1
|
Rodríguez FM, Huber E, Cattaneo Moreyra ML, Amweg AN, Notaro US, Recce S, Ormaechea N, Ortega HH, Salvetti NR, Rey F. Association of glucocorticoid receptor expression with key members of the insulin signaling pathway and heat shock proteins in the bovine ovary. Theriogenology 2023; 211:241-247. [PMID: 37677868 DOI: 10.1016/j.theriogenology.2023.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/25/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023]
Abstract
Glucocorticoids (GCs) act through their receptor (GR) as regulators in different biological processes such as reproduction. In the absence of GCs, the GR remains inactive in the cytoplasm by associating with heat shock proteins (HSPs), which act as molecular chaperones, among which the most relevant are HSP90 and HSP70. Cytoplasmic GC-activated GR mediates non-genomic effects, interacting with members of signaling pathways such as PI3K/Akt, which participates in several metabolic processes, including the insulin signaling pathway. The aim of the present study was to evaluate possible associations between the cytoplasmic GR and the main intermediates of the insulin signaling pathway and HSP90 and HSP70 in ovaries of dairy cows. To this end, the protein expression of cytoplasmic GR, key members of the insulin signaling pathway, and HSPs was evaluated in ovarian preovulatory follicles of non-lactating Holstein cows in proestrus. Positive associations were observed between protein expression of GR and HSP90, IRS1, pIRS1, PI3K and pAkt (p < 0.05; β > 0) in granulosa cells of dominant follicles of dairy cows. Instead, in theca cells, no associations were observed between protein expression of GR and members of the insulin signaling pathway or HSPs. These data provide evidence of the possible association between the non-genomic mechanisms of action of the GR and the insulin signaling pathway in the bovine ovary.
Collapse
Affiliation(s)
- F M Rodríguez
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICIVET Litoral), Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - E Huber
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICIVET Litoral), Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - M L Cattaneo Moreyra
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICIVET Litoral), Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (CONICET), Esperanza, Santa Fe, Argentina
| | - A N Amweg
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICIVET Litoral), Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - U S Notaro
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICIVET Litoral), Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (CONICET), Esperanza, Santa Fe, Argentina
| | - S Recce
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICIVET Litoral), Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - N Ormaechea
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICIVET Litoral), Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - H H Ortega
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICIVET Litoral), Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - N R Salvetti
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICIVET Litoral), Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - F Rey
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICIVET Litoral), Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina.
| |
Collapse
|
2
|
Abedal-Majed MA, Abuajamieh M, Al-Qaisi M, Sargent KM, Titi HH, Alnimer MA, Abdelqader A, Shamoun AI, Cupp AS. Sheep with ovarian androgen excess have fibrosis and follicular arrest with increased mRNA abundance for steroidogenic enzymes and gonadotropin receptors. J Anim Sci 2023; 101:skad082. [PMID: 37061806 PMCID: PMC10184696 DOI: 10.1093/jas/skad082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/15/2023] [Indexed: 04/17/2023] Open
Abstract
An androgen excess ovarian micro-environment may limit follicle progression in sheep. Two populations of ewes with divergent follicular fluid androstenedione (A4) were identified in a flock in Jordan: High A4; (A4) ≥ 30 ng/mL, (N = 12) or Control A4 (Control); A4 ≤ 15 ng/mL; (N = 12). We hypothesized High A4 ewes would have increased steroidogenic enzyme mRNA abundance, inflammation, and follicular arrest. Messenger RNA abundance for steroidogenic enzymes StAR, CYP17A1, CYP11A1, and HSD3B1 were increased in theca cells while CYP17A1, CYP19A1, and HSD3B1 were increased in granulosa cells in High A4 ewes compared to Control. Gonadotropin receptor mRNA expression for LHCGR was increased in theca and FSHR in granulosa in High A4 ewes. Messenger RNA expression of FOS when reduced, increases expression of CYP17A1 which was observed in High A4 granulosa cells compared to Control. Furthermore, High A4 ewes had greater numbers of primordial follicles (P < 0.001) and fewer developing follicles compared to Control before, and after 7 d of culture, indicating follicular arrest was not alleviated by cortex culture. Increased fibrosis in the ovarian cortex was detected in High A4 ewes relative to Control (P < 0.001) suggesting increased inflammation and altered extracellular matrix deposition. Thus, this High A4 ewes population has similar characteristics to High A4 cows and women with polycystic ovary syndrome suggesting that naturally occurring androgen excess occurs in multiple species and may be a causative factor in follicular arrest and subsequent female sub- or infertility.
Collapse
Affiliation(s)
- Mohamed A Abedal-Majed
- Department of Animal Production, School of Agriculture, The University of Jordan, Amman 11942, Jordan
| | - Mohannad Abuajamieh
- Department of Animal Production, School of Agriculture, The University of Jordan, Amman 11942, Jordan
| | - Mohmmad Al-Qaisi
- Department of Animal Production, School of Agriculture, The University of Jordan, Amman 11942, Jordan
| | - Kevin M Sargent
- Department of Agriculture, Southeast Missouri State University, Cape Girardeau, MO 63701, USA
| | - Hosam H Titi
- Department of Animal Production, School of Agriculture, The University of Jordan, Amman 11942, Jordan
| | - Mufeed A Alnimer
- Department of Animal Production, School of Agriculture, The University of Jordan, Amman 11942, Jordan
| | - Anas Abdelqader
- Department of Animal Production, School of Agriculture, The University of Jordan, Amman 11942, Jordan
| | - Ahmad I Shamoun
- Department of Animal Production, School of Agriculture, The University of Jordan, Amman 11942, Jordan
| | - Andrea S Cupp
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln (UNL), Nebraska 68583, USA
| |
Collapse
|
3
|
Stewart J, Arneson A, Byrd M, Negron-Perez V, Newberne H, White R, El-Kadi S, Ealy A, Rhoads R, Rhoads M. Comparison of production-related responses to hyperinsulinemia and hypoglycemia induced by clamp procedures or heat stress of lactating dairy cattle. J Dairy Sci 2022; 105:8439-8453. [DOI: 10.3168/jds.2022-21922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/12/2022] [Indexed: 11/19/2022]
|
4
|
Abedal-Majed MA, Springman SA, Sutton CM, Snider AP, Bell BE, Hart M, Kurz SG, Bergman J, Summers AF, McFee RM, Davis JS, Wood JR, Cupp AS. VEGFA165 can rescue excess steroid secretion, inflammatory markers, and follicle arrest in the ovarian cortex of High A4 cows†. Biol Reprod 2022; 106:118-131. [PMID: 34726240 PMCID: PMC9630404 DOI: 10.1093/biolre/ioab201] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A population of cows with excess androstenedione (A4; High A4) in follicular fluid, with follicular arrest, granulosa cell dysfunction, and a 17% reduction in calving rate was previously identified. We hypothesized that excess A4 in the ovarian microenvironment caused the follicular arrest in High A4 cows and that vascular endothelial growth factor A would rescue the High A4 phenotype. In trial 1, prior to culture, High A4 ovarian cortex (n = 9) had greater numbers of early stage follicles (primordial) and fewer later-stage follicles compared to controls (n = 11). Culture for 7 days did not relieve this follicular arrest; instead, High A4 ovarian cortex had increased indicators of inflammation, anti-Mullerian hormone, and A4 secretion compared to controls. In trial 2, we tested if vascular endothelial growth factor A isoforms could rescue the High A4 phenotype. High A4 (n = 5) and control (n = 5) ovarian cortex was cultured with (1) PBS, (2) VEGFA165 (50 ng/mL), (3) VEGFA165B (50 ng/mL), or (4) VEGFA165 + VEGFA165B (50 ng/mL each) for 7 days. Follicular progression increased with VEGFA165 in High A4 cows with greater early primary, primary, and secondary follicles than controls. Similar to trial 1, High A4 ovarian cortex secreted greater concentrations of A4 and other steroids and had greater indicators of inflammation compared to controls. However, VEGFA165 rescued steroidogenesis, oxidative stress, and fibrosis. The VEGFA165 and VEGFA165b both reduced IL-13, INFα, and INFβ secretion in High A4 cows to control levels. Thus, VEGFA165 may be a potential therapeutic to restore the ovarian steroidogenic microenvironment and may promote folliculogenesis.
Collapse
Affiliation(s)
- Mohamed A Abedal-Majed
- Department of Animal Production, School of Agriculture, University of Jordan, Amman-Jordan, Jordan
| | - Shelby A Springman
- Department of Animal Science, Animal Science Building, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Courtney M Sutton
- Department of Animal Science, Animal Science Building, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Alexandria P Snider
- Department of Animal Science, Animal Science Building, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Brooke E Bell
- Department of Animal Science, Animal Science Building, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Scott G Kurz
- Department of Animal Science, Animal Science Building, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jeff Bergman
- Department of Animal Science, Animal Science Building, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Adam F Summers
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM, USA
| | - Renee M McFee
- School of Veterinary and Biomedical Sciences, Veterinary Medicine and Biomedical Sciences Hall (VBS), University of Nebraska-Lincoln, Lincoln, NE, USA
| | - John S Davis
- Olson Center for Women’s Health, University of Nebraska Medical Center, Omaha, NE, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Jennifer R Wood
- Department of Animal Science, Animal Science Building, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Andrea S Cupp
- Department of Animal Science, Animal Science Building, University of Nebraska-Lincoln, Lincoln, NE, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| |
Collapse
|
5
|
Use of Agriculturally Important Animals as Models in Biomedical Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:315-333. [PMID: 34807449 DOI: 10.1007/978-3-030-85686-1_16] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Livestock have contributed significantly to advances in biomedicine and offer unique advantages over rodent models. The human is the ideal biomedical model; however, ethical reasons limit the testing of hypotheses and treatments in humans. Rodent models are frequently used as alternatives to humans due to size, low cost, and ease of genetic manipulation, and have contributed tremendously to our understanding of human health and disease. However, the use of rodents in translational research pose challenges for researchers due to physiological differences to humans. The use of livestock species as biomedical models can address these challenges as livestock have several similarities to human anatomy, physiology, genetics, and metabolism and their larger size permits collection of more frequent and often larger samples. Additionally, recent advances in genetics in livestock species allow for studies in genomics, proteomics, and metabolomics, which have the added benefit of applications to both humans in biomedical research and livestock in improving production. In this review, we provide an overview of scientific findings using livestock and benefits of each model to the livestock industry and to biomedical research.
Collapse
|
6
|
Peng Y, Yang X, Luo X, Liu C, Cao X, Wang H, Guo L. Novel mechanisms underlying anti-polycystic ovary like syndrome effects of electroacupuncture in rats: suppressing SREBP1 to mitigate insulin resistance, mitochondrial dysfunction and oxidative stress. Biol Res 2020; 53:50. [PMID: 33109277 PMCID: PMC7590702 DOI: 10.1186/s40659-020-00317-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/15/2020] [Indexed: 12/23/2022] Open
Abstract
Background Acupuncture, a therapy of traditional Chinese medicine, is confirmed to exert the therapeutic action on polycystic ovary syndrome (PCOS). However, the detailed therapeutic mechanisms of acupuncture in PCOS remain ambiguous. In this study, we further investigated whether electroacupuncture (EA) alleviated PCOS-like symptoms in rats via regulating a metabolic regulator, sterol regulatory element binding protein-1 (SREBP1). Methods The PCOS-like rat model was built by hypodermic injection with dehydroepiandrosterone (DHEA). The rats were subjected to EA intervention (ST29 and SP6 acupuncture points) for 5 weeks. Primary granulosa cells were isolated from control and PCOS-like rats for evaluating insulin resistance, mitochondrial dysfunction and oxidative stress in vitro. Results The expression of SREBP1 was increased in PCOS-like rats, which was suppressed by EA treatment. In addition, lentivirus-mediated overexpression of SREBP1 restrained EA treatment-induced improvement in pathological changes, serum hormone levels and insulin resistance in rats. In addition, overexpression of SREBP1 repressed insulin-stimulated phosphorylation of insulin receptor β (IR) and AKT in primary granulosa cells. Moreover, upregulation of SREBP1 further exacerbated mitochondrial dysfunction and oxidative stress in granulosa cells isolated from PCOS-like rats. Mechanically, EA treatment suppressed SREBP1 expression through inducing the activation of AMP-activated protein kinase (AMPK) signaling pathway in PCOS-like rats. Conclusion EA intervention alleviated PCOS-like symptoms in rats via improving IR, mitochondrial dysfunction and oxidative stress through regulating SREBP1, a lipid metabolism regulator. Our findings illuminate the novel protective mechanisms of EA in the treatment of PCOS.
Collapse
Affiliation(s)
- Yan Peng
- Disease Prevention Center, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, People's Republic of China
| | - Xinming Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, People's Republic of China
| | - Xi Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, People's Republic of China
| | - Chunhong Liu
- College of Basic Medicine Sciences, Heilongjiang University of Chinese Medicine, Harbin, 150040, People's Republic of China
| | - Xia Cao
- Document Retrival Center, Heilongjiang University of Chinese Medicine, Harbin, 150040, People's Republic of China
| | - Hongyan Wang
- Department of Gynecological Oncology, Cancer Hospital of Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Liyuan Guo
- Department of Gynecological Oncology, Cancer Hospital of Harbin Medical University, Harbin, 150081, People's Republic of China.
| |
Collapse
|
7
|
Zhang C, Hu J, Wang W, Sun Y, Sun K. HMGB1-induced aberrant autophagy contributes to insulin resistance in granulosa cells in PCOS. FASEB J 2020; 34:9563-9574. [PMID: 32469087 DOI: 10.1096/fj.202000605rr] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 01/14/2023]
Abstract
Insulin resistance (IR) disrupts ovarian functions in polycystic ovary syndrome (PCOS). The contributing factors remains elusive. High mobility group box 1 (HMGB1), a damage-associated molecular pattern molecule, has been shown to be related to IR and autophagy, respectively, in peripheral tissues. Here, we investigated whether increased HMGB1 contributes to IR in granulosa cells of PCOS patients via induction of aberrant autophagy. Results showed that HMGB1 abundance in the follicular fluid was significantly increased with enhanced autophagy in granulosa cells in PCOS patients with IR. HMGB1 exacerbated autophagy in granulosa cells as evinced by increased LC3B II/I ratio and ATG7 as well as decreased p62, the markers for autophagy. Concurrently, HMGB1 impaired insulin sensitivities by attenuating the abundance of insulin receptor substrate-1, Akt phosphorylation, GLUT4 translocation, and glucose uptake in granulosa cells, which were reversed by blocking autophagy pathways with siRNA-mediated knockdown of ATG7 or with chloroquine and bafilomycin A1, the lysosome inhibitors. In conclusion, our results indicate that increased HMGB1 contributes to IR development in granulosa cells of PCOS patients, which is associated with exacerbation of autophagy by HMGB1. Control of HMGB1 production may be benefical for the improvement of insulin sensitivity in granulosa cells in PCOS.
Collapse
Affiliation(s)
- Chuyue Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R.China
| | - Jingwen Hu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R.China
| | - Wangsheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R.China
| | - Yun Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R.China
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R.China
| |
Collapse
|
8
|
Çolakoğlu HE, Küplülü S, Polat IM, Pekcan M, Özenç E, Baklacı C, Seyrek-İntaş K, Gümen A, Vural MR. Association among lipopolysaccharide, the transforming growth factor-beta superfamily, follicular growth, and transcription factors in spontaneous bovine ovarian cysts. Domest Anim Endocrinol 2020; 70:106398. [PMID: 31677486 DOI: 10.1016/j.domaniend.2019.106398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 01/16/2023]
Abstract
The aim of this study was to investigate some of the growth and transcriptional factors originating from oocytes and granulosa cells in follicular fluid and to identify the relationships between the basic blood metabolite-metabolic hormones and intrafollicular lipopolysaccharide (LPS) concentrations. Thirty cows included in the study were allocated into 2 groups comprising 15 cows with healthy preovulatory follicles (cyclic cows) and 15 cows with confirmed cystic follicles. The ovaries and uteri of all cows were assessed by transrectal ultrasonographic examination. Blood serum samples were collected at 15, 25, 35, 45, and 55 d after calving for analysis of nonesterified fatty acids, β-hydroxybutyrate, insulin, glucose, IGF-I, ACTH, and cortisol. Ovaries and uteri were examined using transrectal ultrasound. Vaginal discharge was evaluated on the same days. Follicular fluid was also aspirated on days 35-55 from the healthy preovulatory follicles and cystic follicles using a transvaginal ovum pickup method. The densitometric levels of inhibin-α, growth and differentiation factor (GDF-9), bone morphogenetic protein (BMP-6), and GATA-4 and GATA-6 proteins were analyzed by the Western blotting technique; the concentrations of antimullerian hormone (AMH), IGF-I, estradiol-17 beta (E2), and progesterone (P4) were determined by ELISA; and the concentrations of LPS in the follicular fluid were measured by the Limulus amebocyte lysate test. The serum insulin, ACTH, and cortisol concentrations were higher in cystic cows than cyclic cows, but serum IGF-I concentrations were lower in cystic cows. The IGF-I concentrations of cystic follicular fluids were lower, whereas AMH levels were significantly greater than those of healthy preovulatory follicular fluids. The cystic follicles had significantly lower expression levels of GDF-9, BMP-6, GATA-4, and GATA-6; in contrast, inhibin-α expression and LPS concentrations were significantly higher than in healthy preovulatory follicles. The proportion of pathologic vaginal discharge within 25 d postpartum in cystic cows were higher than in the cyclic group. In conclusion, it is suggested that intrafollicular dysregulation of the transforming growth factor-β superfamily, growth, and transcriptional factors is affected by high intrafollicular LPS concentrations and systemic metabolic changes and these disturbances may be responsible for the generation of ovarian cysts.
Collapse
Affiliation(s)
- H E Çolakoğlu
- Department of Obstetrics and Gynecology, Ankara University, Faculty of Veterinary Medicine, Ankara, Turkey
| | - S Küplülü
- Department of Obstetrics and Gynecology, Ankara University, Faculty of Veterinary Medicine, Ankara, Turkey
| | - I M Polat
- Department of Obstetrics and Gynecology, Kırıkkale University, Faculty of Veterinary Medicine, Kırıkkale, Turkey
| | - M Pekcan
- Department of Biochemistry, Ankara University, Faculty of Veterinary Medicine, Ankara, Turkey
| | - E Özenç
- Department of Obstetrics and Gynecology, Afyon Kocatepe University, Faculty of Veterinary Medicine, Afyonkarahisar, Turkey
| | - C Baklacı
- Field Veterinarian, Alaca Farm, Bursa, Turkey
| | - K Seyrek-İntaş
- Department of Obstetrics and Gynecology, Bursa Uludağ University, Faculty of Veterinary Medicine, Bursa, Turkey
| | - A Gümen
- Department of Obstetrics and Gynecology, Bursa Uludağ University, Faculty of Veterinary Medicine, Bursa, Turkey
| | - M R Vural
- Department of Obstetrics and Gynecology, Ankara University, Faculty of Veterinary Medicine, Ankara, Turkey.
| |
Collapse
|
9
|
Cetin Z, Kosem A, Can B, Baser O, Catak M, Turhan T, Berker D. Serum zonulin level is not elevated in patients with polycystic ovary syndrome without metabolic syndrome. Arch Gynecol Obstet 2019; 300:1785-1790. [PMID: 31667610 DOI: 10.1007/s00404-019-05345-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 10/15/2019] [Indexed: 01/20/2023]
Abstract
AIM Polycystic ovary syndrome (PCOS) is a complex disorder with gynecological, metabolic and carcinogenic effects. Increased intestinal permeability is related with obesity, insulin resistance, type 1 and 2 diabetes mellitus. The existence of such a relationship between PCOS and intestinal permeability has come to an end. Zonulin can change intestinal permeability, and this effect is reversible. We studied the relation between zonulin and the hormonal and metabolic parameters of PCOS. METHOD A total of 45 women with PCOS and 17 healthy women were included in the study. Histories were taken from all the participants, body mass indexes were calculated, and biochemical tests and suprapubic over ultrasonography were made. Zonulin was studied with enzyme-linked immunosorbent assay. RESULTS Serum zonulin levels were similar between PCOS and control groups (p = 0.893). In all participants, there were negative correlations between zonulin and the total cholesterol, LDL-cholesterol, triglycerides and non-HDL-cholesterol (respectively, p = 0.00, 0.018, 0.004, 0.002), there were boundary correlations with age and total cholesterol/HDL-cholesterol (respectively, p = 0.052 and 0.058). No statistically significant was detected in the PCOS group except negative correlation between zonulin and age (p = 0.046), boundary correlation between zonulin and total cholesterol/HDL-cholesterol (p = 0.064). CONCLUSION PCOS patients did not have metabolic syndrome. Zonulin was not higher in PCOS then controls, and it had only negative relation with age. The negative relation between zonulin and some metabolic parameters in all participants was not detected in PCOS group. So zonulin is not a useful molecule for the diagnosis of PCOS without metabolic syndrome.
Collapse
Affiliation(s)
- Zeynep Cetin
- Endocrinology and Metabolism Department, Amasya University Sabuncuğlu Serefeddin Education and Research Hospital, Kirazlidere Quarter Terminal Avenue No: 37, 05200, Amasya, Turkey.
| | - Arzu Kosem
- Biochemistry Department, Ankara City Hospital, Ankara, Turkey
| | - Bulent Can
- Endocrinology and Metabolism Department, Istanbul Civilization University, Istanbul, Turkey
| | - Ozden Baser
- Endocrinology and Metabolism Department, Yozgat City Hospital, Yozgat, Turkey
| | - Merve Catak
- Endocrinology and Metabolism Department, Tokat Public Hospital, Tokat, Turkey
| | - Turan Turhan
- Biochemistry Department, Ankara City Hospital, Ankara, Turkey
| | - Dilek Berker
- Endocrinology and Metabolism Department, University of Medical Sciences Ankara City Hospital, Ankara, Turkey
| |
Collapse
|
10
|
Perturbed ovarian and uterine glucocorticoid receptor signaling accompanies the balanced regulation of mitochondrial function and NFκB-mediated inflammation under conditions of hyperandrogenism and insulin resistance. Life Sci 2019; 232:116681. [PMID: 31344428 DOI: 10.1016/j.lfs.2019.116681] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/16/2019] [Accepted: 07/21/2019] [Indexed: 11/23/2022]
Abstract
AIM This study aimed to determine whether glucocorticoid receptor (GR) signaling, mitochondrial function, and local inflammation in the ovary and uterus are intrinsically different in rats with hyperandrogenism and insulin resistance compared to controls. MAIN METHODS Female Sprague Dawley rats were exposed to daily injections of human chorionic gonadotropin and/or insulin. KEY FINDINGS In both the ovary and the uterus, decreased expression of the two GR isoforms was concurrent with increased expression of Fkbp51 but not Fkbp52 mRNA in hCG + insulin-treated rats. However, these rats exhibited contrasting regulation of Hsd11b1 and Hsd11b2 mRNAs in the two tissues. Further, the expression of several oxidative phosphorylation-related proteins decreased in the ovary and uterus following hCG and insulin stimulation, in contrast to increased expression of many genes involved in mitochondrial function and homeostasis. Additionally, hCG + insulin-treated rats showed increased expression of ovarian and uterine NFκB signaling proteins and Tnfaip3 mRNA. The mRNA expression of Il1b, Il6, and Mmp2 was decreased in both tissues, while the mRNA expression of Tnfa, Ccl2, Ccl5, and Mmp3 was increased in the uterus. Ovaries and uteri from animals co-treated with hCG and insulin showed increased collagen deposition compared to controls. SIGNIFICANCE Our observations suggest that hyperandrogenism and insulin resistance disrupt ovarian and uterine GR activation and trigger compensatory or adaptive effects for mitochondrial homeostasis, allowing tissue-level maintenance of mitochondrial function in order to limit ovarian and uterine dysfunction. Our study also suggests that hyperandrogenism and insulin resistance activate NFκB signaling resulting in aberrant regulation of inflammation-related gene expression.
Collapse
|
11
|
Sasaki H, Kawamura K, Kawamura T, Odamaki T, Katsumata N, Xiao JZ, Suzuki N, Tanaka M. Distinctive subpopulations of the intestinal microbiota are present in women with unexplained chronic anovulation. Reprod Biomed Online 2018; 38:570-578. [PMID: 30773302 DOI: 10.1016/j.rbmo.2018.12.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/01/2018] [Accepted: 12/10/2018] [Indexed: 02/08/2023]
Abstract
RESEARCH QUESTION Do gut microbiota associate with the ovulatory cycle in women showing normogonadotrophic anovulation? In humans, the gut microbiota affects diverse physiological functions and dysbiosis (microbial imbalance) may lead to pathological syndromes. However, there is comparatively little information on the relevance of gut microbiota to reproductive functions in women. Here, a group of women with idiopathic chronic anovulation were examined, who do not exhibit any apparent endocrinological disorder, as they are suitable for investigating the relationship between intestinal bacteria and ovulatory disorders. DESIGN A prospective observational cohort study was performed on two groups of women who did not exhibit apparent endocrinological disorders but showed either irregular menstrual cycles (IMC group) or normal menstrual cycles (controls). The bacterial composition of faeces from rectal swabs from the women was analysed using next-generation sequencing based on bacterial 16SrRNA genes. RESULTS A metagenomic analysis indicated that the two groups of women had significant differences in 28 bacterial taxa in their faeces. Prevotella-enriched microbiomes were more abundant in the IMC group, whereas Clostridiales, Ruminococcus and Lachnospiraceae (butyrate-producing bacteria) were present at lower levels in the IMC group. CONCLUSIONS Distinctive subpopulations of intestinal microbiota were identified in women with unexplained chronic anovulation. The results indicate that gut microbiota could be associated with ovarian functions.
Collapse
Affiliation(s)
- Hiroyuki Sasaki
- Department of Obstetrics and Gynecology, Keio University Graduate School of Medicine, 35 Shinanomachi, -Shinjyuku-ku, Tokyo 160-8582, Japan; Reproduction and Infertility Centre, Department of Obstetrics and Gynecology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan
| | - Kazuhiro Kawamura
- Reproduction and Infertility Centre, Department of Obstetrics and Gynecology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan; Advanced Reproductive Medicine Research Centre, International University Health and Welfare School of Medicine, 4-3 Kozunomori, Narita Shi, Chiba 286-8686, Japan.
| | - Toshihiro Kawamura
- Denentoshi Ladies Clinic Reproductive Centre, 2-3-10 Aobadai, Aobaku, Yokohama-shi, Kanagawa 227-0062, Japan
| | - Toshitaka Odamaki
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd, 5-1-83 Higashihara, Zama, Kanagawa 252-8583, Japan
| | - Noriko Katsumata
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd, 5-1-83 Higashihara, Zama, Kanagawa 252-8583, Japan
| | - Jin-Zhong Xiao
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd, 5-1-83 Higashihara, Zama, Kanagawa 252-8583, Japan
| | - Nao Suzuki
- Reproduction and Infertility Centre, Department of Obstetrics and Gynecology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan
| | - Mamoru Tanaka
- Department of Obstetrics and Gynecology, Keio University Graduate School of Medicine, 35 Shinanomachi, -Shinjyuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
12
|
The Effect of Berberine on Polycystic Ovary Syndrome Patients with Insulin Resistance (PCOS-IR): A Meta-Analysis and Systematic Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:2532935. [PMID: 30538756 PMCID: PMC6261244 DOI: 10.1155/2018/2532935] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 08/28/2018] [Accepted: 10/24/2018] [Indexed: 11/17/2022]
Abstract
Purpose To evaluate the effect of berberine (BBR) on polycystic ovary syndrome (PCOS) patients with insulin resistance (IR). Methods PubMed (in English), Medline (in English), Embase (in English), CNKI (in Chinese), WanFang DATA (in Chinese), and VIP (in Chinese) were searched for randomized controlled trials in human beings with the search terms including "polycystic ovary syndrome /PCOS" and "berberine/BBR/Huang liansu (in Chinese)/ Xiao bojian (in Chinese)" till July 2018. Relevant indices were collected and analyzed by Stata 13.0. Results A total of 9 randomized controlled trials were included. Limited data demonstrated the results as follows: No significant difference was found between berberine (BBR) and metformin (MET) on alleviating insulin resistance, improving glycolipid metabolism, or reproductive endocrine condition. MET combined with BBR was not superior to MET alone, but cyproterone acetate (CPA) combined with BBR was superior to CPA alone in improving some of the reproductive endocrine indices. The combination of BBR and Chinese herbs also showed positive effect. However there are insufficient data to make any conclusions on the effect of BBR on PCOS-IR. Conclusion BBR showed a promising prospect in treating PCOS-IR. But its mechanisms are still unclear, and more properly designed, randomized, double-blind, placebo-controlled trials are needed to further confirm its effect and safety.
Collapse
|
13
|
Tamadon A, Hu W, Cui P, Ma T, Tong X, Zhang F, Li X, Shao LR, Feng Y. How to choose the suitable animal model of polycystic ovary syndrome? TRADITIONAL MEDICINE AND MODERN MEDICINE 2018. [DOI: 10.1142/s2575900018300047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a gynecological metabolic and endocrine disorder with uncertain etiology. To understand the etiology of PCOS or the evaluation of various therapeutic agents, different animal models have been introduced. Considering this fact that is difficult to develop an animal model that mimics all aspects of this syndrome, but, similarity of biological, anatomical, and/or biochemical features of animal model to the human PCOS phenotypes can increase its application. This review paper evaluates the recently researched animal models and introduced the best models for different research purposes in PCOS studies. During January 2013 to January 2017, 162 studies were identified which applied various kinds of animal models of PCOS including rodent, primate, ruminant and fish. Between these models, prenatal and pre-pubertal androgen rat models and then prenatal androgen mouse model have been studied in detail than others. The comparison of main features of these models with women PCOS demonstrates higher similarity of these three models to human conditions. Thereafter, letrozole models can be recommended for the investigation of various aspects of PCOS. Interestingly, similarity of PCOS features of post-pubertal insulin and human chorionic gonadotropin rat models with women PCOS were considerable which can make it as a good choice for future investigations.
Collapse
Affiliation(s)
- Amin Tamadon
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P. R. China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan University, Shanghai 200032, P. R. China
- Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Wei Hu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P. R. China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan University, Shanghai 200032, P. R. China
- Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Peng Cui
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P. R. China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan University, Shanghai 200032, P. R. China
- Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Tong Ma
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P. R. China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan University, Shanghai 200032, P. R. China
- Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Xiaoyu Tong
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P. R. China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan University, Shanghai 200032, P. R. China
- Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Feifei Zhang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P. R. China
| | - Xin Li
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P. R. China
| | - Linus R. Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| | - Yi Feng
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P. R. China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan University, Shanghai 200032, P. R. China
- Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| |
Collapse
|
14
|
Hackbart KS, Bender RW, Carvalho PD, Vieira LM, Dresch AR, Guenther JN, Gencoglu H, Nascimento AB, Shaver RD, Wiltbank MC. Effects of propylene glycol or elevated luteinizing hormone during follicle development on ovulation, fertilization, and early embryo development. Biol Reprod 2017; 97:550-563. [PMID: 28575154 PMCID: PMC6248555 DOI: 10.1093/biolre/iox050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 05/27/2017] [Indexed: 12/31/2022] Open
Abstract
Seventeen nonlactating Holstein cows were superovulated in a Latin-square designed experiment to determine the effects of increased propylene glycol (PROP) and luteinizing hormone (LH) during antral follicle development on ovarian function, fertilization, and early embryo quality. PROP was orally drenched every 4 h for 7 days to induce hyperinsulinemia and associated metabolic changes. LH concentrations were altered by increasing LH (3-fold) during last 2 days of superovulation. Treatment groups were as follows: (1) control-oral drenching with water plus low-LH preparation; (2) high LH(HLH)-water plus HLH preparation; (3) PROP-drenching with PROP plus low LH; (4) PROP/HLH-PROP plus HLH. PROP increased glucose (P < 0.05) and insulin (P < 0.02) concentrations at all time points analyzed. Neither PROP nor LH affected numbers of follicles > 9 mm at time of gonadotropin-releasing hormone-induced LH surge, although percentage of these follicles that ovulated was decreased by both PROP (P = 0.002) and LH (P = 0.048). In addition, PROP tended (P = 0.056) to decrease total number of ovulations. PROP reduced (P = 0.028) fertilization rate, while LH tended (P = 0.092) to increase fertilization rate. There was no effect of either PROP or LH on any measure of embryo quality including percentage of embryos that were degenerate, quality 1, or quality 1 and 2 of total structures collected or fertilized structures. These results indicate that acute elevation in insulin during the preovulatory follicular wave can decrease percentage of large follicles that ovulate, particularly when combined with increased LH, and reduce fertilization of ovulated oocytes.
Collapse
Affiliation(s)
- Katherine S Hackbart
- Department of Dairy Science, University of Wisconsin–Madison, Madison, WI,
USA
- Endocrinology & Reproductive Physiology Program, University of
Wisconsin–Madison, Madison, WI, USA
| | - Robb W Bender
- Department of Dairy Science, University of Wisconsin–Madison, Madison, WI,
USA
| | - Paulo D Carvalho
- Department of Dairy Science, University of Wisconsin–Madison, Madison, WI,
USA
| | - Lais M Vieira
- Department of Dairy Science, University of Wisconsin–Madison, Madison, WI,
USA
- University of Sao Paulo-VRA, Sao Paulo, Brazil
| | - Ana R Dresch
- Department of Dairy Science, University of Wisconsin–Madison, Madison, WI,
USA
| | - Jerry N Guenther
- Department of Dairy Science, University of Wisconsin–Madison, Madison, WI,
USA
| | - Hidir Gencoglu
- Department of Dairy Science, University of Wisconsin–Madison, Madison, WI,
USA
| | - Anibal B Nascimento
- Department of Dairy Science, University of Wisconsin–Madison, Madison, WI,
USA
| | - Randy D Shaver
- Department of Dairy Science, University of Wisconsin–Madison, Madison, WI,
USA
| | - Milo C Wiltbank
- Department of Dairy Science, University of Wisconsin–Madison, Madison, WI,
USA
- Endocrinology & Reproductive Physiology Program, University of
Wisconsin–Madison, Madison, WI, USA
| |
Collapse
|
15
|
Relationship between the indexes of insulin resistance and metabolic status in dairy cows during early lactation. ACTA VET-BEOGRAD 2017. [DOI: 10.1515/acve-2017-0006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Abstract
Insulin resistance is a phenomenon which accompanies the ongoing metabolic adaptation in cows during early lactation. The aim of our study was to determine the linear correlations of HOMA (Homeostatic Model Assessment), QUICKI (Quantitative Insulin Sensitivity Check Index) and RQUICKI (Revised Quantitative Insulin Sensitivity Check Index) indexes of insulin resistance with the metabolic status of cows (concentration of hormones, metabolites and body condition score). The experiment included 40 Holstein-Frisian cows in the first week after calving. Indexes of insulin resistance valued: 18.68±5.43 (HOMA), 0.39±0.06 (QUICKI) and 0.45±0.06 (RQUICKI). Linear correlations were examined by testing the coefficient of correlation (r), determination (r2,%) and regression parameter beta (b) in linear equation. A negative correlation was found between HOMA and IGF-I (insulin growth factor I) (r=−0.51, r2=25.0, b=−1.1257, p<0.01). HOMA showed a positive correlation with BHB (betahidroxybutyrate) (r=0.48, r2=23.2, b=0.0234, p<0.01). A positive correlation was found between QUICKI and IGF-I (r=0.30, r2=10.0 b=46.7900, p<0.05) and cholesterol (r=0.44, r2=18.3, b=1.9021, p<0.01). In contrast, QUICKI and BHB (r=0.51, r2=27.1, b=−1.7241, p<0.01), just like QUICKI and BCS (r=0.46, r2=20.9, b=−2.424, p<0.01), showed a negative correlation. RQUICKI showed positive correlations with IGF-I (r=0.48, r2=22.8, b=28.1230, p<0.01), T4 (r=0.47, r2=22.1, b=87.142, p<0.01) and triglycerides (r=0.36, r2=13, b=0.0407, p<0.05) but negative correlations with cortisol (r=−0.36, r2=13.0, b=−9.0332, p<0.05), STH (somatotropic hormone) (r=−0.42, r2=17.3, b=−5.4976, p<0.01), BHB (r=−0.62, r2=38.3, b=−1.1872, p<0.01), total bilirubin (r=−0.58, r2=33.7, b=−7.131, p<0.01) and BCS (body condition score) (r=−0.6, r2=36.4, b=−1.8347, p<0.01). In conclusion, indexes of insulin resistance may be used to evaluate the metabolic status of cows in early lactation. RQUICKI might be the most appropriate predictor of metabolic status due to its linear relationship with most of the parameters included in homeorhetic process.
Collapse
|
16
|
Armengol-Gelonch R, Mallo J, Ponté D, Jimenez A, Valenza A, Souza A. Impact of phase of the estrous cycle and season on LH surge profile and fertility in dairy cows treated with different GnRH analogs (gonadorelin vs. buserelin). Theriogenology 2017; 91:121-126. [DOI: 10.1016/j.theriogenology.2017.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 12/28/2016] [Accepted: 01/03/2017] [Indexed: 10/20/2022]
|
17
|
Freis A, Renke T, Kämmerer U, Jauckus J, Strowitzki T, Germeyer A. Effects of a hyperandrogenaemic state on the proliferation and decidualization potential in human endometrial stromal cells. Arch Gynecol Obstet 2017; 295:1005-1013. [PMID: 28168653 DOI: 10.1007/s00404-017-4295-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/10/2017] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women, involving hyperandrogenaemia and insulin resistance. Treatment options include dexamethasone, as well as the off-label use of metformin. To evaluate the impact of those drugs on cyclic changes in endometrial development, we tested possible effects of metformin and dexamethasone on endometrial stromal cells decidualisation, proliferation, and gene regulation in a hyperandrogenaemic microenvironment in vitro. METHODS/DESIGN Ten endometrial biopsies (of which five were decidualized in vitro) were used from regularly cycling women. Cells were treated with testosterone, dexamethasone, and metformin in different concentrations. Thereafter, cells were assessed for proliferation and decidualization capacity, as well as mTor and MMP-2 gene regulation. RESULTS Metformin showed a dose-dependent negative effect on prolactin secretion, a known decidualization marker. This effect was stronger in a hyperandrogenaemic condition and could not be compensated by dexamethasone. Testosterone had a dose dependent negative effect on proliferation in decidualized endometrial stromal cells. Dexamethasone slightly compensated the negative proliferative effect only in low-dose testosterone. High-dose metformin also showed a dose-dependent reduction in endometrial stromal cell proliferation without a major impact by testosterone or dexamethasone in decidualized and non-decidualized cells. High-dose metformin significantly reduced the expression of matrix metalloproteinase-2 (MMP-2) and mechanistic Target of Rapamycin (mTor), regardless of the concentration of dexamethasone and testosterone. The strongest effect could be observed for the combination with high-dose dexamethasone. CONCLUSION When therapies, such as metformin and dexamethasone, are used to normalize peripheral androgen levels in patients with PCOS, their effect on the endometrial microenvironment should be taken into consideration as well, especially metformin has to be used with caution because of its dose dependent, possibly inhibiting effect at the endometrial proliferation.
Collapse
Affiliation(s)
- Alexander Freis
- Department of Gynaecological Endocrinology and Fertility Disorders, University Hospital Heidelberg, Heidelberg, Germany.
| | - Tobias Renke
- Department of Gynaecological Endocrinology and Fertility Disorders, University Hospital Heidelberg, Heidelberg, Germany
| | - Ulrike Kämmerer
- Department of Gynecology and Obstetrics, University Hospital Würzburg, Würzburg, Germany
| | - Julia Jauckus
- Department of Gynaecological Endocrinology and Fertility Disorders, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Strowitzki
- Department of Gynaecological Endocrinology and Fertility Disorders, University Hospital Heidelberg, Heidelberg, Germany
| | - Ariane Germeyer
- Department of Gynaecological Endocrinology and Fertility Disorders, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
18
|
Guo L, Liu Y, Han J, Zhu H, Wang X. Effects of Biotite V supplementation on growth performance and the immunological responses of weaned pigs after an Escherichia coli lipopolysaccharide challenge. Livest Sci 2017. [DOI: 10.1016/j.livsci.2016.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Oliveira L, Nascimento A, Monteiro P, Guardieiro M, Wiltbank M, Sartori R. Development of insulin resistance in dairy cows by 150 days of lactation does not alter oocyte quality in smaller follicles. J Dairy Sci 2016; 99:9174-9183. [DOI: 10.3168/jds.2015-10547] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 06/16/2016] [Indexed: 11/19/2022]
|
20
|
Hao M, Yuan F, Jin C, Zhou Z, Cao Q, Xu L, Wang G, Huang H, Yang D, Xie M, Zhao X. Overexpression of Lnk in the Ovaries Is Involved in Insulin Resistance in Women With Polycystic Ovary Syndrome. Endocrinology 2016; 157:3709-3718. [PMID: 27459314 PMCID: PMC5045500 DOI: 10.1210/en.2016-1234] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Polycystic ovary syndrome (PCOS) progression involves abnormal insulin signaling. SH2 domain-containing adaptor protein (Lnk) may be an important regulator of the insulin signaling pathway. We investigated whether Lnk was involved in insulin resistance (IR). Thirty-seven women due to receive laparoscopic surgery from June 2011 to February 2012 were included from the gynecologic department of the Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University. Samples of polycystic and normal ovary tissues were examined by immunohistochemistry. Ovarian cell lines underwent insulin stimulation and Lnk overexpression. Expressed Lnk underwent coimmunoprecipitation tests with green fluorescent protein-labeled insulin receptor and His-tagged insulin receptor substrate 1 (IRS1), and their colocalization in HEK293T cells was examined. Ovarian tissues from PCOS patients with IR exhibited higher expression of Lnk than ovaries from normal control subjects and PCOS patients without IR; mainly in follicular granulosa cells, the follicular fluid and plasma of oocytes in secondary follicles, and atretic follicles. Lnk was coimmunoprecipitated with insulin receptor and IRS1. Lnk and insulin receptor/IRS1 locations overlapped around the nucleus. IR, protein kinase B (Akt), and ERK1/2 activities were inhibited by Lnk overexpression and inhibited further after insulin stimulation, whereas IRS1 serine activity was increased. Insulin receptor (Tyr1150/1151), Akt (Thr308), and ERK1/2 (Thr202/Tyr204) phosphorylation was decreased, whereas IRS1 (Ser307) phosphorylation was increased with Lnk overexpression. In conclusion, Lnk inhibits the phosphatidylinositol 3 kinase-AKT and MAPK-ERK signaling response to insulin. Higher expression of Lnk in PCOS suggests that Lnk probably plays a role in the development of IR.
Collapse
Affiliation(s)
- Meihua Hao
- Department of Obstetrics and Gynecology (M.H., H.H., D.Y., M.X., X.Z.), Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China; Department of Pharmacology (F.Y., C.J., G.W.), Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510120 China; Department of Obstetrics and Gynecology (Z.Z.), Reproductive Medical Center, Peking University Third Hospital, Haidian District, Beijing, China; Division of Hematology/Oncology (Q.C.), Cedar-Sinai Medical Center, University of California, Los Angeles School of Medicine, Los Angeles, California; and Cedar-Sinai Medical Center (L.X.), University of California, Los Angeles School of Medicine, Los Angeles, California
| | - Feng Yuan
- Department of Obstetrics and Gynecology (M.H., H.H., D.Y., M.X., X.Z.), Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China; Department of Pharmacology (F.Y., C.J., G.W.), Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510120 China; Department of Obstetrics and Gynecology (Z.Z.), Reproductive Medical Center, Peking University Third Hospital, Haidian District, Beijing, China; Division of Hematology/Oncology (Q.C.), Cedar-Sinai Medical Center, University of California, Los Angeles School of Medicine, Los Angeles, California; and Cedar-Sinai Medical Center (L.X.), University of California, Los Angeles School of Medicine, Los Angeles, California
| | - Chenchen Jin
- Department of Obstetrics and Gynecology (M.H., H.H., D.Y., M.X., X.Z.), Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China; Department of Pharmacology (F.Y., C.J., G.W.), Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510120 China; Department of Obstetrics and Gynecology (Z.Z.), Reproductive Medical Center, Peking University Third Hospital, Haidian District, Beijing, China; Division of Hematology/Oncology (Q.C.), Cedar-Sinai Medical Center, University of California, Los Angeles School of Medicine, Los Angeles, California; and Cedar-Sinai Medical Center (L.X.), University of California, Los Angeles School of Medicine, Los Angeles, California
| | - Zehong Zhou
- Department of Obstetrics and Gynecology (M.H., H.H., D.Y., M.X., X.Z.), Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China; Department of Pharmacology (F.Y., C.J., G.W.), Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510120 China; Department of Obstetrics and Gynecology (Z.Z.), Reproductive Medical Center, Peking University Third Hospital, Haidian District, Beijing, China; Division of Hematology/Oncology (Q.C.), Cedar-Sinai Medical Center, University of California, Los Angeles School of Medicine, Los Angeles, California; and Cedar-Sinai Medical Center (L.X.), University of California, Los Angeles School of Medicine, Los Angeles, California
| | - Qi Cao
- Department of Obstetrics and Gynecology (M.H., H.H., D.Y., M.X., X.Z.), Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China; Department of Pharmacology (F.Y., C.J., G.W.), Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510120 China; Department of Obstetrics and Gynecology (Z.Z.), Reproductive Medical Center, Peking University Third Hospital, Haidian District, Beijing, China; Division of Hematology/Oncology (Q.C.), Cedar-Sinai Medical Center, University of California, Los Angeles School of Medicine, Los Angeles, California; and Cedar-Sinai Medical Center (L.X.), University of California, Los Angeles School of Medicine, Los Angeles, California
| | - Ling Xu
- Department of Obstetrics and Gynecology (M.H., H.H., D.Y., M.X., X.Z.), Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China; Department of Pharmacology (F.Y., C.J., G.W.), Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510120 China; Department of Obstetrics and Gynecology (Z.Z.), Reproductive Medical Center, Peking University Third Hospital, Haidian District, Beijing, China; Division of Hematology/Oncology (Q.C.), Cedar-Sinai Medical Center, University of California, Los Angeles School of Medicine, Los Angeles, California; and Cedar-Sinai Medical Center (L.X.), University of California, Los Angeles School of Medicine, Los Angeles, California
| | - Guanlei Wang
- Department of Obstetrics and Gynecology (M.H., H.H., D.Y., M.X., X.Z.), Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China; Department of Pharmacology (F.Y., C.J., G.W.), Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510120 China; Department of Obstetrics and Gynecology (Z.Z.), Reproductive Medical Center, Peking University Third Hospital, Haidian District, Beijing, China; Division of Hematology/Oncology (Q.C.), Cedar-Sinai Medical Center, University of California, Los Angeles School of Medicine, Los Angeles, California; and Cedar-Sinai Medical Center (L.X.), University of California, Los Angeles School of Medicine, Los Angeles, California
| | - Hui Huang
- Department of Obstetrics and Gynecology (M.H., H.H., D.Y., M.X., X.Z.), Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China; Department of Pharmacology (F.Y., C.J., G.W.), Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510120 China; Department of Obstetrics and Gynecology (Z.Z.), Reproductive Medical Center, Peking University Third Hospital, Haidian District, Beijing, China; Division of Hematology/Oncology (Q.C.), Cedar-Sinai Medical Center, University of California, Los Angeles School of Medicine, Los Angeles, California; and Cedar-Sinai Medical Center (L.X.), University of California, Los Angeles School of Medicine, Los Angeles, California
| | - Dongzi Yang
- Department of Obstetrics and Gynecology (M.H., H.H., D.Y., M.X., X.Z.), Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China; Department of Pharmacology (F.Y., C.J., G.W.), Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510120 China; Department of Obstetrics and Gynecology (Z.Z.), Reproductive Medical Center, Peking University Third Hospital, Haidian District, Beijing, China; Division of Hematology/Oncology (Q.C.), Cedar-Sinai Medical Center, University of California, Los Angeles School of Medicine, Los Angeles, California; and Cedar-Sinai Medical Center (L.X.), University of California, Los Angeles School of Medicine, Los Angeles, California
| | - Meiqing Xie
- Department of Obstetrics and Gynecology (M.H., H.H., D.Y., M.X., X.Z.), Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China; Department of Pharmacology (F.Y., C.J., G.W.), Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510120 China; Department of Obstetrics and Gynecology (Z.Z.), Reproductive Medical Center, Peking University Third Hospital, Haidian District, Beijing, China; Division of Hematology/Oncology (Q.C.), Cedar-Sinai Medical Center, University of California, Los Angeles School of Medicine, Los Angeles, California; and Cedar-Sinai Medical Center (L.X.), University of California, Los Angeles School of Medicine, Los Angeles, California
| | - Xiaomiao Zhao
- Department of Obstetrics and Gynecology (M.H., H.H., D.Y., M.X., X.Z.), Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China; Department of Pharmacology (F.Y., C.J., G.W.), Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510120 China; Department of Obstetrics and Gynecology (Z.Z.), Reproductive Medical Center, Peking University Third Hospital, Haidian District, Beijing, China; Division of Hematology/Oncology (Q.C.), Cedar-Sinai Medical Center, University of California, Los Angeles School of Medicine, Los Angeles, California; and Cedar-Sinai Medical Center (L.X.), University of California, Los Angeles School of Medicine, Los Angeles, California
| |
Collapse
|
21
|
Associations of insulin resistance later in lactation on fertility of dairy cows. Theriogenology 2016; 86:263-9. [DOI: 10.1016/j.theriogenology.2016.04.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 02/11/2016] [Accepted: 03/14/2016] [Indexed: 11/19/2022]
|
22
|
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine-metabolic disease which often accompany with abnormal fat distribution. Visceral adiposity has association with abnormal lipid metabolic, pro-inflammatory activity, insulin resistance (IR) and hyperandrogenism. Increased visceral adiposity raises the risk of metabolic syndrome, type 2 diabetes and cardiovascular (CV) events, and aggravates ovulatory dysfunction and hyperandrogenism in PCOS women. Visceral adiposity index (VAI), a simple surrogate maker of visceral adipose dysfunction and visceral adiposity, is a predictor of IR, and link hyperinsulinemia, hyperandrogenism and anovulation. This review aims to discuss the visceral adiposity situation in PCOS women, and suggests that VAI may be a useful predictor of clinical severity and therapeutic outcome of PCOS.
Collapse
Affiliation(s)
- Sai-Hua Zheng
- a Department of Gynecology , Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai OB/GYN Hospital, Shanghai Medical College, Fudan University , Shanghai , People's Republic of China
| | - Xue-Lian Li
- a Department of Gynecology , Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai OB/GYN Hospital, Shanghai Medical College, Fudan University , Shanghai , People's Republic of China
| |
Collapse
|
23
|
Modulation of steroidogenic pathway in rat granulosa cells with subclinical Cd exposure and insulin resistance: an impact on female fertility. BIOMED RESEARCH INTERNATIONAL 2014; 2014:460251. [PMID: 25210711 PMCID: PMC4157004 DOI: 10.1155/2014/460251] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 07/11/2014] [Accepted: 07/28/2014] [Indexed: 11/18/2022]
Abstract
Changes in lifestyle lead to insulin resistance (IR) in females ultimately predisposing them towards infertility. In addition, cadmium (Cd), an environmental endocrine disruptor, is reported for detrimental effects on granulosa cells, thus leading to ovarian dysfunction. A combination of these factors, lifestyle and environment, seems to play a role in etiology of idiopathic infertility that accounts for 50% amongst the total infertility cases. To address this issue, we made an attempt to investigate the extent of Cd impact on insulin-resistant (IR) granulosa cells. We exposed adult female Charles Foster rats to dexamethasone and confirmed IR condition by fasting insulin resistance index (FIRI). On treatment of IR rats with Cd, the preliminary studies demonstrated prolonged estrous cyclicity, decrease in serum estradiol concentrations, abnormal histology of ovary, and increased granulosa cell death. Further gene and protein expression studies of steroidogenic acute regulatory (StAR) protein, 17β-hydroxysteroid dehydrogenase (17β-HSD), and cytochrome P450 aromatase (CYP19A1) were performed. Protein expression studies demonstrated significant decrease in treated groups when compared with control. Study revealed that, in spite of the molecular parameters being affected at varied level, overall ovarian physiology is maximally affected in IR and Cd coexposed group, thus mimicking the condition similar to those prevailing in infertile females.
Collapse
|
24
|
Huang Y, Li W, Wang CC, Wu X, Zheng J. Cryptotanshinone reverses ovarian insulin resistance in mice through activation of insulin signaling and the regulation of glucose transporters and hormone synthesizing enzymes. Fertil Steril 2014; 102:589-596.e4. [PMID: 24973798 DOI: 10.1016/j.fertnstert.2014.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/09/2014] [Accepted: 05/09/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To investigate the effects of cryptotanshinone (CRY), an active component of Chinese medicine, on ovarian androgen production, insulin resistance (IR), and glucose metabolism in mice. DESIGN Animal model and in vitro tissue model. SETTING University-affiliated laboratory. ANIMAL(S) Mice. INTERVENTION(S) Ovarian IR was induced by dexamethasone (DEX) in vivo. Animals were randomized to receive CRY treatment for 3 days or not. Ovulation rates, serum steroid levels, and glucose uptake in ovaries were quantified, and proteins in the phosphatidylinositol 3-hydroxy kinase pathway were measured. In vitro ovarian IR was also induced by DEX for 3 days. Ovarian steroid hormone secretion and glucose uptake were measured, and the hormone-synthesizing enzymes were determined by semiquantitative reverse transcription-polymerase chain reaction. MAIN OUTCOME MEASURE(S) Ovarian glucose uptake, in vivo ovulation rate, serum and culture medium steroid level, and molecular expression of phosphatidylinositol 3-hydroxy kinase and steroidogenic enzymes. RESULT(S) Dexamethasone significantly increased ovulation rates in vivo and increased T and E2 production and decreased ovarian glucose uptake in vivo and in vitro. Cryptotanshinone significantly reduced ovulation rates in vivo and decreased T and estrogen production in vitro. Cryptotanshinone attenuated the inhibition of DEX on AKT2 and suppressed the up-regulation of CYP11 and CYP17 expression by DEX. CONCLUSION(S) Cryptotanshinone reversed DEX-induced androgen excess and ovarian IR in mice through activation of insulin signaling and the regulation of glucose transporters and hormone-synthesizing enzymes. This suggests a potential role for CRY in treating the ovulatory dysfunction associated with PCOS.
Collapse
Affiliation(s)
- Yangang Huang
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Wei Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin
| | - Chi Chiu Wang
- Department of Obstetrics and Gynecology, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Xiaoke Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin
| | - Jianhua Zheng
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China.
| |
Collapse
|