have been correlated to prognostic measures of embryogenic efficacy and pregnancy rates in humans. Our data suggest for the first time that the clinical utilization of PLCζ may stand to benefit not just a specific population of male infertility where oocyte activation is completely deficient (wherein PLCζ is completely defective/abrogated), but also perhaps the larger population of couples seeking fertility treatment. STUDY FUNDING/COMPETING INTEREST(S) J.K. is supported by a faculty start up grant awarded by Khalifa University (FSU-2023-015). This study was also supported by a Healthcare Research Fellowship Award (HF-14-16) from Health and Care Research Wales (HCRW) to J.K., alongside a National Science, Technology, and Innovation plan (NSTIP) project grant (15-MED4186-20) awarded by the King Abdulaziz City for Science and Technology (KACST) for J.K. and A.M.A. The authors declare no conflicts of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Junaid Kashir
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Bhavesh V Mistry
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mohamed A Rajab
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Lujain BuSaleh
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Raed Abu-Dawud
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- Institute for Molecular Medicine, MSH Medical School, Hamburg, Germany
| | - Hala A Ahmed
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Sarah Alharbi
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Michail Nomikos
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Saad AlHassan
- Department of Obstetrics and Gynaecology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Serdar Coskun
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Abdullah M Assiri
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Bafleh WS, Abdulsamad HMR, Al-Qaraghuli SM, El Khatib RY, Elbahrawi RT, Abdukadir AM, Alsawae SM, Dimassi Z, Hamdan H, Kashir J. Applications of advances in mRNA-based platforms as therapeutics and diagnostics in reproductive technologies. Front Cell Dev Biol 2023; 11:1198848. [PMID: 37305677 PMCID: PMC10250609 DOI: 10.3389/fcell.2023.1198848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023] Open
Abstract
The recent COVID-19 pandemic led to many drastic changes in not only society, law, economics, but also in science and medicine, marking for the first time when drug regulatory authorities cleared for use mRNA-based vaccines in the fight against this outbreak. However, while indeed representing a novel application of such technology in the context of vaccination medicine, introducing RNA into cells to produce resultant molecules (proteins, antibodies, etc.) is not a novel principle. It has been common practice to introduce/inject mRNA into oocytes and embryos to inhibit, induce, and identify several factors in a research context, while such aspects have also been proposed as potential therapeutic and diagnostic applications to combat infertility in humans. Herein, we describe key areas where mRNA-based platforms have thus far represented potential areas of clinical applications, describing the advantages and limitations of such applications. Finally, we also discuss how recent advances in mRNA-based platforms, driven by the recent pandemic, may stand to benefit the treatment of infertility in humans. We also present brief future directions as to how we could utilise recent and current advancements to enhance RNA therapeutics within reproductive biology, specifically with relation to oocyte and embryo delivery.
Collapse
Affiliation(s)
- Wjdan S. Bafleh
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Haia M. R. Abdulsamad
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Sally M. Al-Qaraghuli
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Riwa Y. El Khatib
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Rawdah Taha Elbahrawi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Azhar Mohamud Abdukadir
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | | | - Zakia Dimassi
- Department of Pediatrics, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Hamdan Hamdan
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Junaid Kashir
- Department of Biology, College of Arts and Science, Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Abdulsamad HMR, Murtaza ZF, AlMuhairi HM, Bafleh WS, AlMansoori SA, AlQubaisi SA, Hamdan H, Kashir J. The Therapeutic and Diagnostic Potential of Phospholipase C Zeta, Oocyte Activation, and Calcium in Treating Human Infertility. Pharmaceuticals (Basel) 2023; 16:441. [PMID: 36986540 PMCID: PMC10056371 DOI: 10.3390/ph16030441] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/19/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
Oocyte activation, a fundamental event during mammalian fertilisation, is initiated by concerted intracellular patterns of calcium (Ca2+) release, termed Ca2+ oscillations, predominantly driven by testis-specific phospholipase C zeta (PLCζ). Ca2+ exerts a pivotal role in not just regulating oocyte activation and driving fertilisation, but also in influencing the quality of embryogenesis. In humans, a failure of Ca2+ release, or defects in related mechanisms, have been reported to result in infertility. Furthermore, mutations in the PLCζ gene and abnormalities in sperm PLCζ protein and RNA, have been strongly associated with forms of male infertility where oocyte activation is deficient. Concurrently, specific patterns and profiles of PLCζ in human sperm have been linked to parameters of semen quality, suggesting the potential for PLCζ as a powerful target for both therapeutics and diagnostics of human fertility. However, further to PLCζ and given the strong role played by Ca2+ in fertilisation, targets down- and up-stream of this process may also present a significantly similar level of promise. Herein, we systematically summarise recent advancements and controversies in the field to update expanding clinical associations between Ca2+-release, PLCζ, oocyte activation and human fertility. We discuss how such associations may potentially underlie defective embryogenesis and recurrent implantation failure following fertility treatments, alongside potential diagnostic and therapeutic avenues presented by oocyte activation for the diagnosis and treatment of human infertility.
Collapse
Affiliation(s)
- Haia M. R. Abdulsamad
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Zoha F. Murtaza
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Hessa M. AlMuhairi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Wjdan S. Bafleh
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Salma A. AlMansoori
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Shaikha A. AlQubaisi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Hamdan Hamdan
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Junaid Kashir
- Department of Biology, College of Arts and Science, Khalifa University, Abu Dhabi 127788, United Arab Emirates
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia
| |
Collapse
|
4
|
Chalova L, Lokshin V, Kiyan V, Turdaliyeva B, Zhybanisheva K, Kinzhibayev A. Oocyte Donation: Three Perspectives. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background: A number of important problems remain unresolved in the field of assisted reproductive technologies (ART) using germ cells from a single donor. This study aimed to assess attitudes about the use of sex gamete donation in ART in different social groups including medical workers, oocyte recipients, and oocyte donors.
Methods: To achieve this goal, we surveyed 286 participants from seven countries. Of them, 190 were medical workers from ART clinics (respondents from seven countries), 45 were oocyte recipients (Kazakhstan), and 51 were oocyte donors (Kazakhstan).
Results: A survey of the three groups showed that issues related to donor health were most common in the donor selection process based on patient and doctor distrust of the health care system. The main motive for oocyte donation was financial compensation, which draws attention to the social disadvantage of the donor population. Medical workers with more than 5 years of work experience (79.7%) supported the use of programs tracking donor sex gametes and limiting the use of oocyte donors.
Conclusions: The willingness and consent of the surveyed medical workers and oocyte recipients to use the donor material and create a unified registry of donor sex gametes demonstrates the importance of this issue.
Collapse
|
5
|
Germ plasm-related structures in marine medaka gametogenesis; novel sites of Vasa localization and the unique mechanism of germ plasm granule arising. ZYGOTE 2019; 28:9-23. [PMID: 31590697 DOI: 10.1017/s0967199419000546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Germ plasm, a cytoplasmic factor of germline cell differentiation, is suggested to be a perspective tool for in vitro meiotic differentiation. To discriminate between the: (1) germ plasm-related structures (GPRS) involved in meiosis triggering; and (2) GPRS involved in the germ plasm storage phase, we investigated gametogenesis in the marine medaka Oryzias melastigma. The GPRS of the mitosis-to-meiosis period are similar in males and females. In both sexes, five events typically occur: (1) turning of the primary Vasa-positive germ plasm granules into the Vasa-positive intermitochondrial cement (IMC); (2) aggregation of some mitochondria by IMC followed by arising of mitochondrial clusters; (3) intramitochondrial localization of IMC-originated Vasa; followed by (4) mitochondrial cluster degradation; and (5) intranuclear localization of Vasa followed by this protein entering the nuclei (gonial cells) and synaptonemal complexes (zygotene-pachytene meiotic cells). In post-zygotene/pachytene gametogenesis, the GPRS are sex specific; the Vasa-positive chromatoid bodies are found during spermatogenesis, but oogenesis is characterized by secondary arising of Vasa-positive germ plasm granules followed by secondary formation and degradation of mitochondrial clusters. A complex type of germ plasm generation, 'the follicle cell assigned germ plasm formation', was found in late oogenesis. The mechanisms discovered are recommended to be taken into account for possible reconstruction of those under in vitro conditions.
Collapse
|
6
|
Germ plasm provides clues on meiosis: the concerted action of germ plasm granules and mitochondria in gametogenesis of the clam Ruditapes philippinarum. ZYGOTE 2018; 27:25-35. [PMID: 30523771 DOI: 10.1017/s0967199418000588] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SummaryGerm plasm-related structures (GPRS) are known to accompany meiotic cell differentiation but their dynamics are still poorly understood. In this study, we analyzed the ultrastructural mechanisms of GPRS transformation during oogenesis and spermatogenesis of the bivalve mollusc Ruditapes philippinarum (Manila clam), exploring patterns of GPRS activity occurring at meiosis onset, sex-specific difference/similarity of such patterns, and the involvement of mitochondria during GPRS-assigned events. In the two sexes, the zygotene-pachytene stage of meiosis is anticipated by three shared steps. First, the dispersion of germ plasm granules containing the germ line determinant VASA occurs. Second, the VASA protein deriving from germ plasm granules enters neighbouring mitochondria and appears to induce mitochondrial matter release, as supported by cytochrome B localization outside the mitochondria. Third, intranuclear VASA entrance occurs and the protein appears involved in chromatin reorganization, as supported by VASA localization in synaptonemal complexes. In spermatogenesis, these three steps are sufficient for the normal course of meiosis. In oogenesis, these are followed by the action of 'germ plasm granule formation complex', a novel type of structure that appears alternative to the Balbiani body. The possibility of germ plasm involvement in reproductive technologies is also suggested.
Collapse
|
7
|
Fattahi A, Latifi Z, Ghasemnejad T, Nejabati HR, Nouri M. Insights into in vitro spermatogenesis in mammals: Past, present, future. Mol Reprod Dev 2017; 84:560-575. [DOI: 10.1002/mrd.22819] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 04/03/2017] [Accepted: 04/17/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Amir Fattahi
- Institute for Stem Cell and Regenerative Medicine; Tabriz University of Medical Sciences; Tabriz Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
| | - Zeinab Latifi
- Department of Clinical Biochemistry, Faculty of Medicine; Tabriz University of Medical Sciences; Tabriz Iran
| | - Tohid Ghasemnejad
- Women's Reproductive Health Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Hamid Reza Nejabati
- Women's Reproductive Health Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
8
|
Talluri TR, Mal G, Ravi SK. Biochemical components of seminal plasma and their correlation to the fresh seminal characteristics in Marwari stallions and Poitou jacks. Vet World 2017; 10:214-220. [PMID: 28344405 PMCID: PMC5352847 DOI: 10.14202/vetworld.2017.214-220] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/18/2017] [Indexed: 12/12/2022] Open
Abstract
AIM To investigate various biochemical components of seminal plasma in Marwari stallions and Poitou Jacks and to find out their correlation with that of the seminal characteristics. MATERIALS AND METHODS In this study, semen was collected from six Marwari stallions and six Poitou jacks aged from 4 to 6 years and with known fertility status. The semen collection from the stallions were collected during the breeding season, i.e., between the months of April and June. From the collected semen ejaculates, we estimated the values of some biochemical components, viz., total protein content, total lipid content, and enzymes such as glutamic pyruvic transaminase (GPT), glutamic oxaloacetic transaminase (GOT), alkaline phosphatase (ALP), acid phosphatase (ACP), and lactate dehydrogenase (LDH) as well as concentrations of glucose, cholesterol, total calcium (Ca), and phosphorus (P) and correlations among different seminal parameters were statistically examined using the Pearson correlation coefficient. RESULTS In this study, we found positive correlations between semen volume as well as sperm concentration and GOT, GPT, ALP and ACP for both the group stallions. Significant correlation between motility and glucose, GOT and GPT could be an indication for their role metabolism and protection against free radicals to the spermatozoa. CONCLUSION Based on the results, it is concluded that there is a positive correlation between some biochemical values such as glucose, Ca, ALP, and LDH and seminal parameters which play a key role in capacitation and onward movement of the spermatozoa.
Collapse
Affiliation(s)
- Thirumala Rao Talluri
- Department of Animal Reproduction, Equine Production Campus, Indian Council of Agricultural Research-National Research Centre on Equines, Bikaner, Rajasthan-334001
| | - Gorakh Mal
- Department of Biochemistry, Biochemistry Laboratory, Indian Council of Agricultural Research - Indian Veterinary Research Institute, Palampur - 176 061, Himachal Pradesh, India
| | - Sanjay Kumar Ravi
- Department of Animal Reproduction, Equine Production Campus, Indian Council of Agricultural Research-National Research Centre on Equines, Bikaner, Rajasthan-334001
| |
Collapse
|
9
|
Segers S, Mertes H, de Wert G, Dondorp W, Pennings G. Balancing Ethical Pros and Cons of Stem Cell Derived Gametes. Ann Biomed Eng 2017; 45:1620-1632. [PMID: 28091967 DOI: 10.1007/s10439-017-1793-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/09/2017] [Indexed: 12/18/2022]
Abstract
In this review we aim to provide an overview of the most important ethical pros and cons of stem cell derived gametes (SCD-gametes), as a contribution to the debate about reproductive tissue engineering. Derivation of gametes from stem cells holds promising applications both for research and for clinical use in assisted reproduction. We explore the ethical issues connected to gametes derived from embryonic stem cells (both patient specific and non-patient specific) as well as those related to gametes derived from induced pluripotent stem cells. The technology of SCD-gametes raises moral concerns of how reproductive autonomy relates to issues of embryo destruction, safety, access, and applications beyond clinical infertility.
Collapse
Affiliation(s)
- Seppe Segers
- Department of Philosophy and Moral Sciences, Bioethics Institute Ghent, Ghent University, Blandijnberg 2, 9000, Ghent, Belgium.
| | - Heidi Mertes
- Department of Philosophy and Moral Sciences, Bioethics Institute Ghent, Ghent University, Blandijnberg 2, 9000, Ghent, Belgium
| | - Guido de Wert
- Department of Health, Ethics and Society, Research Schools CAPHRI and GROW, Maastricht University, Peter Debyeplein 1, Maastricht, The Netherlands
| | - Wybo Dondorp
- Department of Health, Ethics and Society, Research Schools CAPHRI and GROW, Maastricht University, Peter Debyeplein 1, Maastricht, The Netherlands
| | - Guido Pennings
- Department of Philosophy and Moral Sciences, Bioethics Institute Ghent, Ghent University, Blandijnberg 2, 9000, Ghent, Belgium
| |
Collapse
|
10
|
Moreno I, Míguez-Forjan JM, Simón C. Artificial gametes from stem cells. Clin Exp Reprod Med 2015; 42:33-44. [PMID: 26161331 PMCID: PMC4496429 DOI: 10.5653/cerm.2015.42.2.33] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 06/18/2015] [Accepted: 06/18/2015] [Indexed: 11/06/2022] Open
Abstract
The generation of artificial gametes is a real challenge for the scientific community today. In vitro development of human eggs and sperm will pave the way for the understanding of the complex process of human gametogenesis and will provide with human gametes for the study of infertility and the onset of some inherited disorders. However, the great promise of artificial gametes resides in their future application on reproductive treatments for all these people wishing to have genetically related children and for which gamete donation is now their unique option of parenthood. This is the case of infertile patients devoid of suitable gametes, same sex couples, singles and those fertile couples in a high risk of transmitting serious diseases to their progeny. In the search of the best method to obtain artificial gametes, many researchers have successfully obtained human germ cell-like cells from stem cells at different stages of differentiation. In the near future, this field will evolve to new methods providing not only viable but also functional and safe artificial germ cells. These artificial sperm and eggs should be able to recapitulate all the genetic and epigenetic processes needed for the correct gametogenesis, fertilization and embryogenesis leading to the birth of a healthy and fertile newborn.
Collapse
Affiliation(s)
- Inmaculada Moreno
- Department of Research and Development, Igenomix S.L., Paternam, Spain
| | | | - Carlos Simón
- Department of Research and Development, Igenomix S.L., Paternam, Spain. ; Fundación Instituto Valenciano de Infertilidad (FIVI), Valencia, Spain. ; Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
11
|
De La Fuente GN, Frei UK, Lübberstedt T. Accelerating plant breeding. TRENDS IN PLANT SCIENCE 2013; 18:667-72. [PMID: 24080381 DOI: 10.1016/j.tplants.2013.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/29/2013] [Accepted: 09/05/2013] [Indexed: 05/18/2023]
Abstract
The growing demand for food with limited arable land available necessitates that the yield of major food crops continues to increase over time. Advances in marker technology, predictive statistics, and breeding methodology have allowed for continued increases in crop performance through genetic improvement. However, one major bottleneck is the generation time of plants, which is biologically limited and has not been improved since the introduction of doubled haploid technology. In this opinion article, we propose to implement in vitro nurseries, which could substantially shorten generation time through rapid cycles of meiosis and mitosis. This could prove a useful tool for speeding up future breeding programs with the aim of sustainable food production.
Collapse
Affiliation(s)
- Gerald N De La Fuente
- Department of Agronomy, Iowa State University, 100 Osborn Drive, Ames, IA 50011, USA.
| | | | | |
Collapse
|
12
|
Devereaux M, Kalichman M. ESCRO committees--not dead yet. THE AMERICAN JOURNAL OF BIOETHICS : AJOB 2013; 13:59-60. [PMID: 23311849 PMCID: PMC3594697 DOI: 10.1080/15265161.2013.747311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Affiliation(s)
- Mary Devereaux
- Biomedical Ethics Seminars, Research Ethics Program, UC San Diego
| | | |
Collapse
|