1
|
Jacques F, Tichopád T, Demko M, Bystrý V, Křížová KC, Seifertová M, Voříšková K, Fuad MMH, Vetešník L, Šimková A. Reproduction-associated pathways in females of gibel carp (Carassius gibelio) shed light on the molecular mechanisms of the coexistence of asexual and sexual reproduction. BMC Genomics 2024; 25:548. [PMID: 38824502 PMCID: PMC11144346 DOI: 10.1186/s12864-024-10462-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024] Open
Abstract
Gibel carp (Carassius gibelio) is a cyprinid fish that originated in eastern Eurasia and is considered as invasive in European freshwater ecosystems. The populations of gibel carp in Europe are mostly composed of asexually reproducing triploid females (i.e., reproducing by gynogenesis) and sexually reproducing diploid females and males. Although some cases of coexisting sexual and asexual reproductive forms are known in vertebrates, the molecular mechanisms maintaining such coexistence are still in question. Both reproduction modes are supposed to exhibit evolutionary and ecological advantages and disadvantages. To better understand the coexistence of these two reproduction strategies, we performed transcriptome profile analysis of gonad tissues (ovaries) and studied the differentially expressed reproduction-associated genes in sexual and asexual females. We used high-throughput RNA sequencing to generate transcriptomic profiles of gonadal tissues of triploid asexual females and males, diploid sexual males and females of gibel carp, as well as diploid individuals from two closely-related species, C. auratus and Cyprinus carpio. Using SNP clustering, we showed the close similarity of C. gibelio and C. auratus with a basal position of C. carpio to both Carassius species. Using transcriptome profile analyses, we showed that many genes and pathways are involved in both gynogenetic and sexual reproduction in C. gibelio; however, we also found that 1500 genes, including 100 genes involved in cell cycle control, meiosis, oogenesis, embryogenesis, fertilization, steroid hormone signaling, and biosynthesis were differently expressed in the ovaries of asexual and sexual females. We suggest that the overall downregulation of reproduction-associated pathways in asexual females, and their maintenance in sexual ones, allows the populations of C. gibelio to combine the evolutionary and ecological advantages of the two reproductive strategies. However, we showed that many sexual-reproduction-related genes are maintained and expressed in asexual females, suggesting that gynogenetic gibel carp retains the genetic toolkits for meiosis and sexual reproduction. These findings shed new light on the evolution of this asexual and sexual complex.
Collapse
Affiliation(s)
- Florian Jacques
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic.
| | - Tomáš Tichopád
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics of the CAS, Liběchov, 277 21, Czech Republic
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, Vodňany, 389 25, Czech Republic
| | - Martin Demko
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, 625 00, Czech Republic
| | - Vojtěch Bystrý
- Central European Institute of Technology, Masaryk University, Brno, 625 00, Czech Republic
| | - Kristína Civáňová Křížová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
| | - Mária Seifertová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
| | - Kristýna Voříšková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
| | - Md Mehedi Hasan Fuad
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
| | - Lukáš Vetešník
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
- Institute of Vertebrate Biology, Czech Academy of Science, Květná 8, Brno, 603 65, Czech Republic
| | - Andrea Šimková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
| |
Collapse
|
2
|
Schindler-Johnson M, Petridou NI. Collective effects of cell cleavage dynamics. Front Cell Dev Biol 2024; 12:1358971. [PMID: 38559810 PMCID: PMC10978805 DOI: 10.3389/fcell.2024.1358971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
A conserved process of early embryonic development in metazoans is the reductive cell divisions following oocyte fertilization, termed cell cleavages. Cell cleavage cycles usually start synchronously, lengthen differentially between the embryonic cells becoming asynchronous, and cease before major morphogenetic events, such as germ layer formation and gastrulation. Despite exhibiting species-specific characteristics, the regulation of cell cleavage dynamics comes down to common controllers acting mostly at the single cell/nucleus level, such as nucleus-to-cytoplasmic ratio and zygotic genome activation. Remarkably, recent work has linked cell cleavage dynamics to the emergence of collective behavior during embryogenesis, including pattern formation and changes in embryo-scale mechanics, raising the question how single-cell controllers coordinate embryo-scale processes. In this review, we summarize studies across species where an association between cell cleavages and collective behavior was made, discuss the underlying mechanisms, and propose that cell-to-cell variability in cell cleavage dynamics can serve as a mechanism of long-range coordination in developing embryos.
Collapse
Affiliation(s)
- Magdalena Schindler-Johnson
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Nicoletta I. Petridou
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
3
|
Shindo Y, Brown MG, Amodeo AA. Versatile roles for histones in early development. Curr Opin Cell Biol 2022; 75:102069. [PMID: 35279563 PMCID: PMC9064922 DOI: 10.1016/j.ceb.2022.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 11/28/2022]
Abstract
The nuclear environment changes dramatically over the course of early development. Histones are core chromatin components that play critical roles in regulating gene expression and nuclear architecture. Additionally, the embryos of many species, including Drosophila, Zebrafish, and Xenopus use the availability of maternally deposited histones to time critical early embryonic events including cell cycle slowing and zygotic genome activation. Here, we review recent insights into how histones control early development. We first discuss the regulation of chromatin functions through interaction of histones and transcription factors, incorporation of variant histones, and histone post-translational modifications. We also highlight emerging roles for histones as developmental regulators independent of chromatin association.
Collapse
Affiliation(s)
- Yuki Shindo
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA.
| | - Madeleine G Brown
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Amanda A Amodeo
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
4
|
Cavalieri V. Histones, Their Variants and Post-translational Modifications in Zebrafish Development. Front Cell Dev Biol 2020; 8:456. [PMID: 32582716 PMCID: PMC7289917 DOI: 10.3389/fcell.2020.00456] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/15/2020] [Indexed: 01/01/2023] Open
Abstract
Complex multi-cellular organisms are shaped starting from a single-celled zygote, owing to elaborate developmental programs. These programs involve several layers of regulation to orchestrate the establishment of progressively diverging cell type-specific gene expression patterns. In this scenario, epigenetic modifications of chromatin are central in influencing spatiotemporal patterns of gene transcription. In fact, it is generally recognized that epigenetic changes of chromatin states impact on the accessibility of genomic DNA to regulatory proteins. Several lines of evidence highlighted that zebrafish is an excellent vertebrate model for research purposes in the field of developmental epigenetics. In this review, I focus on the dynamic roles recently emerged for histone post-translational modifications (PTMs), histone modifying enzymes, histone variants and histone themselves in the coordination between the precise execution of transcriptional programs and developmental progression in zebrafish. In particular, I first outline a synopsis of the current state of knowledge in this field during early embryogenesis. Then, I present a survey of histone-based epigenetic mechanisms occurring throughout morphogenesis, with a stronger emphasis on cardiac formation. Undoubtedly, the issues addressed in this review take on particular importance in the emerging field of comparative biology of epigenetics, as well as in translational research.
Collapse
Affiliation(s)
- Vincenzo Cavalieri
- Laboratory of Molecular Biology and Functional Genomics, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.,Zebrafish Laboratory, Advanced Technologies Network (ATeN) Center, University of Palermo, Palermo, Italy
| |
Collapse
|
5
|
Balasubramanian S, Raghunath A, Perumal E. Role of epigenetics in zebrafish development. Gene 2019; 718:144049. [DOI: 10.1016/j.gene.2019.144049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023]
|
6
|
Lee PC, Wildt DE, Comizzoli P. Proteomic analysis of germinal vesicles in the domestic cat model reveals candidate nuclear proteins involved in oocyte competence acquisition. Mol Hum Reprod 2019; 24:14-26. [PMID: 29126204 DOI: 10.1093/molehr/gax059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/04/2017] [Indexed: 12/14/2022] Open
Abstract
STUDY QUESTION Do nuclear proteins in the germinal vesicle (GV) contribute to oocyte competence acquisition during folliculogenesis? SUMMARY ANSWER Proteomic analysis of GVs identified candidate proteins for oocyte competence acquisition, including a key RNA processing protein-heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2B1). WHAT IS KNOWN ALREADY The domestic cat GV, which is physiologically similar to the human GV, gains the intrinsic ability to resume meiosis and support early embryo development during the pre-antral-to-antral follicle transition. However, little is known about nuclear proteins that contribute to this developmental process. STUDY DESIGN SIZE, DURATION GVs were enriched from pre-antral (incompetent) and antral (competent) follicles from 802 cat ovaries. Protein lysates were subjected to quantitative proteomic analysis to identify differentially expressed proteins in GVs from the two follicular categories. PARTICIPANTS/MATERIALS, SETTING, METHODS Two biological replicates (from independent pools of ovaries) of pre-antral versus antral samples were labeled by tandem mass tags and then assessed by liquid chromatography-tandem mass spectrometry. Proteomic data were analyzed according to gene ontology and a protein-protein interaction network. Immunofluorescent staining and protein inhibition assays were used for validation. MAIN RESULTS AND THE ROLE OF CHANCE A total of 174 nuclear proteins was identified, with 54 being up-regulated and 22 down-regulated (≥1.5-fold) after antrum formation. Functional protein analysis through gene ontology over-representation tests revealed that changes in molecular network within the GVs during this transitional phase were related to chromatin reorganization, gene transcription, and maternal RNA processing and storage. Protein inhibition assays verified that hnRNPA2B1, a key nuclear protein identified, was required for oocyte meiotic maturation and subsequent blastocyst formation. LARGE SCALE DATA Data are available via ProteomeXchange with identifier PXD007211. LIMITATIONS REASONS FOR CAUTION Proteins identified by proteomic comparison may (i) be involved in processes other than competence acquisition during the pre-antral-to-antral transition or (ii) be co-expressed in other macrostructures besides the GV. Expressional and functional validations should be performed for candidate proteins before downstream application. WIDER IMPLICATIONS OF THE FINDINGS Collective results generated a blueprint to better understand the molecular mechanisms involved in GV competence acquisition and identified potential nuclear competence markers for human fertility preservation. STUDY FUNDING AND COMPETING INTEREST(S) Funded by the National Center for Research Resources (R01 RR026064), a component of the National Institutes of Health (NIH) and currently by the Office of Research Infrastructure Programs/Office of the Director (R01 OD010948). The authors declare that there is no conflict of interest.
Collapse
Affiliation(s)
- P-C Lee
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC 20008, USA
| | - D E Wildt
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC 20008, USA
| | - P Comizzoli
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC 20008, USA
| |
Collapse
|
7
|
He WX, Wu M, Liu Z, Li Z, Wang Y, Zhou J, Yu P, Zhang XJ, Zhou L, Gui JF. Oocyte-specific maternal Slbp2 is required for replication-dependent histone storage and early nuclear cleavage in zebrafish oogenesis and embryogenesis. RNA (NEW YORK, N.Y.) 2018; 24:1738-1748. [PMID: 30185624 PMCID: PMC6239174 DOI: 10.1261/rna.067090.118] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/28/2018] [Indexed: 05/29/2023]
Abstract
Stem-loop binding protein (SLBP) is required for replication-dependent histone mRNA metabolism in mammals. Zebrafish possesses two slbps, and slbp1 is necessary for retinal neurogenesis. However, the detailed expression and function of slbp2 in zebrafish are still unknown. In this study, we first identified zebrafish slbp2 as an oocyte-specific maternal factor and then generated a maternal-zygotic slbp2 F3 homozygous mutant (MZslbp2Δ4-/-) using CRISPR/Cas9. The depletion of maternal Slbp2 disrupted early nuclear cleavage, which resulted in developmental arrest at the MBT stage. The developmental defects could be rescued in slbp2 transgenic MZslbp2Δ4-/- embryos. However, homozygous mutant MZslbp1Δ1-/- developed normally, indicating slbp1 is dispensable for zebrafish early embryogenesis. Through comparative proteome and transcriptome profiling between WT and MZslbp2Δ4-/- embryos, we identified many differentially expressed proteins and genes. In comparison with those in WT embryos, four replication-dependent histones, including H2a, H2b, H3, and H4, all reduced their expression, while histone variant h2afx significantly increased in MZslbp2Δ4-/- embryos at the 256-cell stage and high stage. Zebrafish Slbp2 can bind histone mRNA stem-loop in vitro, and the defects of MZslbp2Δ4-/- embryos can be partially rescued by overexpression of H2b. The current data indicate that maternal Slbp2 plays a pivotal role in the storage of replication-dependent histone mRNAs and proteins during zebrafish oogenesis.
Collapse
Affiliation(s)
- Wen-Xia He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Jukam D, Shariati SAM, Skotheim JM. Zygotic Genome Activation in Vertebrates. Dev Cell 2017; 42:316-332. [PMID: 28829942 PMCID: PMC5714289 DOI: 10.1016/j.devcel.2017.07.026] [Citation(s) in RCA: 282] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/25/2017] [Accepted: 07/28/2017] [Indexed: 12/12/2022]
Abstract
The first major developmental transition in vertebrate embryos is the maternal-to-zygotic transition (MZT) when maternal mRNAs are degraded and zygotic transcription begins. During the MZT, the embryo takes charge of gene expression to control cell differentiation and further development. This spectacular organismal transition requires nuclear reprogramming and the initiation of RNAPII at thousands of promoters. Zygotic genome activation (ZGA) is mechanistically coordinated with other embryonic events, including changes in the cell cycle, chromatin state, and nuclear-to-cytoplasmic component ratios. Here, we review progress in understanding vertebrate ZGA dynamics in frogs, fish, mice, and humans to explore differences and emphasize common features.
Collapse
Affiliation(s)
- David Jukam
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - S Ali M Shariati
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jan M Skotheim
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
9
|
Quantitative proteomic reveals the dynamic of protein profile during final oocyte maturation in zebrafish. Biochem Biophys Res Commun 2017. [DOI: 10.1016/j.bbrc.2017.06.093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Sun ZH, Zhou L, Li Z, Liu XC, Li SS, Wang Y, Gui JF. Sexual dimorphic expression of dnd in germ cells during sex reversal and its requirement for primordial germ cell survival in protogynous hermaphroditic grouper. Comp Biochem Physiol B Biochem Mol Biol 2017; 208-209:47-57. [DOI: 10.1016/j.cbpb.2017.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/25/2017] [Accepted: 04/06/2017] [Indexed: 02/06/2023]
|
11
|
Sun ZH, Wang Y, Lu WJ, Li Z, Liu XC, Li SS, Zhou L, Gui JF. Divergent Expression Patterns and Function Implications of Four nanos Genes in a Hermaphroditic Fish, Epinephelus coioides. Int J Mol Sci 2017; 18:E685. [PMID: 28333083 PMCID: PMC5412271 DOI: 10.3390/ijms18040685] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/12/2017] [Accepted: 03/17/2017] [Indexed: 12/16/2022] Open
Abstract
Multiple nanos genes have been characterized in several fishes, but the functional implications of their various expression patterns remain unclear. In this study, we identified and characterized four nanos genes from a hermaphroditic fish orange-spotted grouper, Epinephelus coioides. Ecnanos1a and Ecnanos1b show divergent expression patterns, and the dynamic expression change of Ecnanos1a in pituitaries during sex change is associated with testis differentiation and spermatogenesis. Ecnanos2 and Ecnanos3 might be germline stem cells (GSCs) and primordial germ cells (PGCs)-specific markers, respectively. Significantly, Ecnanos3 3'-untranslated region (UTR) is necessary for PGC specific expression, where a non-canonical "GCACGTTT" sequence is required for miR-430-mediated repression of Ecnanos3 RNA. Furthermore, grouper Dead end (Dnd) can relieve miR-430 repression in PGCs by associating with a 23 bp U-rich region (URR) in Ecnanos3 3'-UTR. The current study revealed the functional association of multiple nanos genes with PGC formation and germ cell development in orange-spotted grouper, and opened up new possibilities for developing biotechnologies through utilizing the associations between Ecnanos3 and PGCs or between Ecnanos2 and GSCs in the hermaphroditic fish.
Collapse
Affiliation(s)
- Zhi-Hui Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China.
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China.
| | - Wei-Jia Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China.
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China.
| | - Xiao-Chun Liu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, The Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Shui-Sheng Li
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, The Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China.
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
12
|
Li SZ, Liu W, Li Z, Wang Y, Zhou L, Yi MS, Gui JF. Molecular characterization and expression pattern of a germ cell marker gene dnd in gibel carp (Carassius gibelio). Gene 2016; 591:183-190. [PMID: 27418526 DOI: 10.1016/j.gene.2016.07.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/27/2016] [Accepted: 07/09/2016] [Indexed: 10/21/2022]
Abstract
As a germ cell marker gene, Dead end (dnd) has been identified and characterized in many vertebrates. Recently, we created a complete germ cell-depleted gonad model by the dnd-specific morpholino-mediated knockdown approach, and revealed sex-biased gene expression alteration through utilizing unisexual gynogenetic superiority in polyploid gibel carp. However, dnd and its expression pattern are still unclear in the gibel carp. In this study, we further analyzed molecular characterization of gibel carp dnd and its dynamic expression pattern during gametogenesis and embryogenesis. Similar to other homologs in vertebrates, gibel carp dnd contains a conserved RRM motif and five other motifs, and is highly evolutionary conserved in genomic organization and neighborhood gene synteny. RT-PCR and Western blot analyses showed its gonad-specific expression intensively in testis and ovary. Section in situ hybridization (SISH) and immunofluorescence localization revealed its dynamic expression pattern specific to oogenic cells and spermatogenetic cells during oogenesis and spermatogenesis. Moreover, its temporal and spatial distribution specific to PGCs were also demonstrated by RT-PCR and whole mount in situ hybridization (WISH) during embryogenesis. Therefore, gibel carp Dnd is a conserved germ cell marker during gametogenesis, and its maternal transcript is also a useful marker for tracing PGC specification and migration.
Collapse
Affiliation(s)
- Shi-Zhu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Liu
- Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Mei-Sheng Yi
- Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
13
|
Bunkar N, Pathak N, Lohiya NK, Mishra PK. Epigenetics: A key paradigm in reproductive health. Clin Exp Reprod Med 2016; 43:59-81. [PMID: 27358824 PMCID: PMC4925870 DOI: 10.5653/cerm.2016.43.2.59] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 02/06/2016] [Accepted: 03/16/2016] [Indexed: 12/17/2022] Open
Abstract
It is well established that there is a heritable element of susceptibility to chronic human ailments, yet there is compelling evidence that some components of such heritability are transmitted through non-genetic factors. Due to the complexity of reproductive processes, identifying the inheritance patterns of these factors is not easy. But little doubt exists that besides the genomic backbone, a range of epigenetic cues affect our genetic programme. The inter-generational transmission of epigenetic marks is believed to operate via four principal means that dramatically differ in their information content: DNA methylation, histone modifications, microRNAs and nucleosome positioning. These epigenetic signatures influence the cellular machinery through positive and negative feedback mechanisms either alone or interactively. Understanding how these mechanisms work to activate or deactivate parts of our genetic programme not only on a day-to-day basis but also over generations is an important area of reproductive health research.
Collapse
Affiliation(s)
- Neha Bunkar
- Translational Research Laboratory, School of Biological Sciences, Dr. Hari Singh Central University, Sagar, India
| | - Neelam Pathak
- Translational Research Laboratory, School of Biological Sciences, Dr. Hari Singh Central University, Sagar, India.; Reproductive Physiology Laboratory, Centre for Advanced Studies, University of Rajasthan, Jaipur, India
| | - Nirmal Kumar Lohiya
- Reproductive Physiology Laboratory, Centre for Advanced Studies, University of Rajasthan, Jaipur, India
| | - Pradyumna Kumar Mishra
- Translational Research Laboratory, School of Biological Sciences, Dr. Hari Singh Central University, Sagar, India.; Department of Molecular Biology, National Institute for Research in Environmental Health (ICMR), Bhopal, India
| |
Collapse
|
14
|
Wu GC, Tey WG, Li HW, Chang CF. Sexual Fate Reprogramming in the Steroid-Induced Bi-Directional Sex Change in the Protogynous Orange-Spotted Grouper, Epinephelus coioides. PLoS One 2015; 10:e0145438. [PMID: 26714271 PMCID: PMC4694621 DOI: 10.1371/journal.pone.0145438] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 12/03/2015] [Indexed: 11/18/2022] Open
Abstract
Androgen administration has been widely used for masculinization in fish. The mechanism of the sex change in sexual fate regulation is not clear. Oral administration or pellet implantation was applied. We orally applied an aromatase inhibitor (AI, to decrease estrogen levels) and 17α-methyltestosterone (MT, to increase androgen levels) to induce masculinization to clarify the mechanism of the sex change in the protogynous orange-spotted grouper. After 3 mo of AI/MT administration, male characteristics were observed in the female-to-male sex change fish. These male characteristics included increased plasma 11-ketotestosterone (11-KT), decreased estradiol (E2) levels, increased male-related gene (dmrt1, sox9, and cyp11b2) expression, and decreased female-related gene (figla, foxl2, and cyp19a1a) expression. However, the reduced male characteristics and male-to-female sex change occurred after AI/MT-termination in the AI- and MT-induced maleness. Furthermore, the MT-induced oocyte-depleted follicle cells (from MT-implantation) had increased proliferating activity, and the sexual fate in a portion of female gonadal soma cells was altered to male function during the female-to-male sex change. In contrast, the gonadal soma cells were not proliferative during the early process of the male-to-female sex change. Additionally, the male gonadal soma cells did not alter to female function during the male-to-female sex change in the AI/MT-terminated fish. After MT termination in the male-to-female sex-changed fish, the differentiated male germ cells showed increased proliferating activities together with dormancy and did not show characteristics of both sexes in the early germ cells. In conclusion, these findings indicate for the first time in a single species that the mechanism involved in the replacement of soma cells is different between the female-to-male and male-to-female sex change processes in grouper. These results also demonstrate that sexual fate determination (secondary sex determination) is regulated by endogenous sex steroid levels.
Collapse
Affiliation(s)
- Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
- * E-mail: (G-CW); (C-FC)
| | - Wei-Guan Tey
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Hau-Wen Li
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
- * E-mail: (G-CW); (C-FC)
| |
Collapse
|
15
|
Liu Z, Zhang XJ, Wang W, Zhang J, Li Z, Gui JF. Molecular characterization and expression of an oocyte-specific histone stem-loop binding protein in Carassius gibelio. Comp Biochem Physiol B Biochem Mol Biol 2015; 190:46-53. [DOI: 10.1016/j.cbpb.2015.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/30/2015] [Accepted: 08/25/2015] [Indexed: 11/25/2022]
|
16
|
Liu W, Li SZ, Li Z, Wang Y, Li XY, Zhong JX, Zhang XJ, Zhang J, Zhou L, Gui JF. Complete depletion of primordial germ cells in an All-female fish leads to Sex-biased gene expression alteration and sterile All-male occurrence. BMC Genomics 2015; 16:971. [PMID: 26582363 PMCID: PMC4652418 DOI: 10.1186/s12864-015-2130-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 10/22/2015] [Indexed: 01/05/2023] Open
Abstract
Background Gynogenesis is one of unisexual reproduction modes in vertebrates, and produces all-female individuals with identical genetic background. In sexual reproduction vertebrates, the roles of primordial germ cells on sexual dimorphism and gonadal differentiation have been largely studied, and two distinct functional models have been proposed. However, the role of primordial germ cells remains unknown in unisexual animals, and it is also unclear whether the functional models in sexual reproduction animals are common in unisexual animals. Results To solve these puzzles, we attempt to utilize the gynogenetic superiority of polyploid Carassius gibelio to create a complete germ cell-depleted gonad model by a similar morpholino-mediated knockdown approach used in other examined sexual reproduction fishes. Through the germ cell-depleted gonad model, we have performed comprehensive and comparative transcriptome analysis, and revealed a complete alteration of sex-biased gene expression. Moreover, the expression alteration leads to up-regulation of testis-biased genes and down-regulation of ovary-biased genes, and results in the occurrence of sterile all-males with testis-like gonads and secondary sex characteristics in the germ cell-depleted gynogenetic Carassius gibelio. Conclusions Our current results have demonstrated that unisexual gynogenetic embryos remain keeping male sex determination information in the genome, and the complete depletion of primordial germ cells in the all-female fish leads to sex-biased gene expression alteration and sterile all-male occurrence. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2130-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Shi-Zhu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jian-Xiang Zhong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jun Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
17
|
Zhang J, Sun M, Zhou L, Li Z, Liu Z, Li XY, Liu XL, Liu W, Gui JF. Meiosis completion and various sperm responses lead to unisexual and sexual reproduction modes in one clone of polyploid Carassius gibelio. Sci Rep 2015; 5:10898. [PMID: 26042995 PMCID: PMC4455247 DOI: 10.1038/srep10898] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 04/30/2015] [Indexed: 01/12/2023] Open
Abstract
Unisexual polyploid vertebrates are commonly known to reproduce by gynogenesis, parthenogenesis, or hybridogenesis. One clone of polyploid Carassius gibelio has been revealed to possess multiple modes of unisexual gynogenesis and sexual reproduction, but the cytological and developmental mechanisms have remained unknown. In this study, normal meiosis completion was firstly confirmed by spindle co-localization of β-tubulin and Spindlin. Moreover, three types of various nuclear events and development behaviors were revealed by DAPI staining and BrdU-incorporated immunofluorescence detection during the first mitosis in the fertilized eggs by three kinds of different sperms. They include normal sexual reproduction in response to sperm from the same clone male, typical unisexual gynogenesis in response to sperm from the male of another species Cyprinus carpio, and an unusual hybrid-similar development mode in response to sperm from another different clone male. Based on these findings, we have discussed cytological and developmental mechanisms on multiple reproduction modes in the polyploid fish, and highlighted evolutionary significance of meiosis completion and evolutionary consequences of reproduction mode diversity in polyploid vertebrates.
Collapse
Affiliation(s)
- Jun Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Min Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhen Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Li Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
18
|
Li WH, Zhou L, Li Z, Wang Y, Shi JT, Yang YJ, Gui JF. Zebrafish Lbh-like Is Required for Otx2-mediated Photoreceptor Differentiation. Int J Biol Sci 2015; 11:688-700. [PMID: 25999792 PMCID: PMC4440259 DOI: 10.7150/ijbs.11244] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 04/11/2015] [Indexed: 12/12/2022] Open
Abstract
The homeobox transcription factor orthodenticle homolog 2 (otx2) is supposed as an organizer that orchestrates a transcription factor network during photoreceptor development. However, its regulation in the process remains unclear. In this study, we have identified a zebrafish limb bud and heart-like gene (lbh-like), which is expressed initially at 30 hours post fertilization (hpf) in the developing brain and eyes. Lbh-like knockdown by morpholinos specifically inhibits expression of multiple photoreceptor-specific genes, such as opsins, gnat1, gnat2 and irbp. Interestingly, otx2 expression in the morphants is not significantly reduced until 32 hpf when lbh-like begins to express, but its expression level in 72 hpf morphants is higher than that in wild type embryos. Co-injection of otx2 and its downstream target neuroD mRNAs can rescue the faults in eyes of Lbh-like morphants. Combined with the results of promoter-reporter assay, we suggest that lbh-like is a new regulator of photoreceptor differentiation directly through affecting otx2 expression in zebrafish. Furthermore, knockdown of lbh-like increases the activity of Notch pathway and perturbs the balance among proliferation, differentiation and survival of photoreceptor precursors.
Collapse
Affiliation(s)
- Wen-Hua Li
- 1. State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, ; 2. Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Li Zhou
- 1. State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences
| | - Zhi Li
- 1. State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences
| | - Yang Wang
- 1. State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences
| | - Jian-Tao Shi
- 1. State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences
| | - Yan-Jing Yang
- 1. State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, ; 2. Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Jian-Fang Gui
- 1. State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences
| |
Collapse
|
19
|
Amodeo AA, Jukam D, Straight AF, Skotheim JM. Histone titration against the genome sets the DNA-to-cytoplasm threshold for the Xenopus midblastula transition. Proc Natl Acad Sci U S A 2015; 112:E1086-95. [PMID: 25713373 PMCID: PMC4364222 DOI: 10.1073/pnas.1413990112] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During early development, animal embryos depend on maternally deposited RNA until zygotic genes become transcriptionally active. Before this maternal-to-zygotic transition, many species execute rapid and synchronous cell divisions without growth phases or cell cycle checkpoints. The coordinated onset of transcription, cell cycle lengthening, and cell cycle checkpoints comprise the midblastula transition (MBT). A long-standing model in the frog, Xenopus laevis, posits that MBT timing is controlled by a maternally loaded inhibitory factor that is titrated against the exponentially increasing amount of DNA. To identify MBT regulators, we developed an assay using Xenopus egg extract that recapitulates the activation of transcription only above the DNA-to-cytoplasm ratio found in embryos at the MBT. We used this system to biochemically purify factors responsible for inhibiting transcription below the threshold DNA-to-cytoplasm ratio. This unbiased approach identified histones H3 and H4 as concentration-dependent inhibitory factors. Addition or depletion of H3/H4 from the extract quantitatively shifted the amount of DNA required for transcriptional activation in vitro. Moreover, reduction of H3 protein in embryos induced premature transcriptional activation and cell cycle lengthening, and the addition of H3/H4 shortened post-MBT cell cycles. Our observations support a model for MBT regulation by DNA-based titration and suggest that depletion of free histones regulates the MBT. More broadly, our work shows how a constant concentration DNA binding molecule can effectively measure the amount of cytoplasm per genome to coordinate division, growth, and development.
Collapse
|
20
|
Mei J, Gui JF. Genetic basis and biotechnological manipulation of sexual dimorphism and sex determination in fish. SCIENCE CHINA-LIFE SCIENCES 2015; 58:124-36. [PMID: 25563981 DOI: 10.1007/s11427-014-4797-9] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 09/28/2014] [Indexed: 10/24/2022]
Abstract
Aquaculture has made an enormous contribution to the world food production, especially to the sustainable supply of animal proteins. The utility of diverse reproduction strategies in fish, such as the exploiting use of unisexual gynogenesis, has created a typical case of fish genetic breeding. A number of fish species show substantial sexual dimorphism that is closely linked to multiple economic traits including growth rate and body size, and the efficient development of sex-linked genetic markers and sex control biotechnologies has provided significant approaches to increase the production and value for commercial purposes. Along with the rapid development of genomics and molecular genetic techniques, the genetic basis of sexual dimorphism has been gradually deciphered, and great progress has been made in the mechanisms of fish sex determination and identification of sex-determining genes. This review summarizes the progress to provide some directive and objective thinking for further research in this field.
Collapse
Affiliation(s)
- Jie Mei
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | | |
Collapse
|
21
|
Expression characterization of testicular DMRT1 in both Sertoli cells and spermatogenic cells of polyploid gibel carp. Gene 2014; 548:119-25. [DOI: 10.1016/j.gene.2014.07.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 07/03/2014] [Accepted: 07/11/2014] [Indexed: 11/19/2022]
|
22
|
Xiao Q, Xia JH, Zhang XJ, Li Z, Wang Y, Zhou L, Gui JF. Type-IV antifreeze proteins are essential for epiboly and convergence in gastrulation of zebrafish embryos. Int J Biol Sci 2014; 10:715-32. [PMID: 25013380 PMCID: PMC4081606 DOI: 10.7150/ijbs.9126] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 05/18/2014] [Indexed: 12/17/2022] Open
Abstract
Many organisms in extremely cold environments such as the Antarctic Pole have evolved antifreeze molecules to prevent ice formation. There are four types of antifreeze proteins (AFPs). Type-IV antifreeze proteins (AFP4s) are present also in certain temperate and even tropical fish, which has raised a question as to whether these AFP4s have important functions in addition to antifreeze activity. Here we report the identification and functional analyses of AFP4s in cyprinid fish. Two genes, namely afp4a and afp4b coding for AFP4s, were identified in gibel carp (Carassius auratus gibelio) and zebrafish (Danio rerio). In both species, afp4a and afp4b display a head-to-tail tandem arrangement and share a common 4-exonic gene structure. In zebrafish, both afp4a and afp4b were found to express specifically in the yolk syncytial layer (YSL). Interestingly, afp4a expression continues in YSL and digestive system from early embryos to adults, whereas afp4b expression is restricted to embryogenesis. Importantly, we have shown by using afp4a-specific and afp4b-specifc morpholino knockdown and cell lineage tracing approaches that AFP4a participates in epiboly progression by stabilizing yolk cytoplasmic layer microtubules, and AFP4b is primarily related to convergence movement. Therefore, both AFP4 proteins are essential for gastrulation of zebrafish embryos. Our current results provide first evidence that AFP such as AFP4 has important roles in regulating developmental processes besides its well-known function as antifreeze factors.
Collapse
Affiliation(s)
- Qing Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Jian-Hong Xia
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
23
|
Wang Y, Sun ZH, Zhou L, Li Z, Gui JF. Grouper tshβ promoter-driven transgenic zebrafish marks proximal kidney tubule development. PLoS One 2014; 9:e97806. [PMID: 24905828 PMCID: PMC4048157 DOI: 10.1371/journal.pone.0097806] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 04/24/2014] [Indexed: 01/09/2023] Open
Abstract
Kidney tubule plays a critical role in recovering or secreting solutes, but the detailed morphogenesis remains unclear. Our previous studies have found that grouper tshβ (gtshβ) is also expressed in kidney, however, the distribution significance is still unknown. To understand the gtshβ role and kidney tubule morphogenesis, here, we have generated a transgenic zebrafish line Tg(gtshβ:GFP) with green fluorescent protein driven by the gtshβ promoter. Similar to the endogenous tshβ in zebrafish or in grouper, the gtshβ promoter-driven GFP is expressed in pituitary and kidney, and the developing details of proximal kidney tubule are marked in the transgenic zebrafish line. The gfp initially transcribes at 16 hours post fertilization (hpf) above the dorsal mesentery, and partially co-localizes with pronephric tubular markers slc20a1a and cdh17. Significantly, the GFP specifically localizes in proximal pronephric segments during embryogenesis and resides at kidney duct epithelium in adult fish. To test whether the gtshβ promoter-driven GFP may serve as a readout signal of the tubular development, we have treated the embryos with retinoic acid signaing (RA) reagents, in which exogenous RA addition results in a distal extension of the proximal segments, while RA inhibition induces a weakness and shortness of the proximal segments. Therefore, this transgenic line provides a useful tool for genetic or chemical analysis of kidney tubule.
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, China
| | - Zhi-Hui Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
24
|
Zhong JX, Zhou L, Li Z, Wang Y, Gui JF. Zebrafish Noxa promotes mitosis in early embryonic development and regulates apoptosis in subsequent embryogenesis. Cell Death Differ 2014; 21:1013-24. [PMID: 24608793 PMCID: PMC4013518 DOI: 10.1038/cdd.2014.22] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 01/02/2014] [Accepted: 01/20/2014] [Indexed: 01/16/2023] Open
Abstract
Noxa functions in apoptosis and immune system of vertebrates, but its activities in embryo development remain unclear. In this study, we have studied the role of zebrafish Noxa (zNoxa) by using zNoxa-specifc morpholino knockdown and overexpression approaches in developing zebrafish embryos. Expression pattern analysis indicates that zNoxa transcript is of maternal origin, which displays a uniform distribution in early embryonic development until shield stage, and the zygote zNoxa transcription is initiated from this stage and mainly localized in YSL of the embryos. The zNoxa expression alterations result in strong embryonic development defects, demonstrating that zNoxa regulates apoptosis from 75% epiboly stage of development onward, in which zNoxa firstly induces the expression of zBik, and then cooperates with zBik to regulate apoptosis. Moreover, zNoxa knockdown also causes a reduction in number of mitotic cells before 8 h.p.f., suggesting that zNoxa also promotes mitosis before 75% epiboly stage. The effect of zNoxa on mitosis is mediated by zWnt4b in early embryos, whereas zMcl1a and zMcl1b suppress the ability of zNoxa to regulate mitosis and apoptosis at different developmental stages. In addition, mammalian mouse Noxa (mNoxa) mRNA was demonstrated to rescue the arrest of mitosis when zNoxa was knocked down, suggesting that mouse and zebrafish Noxa might have similar dual functions. Therefore, the current findings indicate that Noxa is a novel regulator of early mitosis before 75% epiboly stage when it translates into a key mediator of apoptosis in subsequent embryogenesis.
Collapse
Affiliation(s)
- J-X Zhong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, China
| | - L Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, China
| | - Z Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, China
| | - Y Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, China
| | - J-F Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
25
|
Mei J, Yue HM, Li Z, Chen B, Zhong JX, Dan C, Zhou L, Gui JF. C1q-like factor, a target of miR-430, regulates primordial germ cell development in early embryos of Carassius auratus. Int J Biol Sci 2013; 10:15-24. [PMID: 24391447 PMCID: PMC3879587 DOI: 10.7150/ijbs.7490] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 11/13/2013] [Indexed: 02/05/2023] Open
Abstract
C1q-like is a significant maternal factor of TNF/C1q super-family, and the abundant protein has been observed in both mature eggs of Carassius auratus and Carassius auratus gibelio, but its biological function in early embryo development has remained unclear. In this study, we firstly revealed a high level of maternal C1q-like transcript existence only in mature eggs of Carassius auratus, whereas no any maternal C1q-like transcript was observed in that of Carassius auratus gibelio. During embryonic development, the C1q-like zygotic expression begins around cardiopalmus stage in embryos of both Carassius auratus and Carassius auratus gibelio. Then, we examined the biological role of C1q-like by morpholino-mediated knockdown in early embryo development. Knockdown of CaOC1q resulted in a significant reduction of primordial germ cells (PGCs) in Carassius auratus, as shown by whole mount in situ hybridization with vasa-specific RNA probe, fluorescence immunostaining of vasa protein, and GFP imaging of the GFP-nanos1-3'UTR mRNA reporter. In vitro and in vivo evidence indicated that a microRNA, miR-430 could repress the C1q-like expression and PGC development. These data suggest that C1q-like should be a direct target of miR-430 and play an essential role in PGC development of Carassius auratus.
Collapse
Affiliation(s)
- Jie Mei
- 1. College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hua-Mei Yue
- 2. State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Science, Wuhan 430072, China
| | - Zhi Li
- 2. State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Science, Wuhan 430072, China
| | - Bo Chen
- 2. State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Science, Wuhan 430072, China
| | - Jian-Xiang Zhong
- 2. State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Science, Wuhan 430072, China
| | - Cheng Dan
- 2. State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Science, Wuhan 430072, China
| | - Li Zhou
- 2. State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Science, Wuhan 430072, China
| | - Jian-Fang Gui
- 1. College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China. ; 2. State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Science, Wuhan 430072, China
| |
Collapse
|