1
|
The secretion and metabolism of cumulus cells support fertilization in the bovine model. Theriogenology 2022; 193:136-145. [DOI: 10.1016/j.theriogenology.2022.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022]
|
2
|
Gao X, Li X, Wang Z, Li K, Liang Y, Yao X, Zhang G, Wang F. l-Argine regulates the proliferation, apoptosis and endocrine activity by alleviating oxidative stress in sheep endometrial epithelial cells. Theriogenology 2021; 179:187-196. [PMID: 34883396 DOI: 10.1016/j.theriogenology.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
Abstract
l-arginine (L-Arg) is a semiessential amino acid that plays crucial roles in the reproductive performance of animals. This research aimed to investigate the effect of supplementing L-Arg on endometrial epithelial cells (EECs) of Hu sheep. In vivo, female Hu sheep were randomly divided into three groups: control group (n = 5), nutrient-restricted group (n = 5), and L-Arg supplemented nutrient-restricted group (n = 5). Then, the effect of L-Arg on ovine endometrial growth and antioxidant capacity was assessed. We found that L-Arg supplementation promoted the growth of endometrial ductal gland invaginations (DGI), and alleviated oxidative stress in nutrient-restricted sheep. In order to investigate its mechanism, a H2O2-induced EECs oxidative stress model was established, and roles of L-Arg in EECs oxidation resistance, proliferation, apoptosis and endocrine activity were studied in vitro. Our results showed that L-Arg markedly decreased the release of reactive oxygen species (ROS) and malonaldehyde (MDA), and enhanced the expression and activity of certain antioxidant enzymes in EECs challenged by the H2O2 (p < 0.05). Supplementation of L-Arg significantly reduced the effect of 200 μM H2O2 on the viability of EECs (p < 0.05). In addition, EECs treated with L-Arg significantly alleviated the G0/G1-phase cell cycle arrest, apoptosis, and the inhibition of endometrial growth factors expression caused by H2O2 (p < 0.05). Overall, the results demonstrate that L-Arg performs crucial roles in maintaining the proliferation of ovine EECs, endocrine activity and inhibiting apoptosis through reducing oxidative stress. This study offers a theoretical basis for using L-Arg to improve sheep the uterine function.
Collapse
Affiliation(s)
- Xiaoxiao Gao
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaodan Li
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhibo Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Kang Li
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Yaxu Liang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaolei Yao
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Guomin Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
3
|
Izanloo H, Soleimanzadeh A, Bucak MN, Imani M, Zhandi M. The effects of glutathione supplementation on post-thawed Turkey semen quality and oxidative stress parameters and fertilization, and hatching potential. Theriogenology 2021; 179:32-38. [PMID: 34823059 DOI: 10.1016/j.theriogenology.2021.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/29/2021] [Accepted: 11/15/2021] [Indexed: 10/19/2022]
Abstract
This study was conducted to investigate the effect of semen extenders enriched with glutathione (GSH) on in vitro quality parameters and fertility of post-thawed turkey. In experiment 1, pools of semen diluted in glucose-based extender containing 0.5, 1, and 2 mM of GSH were cryopreserved. During the next step, a different variable such as motility and motion parameters, plasma membrane integrity (PMI) and functionality (PMF), DNA integrity, lipid peroxidation (MDA), total antioxidant capacity (TAC), catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD) activity were determined in the post-thawed samples. In the second experiment, artificial insemination was used to evaluate the fertility and hatchability performances of the post-thawed semen. The results of the first experiment showed that the extenders supplemented with 2, 1 and 0.5 mM of GSH had higher levels (p ≤ 0.05) of motility and motion parameters, PMI, PMF, TAC, CAT and SOD activity and lower abnormal morphology, DNA damage, and lipid peroxidation respectively in comparison to the control group (only extender with semen). Notably, the second experiment showed a higher rate of fertility (p ≤ 0.05) in 2 mM of GSH compared to the control group. It can be concluded that adding 2, 1 and 0.5 mM of glutathione leads to an improvement in the survival of the post-thawed turkey, while 2 mM of GSH can increase the fertility strength of the turkey sperm; hence it can be used to improve fertility and hatchability performance.
Collapse
Affiliation(s)
- H Izanloo
- Department of Theriogenology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - A Soleimanzadeh
- Department of Theriogenology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - M N Bucak
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| | - M Imani
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - M Zhandi
- Department of Animal Science, Faculty of Agricultural Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
4
|
Yusuf I, Emokpae MA. Association between a marker of sperm DNA damage and sperm indices in infertile males in Benin City, Nigeria: A cross-sectional study. Int J Reprod Biomed 2021; 19:137-146. [PMID: 33718758 PMCID: PMC7922296 DOI: 10.18502/ijrm.v19i2.8472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 01/30/2020] [Accepted: 08/04/2020] [Indexed: 11/24/2022] Open
Abstract
Background Studies have shown oxidative DNA damage is associated with male infertility. Objective This study determines the levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and some markers of oxidative stress in seminal fluid of males investigated for infertility and men of proven fertility in Benin City, Nigeria. Materials and Methods Semen samples produced by self or assisted masturbation were analyzed by microscopic technique according to the World Health Organization guidelines. Thereafter, samples were centrifuged and seminal fluid plasma separated and stored at -20°C prior to assay for 8-OHdG and oxidative stress biomarkers. Based on the sperm concentration/count, the overall samples were grouped into the following categories: normospermia (n = 20), oligozoospermia (n = 30), and azoospermia (n = 20). The control group comprised of 30 age-matched males of proven fertility. The seminal fluid 8-OHdG, total antioxidant status, superoxide dismutase and malondialdehyde (MDA) were assayed through ELISA and spectrophotometric methods, respectively. Results Seminal plasma level of 8-OHdG and MDA were significantly higher (p = 0.01) in infertile subjects than controls. The mean levels of 8-OHdG and MDA in infertile subjects were higher in azoospermia than oligospermia than normospermia and so, was least in the normospermia. Conversely, the mean levels of total antioxidant status and superoxide dismutase were significantly lower (p = 0.01) in infertile than fertile the control male subjects with levels higher in normospermia than oligospermia and least in azoospermia. Moreover, the seminal 8-OHdG correlated negatively with sperm count (r = -0.359, p = 0.01), percent motility (r = -0.388, p = 0.04), and percent morphology (r = -0.327, p = 0.02). Conclusion The assessment of sperm DNA damage in addition to routine seminal fluid analysis may play an important role in specific diagnosis and management of male infertility.
Collapse
Affiliation(s)
- Ilyas Yusuf
- Department of Medical Laboratory Science, School of Basic Medical Sciences, College of Medical Sciences, University of Benin, Benin City, Nigeria
| | - Mathias Abiodun Emokpae
- Department of Medical Laboratory Science, School of Basic Medical Sciences, College of Medical Sciences, University of Benin, Benin City, Nigeria
| |
Collapse
|
5
|
Esteves SC, Zini A, Coward RM, Evenson DP, Gosálvez J, Lewis SEM, Sharma R, Humaidan P. Sperm DNA fragmentation testing: Summary evidence and clinical practice recommendations. Andrologia 2021; 53:e13874. [PMID: 33108829 PMCID: PMC7988559 DOI: 10.1111/and.13874] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/06/2020] [Accepted: 09/13/2020] [Indexed: 12/12/2022] Open
Abstract
We herein summarise the evidence concerning the impact of sperm DNA fragmentation in various clinical infertility scenarios and the advances on sperm DNA fragmentation tests. The collected evidence was used to formulate 41 recommendations. Of these, 13 recommendations concern technical aspects of sperm DNA fragmentation testing, including pre-analytical information, clinical thresholds and interpretation of results. The remaining 28 recommendations relate to indications for sperm DNA fragmentation testing and clinical management. Clinical scenarios like varicocele, unexplained infertility, idiopathic infertility, recurrent pregnancy loss, intrauterine insemination, in vitro fertilisation/intracytoplasmic sperm injection, fertility counselling for men with infertility risk factors and sperm cryopreservation have been contemplated. The bulk evidence supporting the recommendations has increased in recent years, but it is still of moderate to low quality. This guideline provides clinicians with advice on best practices in sperm DNA fragmentation testing. Also, recommendations are provided on possible management strategies to overcome infertility related to sperm DNA fragmentation, based on the best available evidence. Lastly, we identified gaps in knowledge and opportunities for research and elaborated a list of recommendations to stimulate further investigation.
Collapse
Affiliation(s)
- Sandro C. Esteves
- ANDROFERT, Andrology and Human Reproduction ClinicReferral Center for Male ReproductionCampinasSPBrazil
- Department of Surgery (Division of Urology)University of Campinas (UNICAMP)CampinasSPBrazil
- Faculty of HealthAarhus UniversityAarhusDenmark
| | - Armand Zini
- Division of UrologyDepartment of SurgerySt. Mary's HospitalMcGill UniversityMontrealQuébecCanada
| | - Robert Matthew Coward
- Department of UrologyUniversity of North CarolinaChapel HillNCUSA
- UNC FertilityRaleighNCUSA
| | - Donald P. Evenson
- SCSA DiagnosticsBrookingsSDUSA
- Sanford Medical SchoolUniversity of South DakotaSioux FallsSDUSA
| | - Jaime Gosálvez
- Unit of GeneticsDepartment of BiologyUniversidad Autónoma de MadridMadridSpain
| | | | - Rakesh Sharma
- American Center for Reproductive MedicineCleveland ClinicClevelandOHUSA
| | - Peter Humaidan
- Faculty of HealthAarhus UniversityAarhusDenmark
- Fertility Clinic SkiveSkive Regional HospitalSkiveDenmark
| |
Collapse
|
6
|
Epidermal growth factor alleviates the negative impact of urea on frozen-thawed bovine sperm, but the subsequent developmental competence is compromised. Sci Rep 2021; 11:4687. [PMID: 33633199 PMCID: PMC7907109 DOI: 10.1038/s41598-021-83929-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 02/09/2021] [Indexed: 11/14/2022] Open
Abstract
Upon insemination, sperm cells are exposed to components of the female reproductive tract (FRT) fluids, such as urea and epidermal growth factor (EGF). It has been shown that both urea and EGF use EGF receptor signaling and produce reactive oxygen species (ROS) that are required at certain levels for sperm capacitation and acrosome reaction. We therefore hypothesized that during bovine sperm capacitation, a high level of urea and EGF could interfere with sperm function through overproduction of ROS. High-level urea (40 mg/dl urea is equal to 18.8 mg/dl of blood urea nitrogen) significantly increased ROS production and TUNEL-positive sperm (sperm DNA fragmentation, sDF) percentage, but decreased HOS test score, progressive motility, acrosome reaction and capacitation. The EGF reversed the negative effects of urea on all sperm parameters, with the exception of ROS production and DNA fragmentation, which were higher in urea-EGF-incubated sperm than in control-sperm. The developmental competence of oocytes inseminated with urea-EGF-incubated sperm was significantly reduced compared to the control. A close association of ROS production or sDF with 0-pronuclear and sperm non-capacitation rates was found in the network analysis. In conclusion, EGF enhanced urea-reduced sperm motility; however, it failed to reduce urea-increased sperm ROS or sDF levels and to enhance subsequent oocyte competence. The data suggests that any study to improve sperm quality should be followed by a follow-up assessment of the fertilization outcome.
Collapse
|
7
|
Efficiency of Tris-Based Extender Steridyl for Semen Cryopreservation in Stallions. Animals (Basel) 2020; 10:ani10101801. [PMID: 33020383 PMCID: PMC7601834 DOI: 10.3390/ani10101801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/26/2020] [Accepted: 10/02/2020] [Indexed: 01/02/2023] Open
Abstract
Simple Summary The cryopreservation and long-term storage of semen is one of the methods for accelerated improvement of the genetic qualities of animals. However, horse breeders prefer to use fresh or chilled semen, as the fertilizing capacity of frozen equine semen is much lower. It is important to find extenders, or a combination of extenders, that will improve semen survival after freezing. It is also important that the extender can be easily and simply prepared for use. Steridyl is a concentrate to which you just need to add sterilized water. This extender was developed for ruminants. In this study we tested Steridyl for freezing stallion semen. The motility, morphology, energy metabolism, DNA damage, and fertility of sperm frozen in Steridyl were evaluated. As a result, Steridyl was shown to be a good extender for equine semen freezing. Abstract The fertilizing ability of stallion sperm after freezing is lower than in other species. The search for the optimal extender, combination of extenders, and the freezing protocol is relevant. The aim of this study was to compare lactose-chelate-citrate-yolk (LCCY) extender, usually used in Russia, and Steridyl® (Minitube) for freezing sperm of stallions. Steridyl is a concentrated extender medium for freezing ruminant semen. It already contains sterilized egg yolk. Semen was collected from nine stallions, aged from 7 to 12 years old. The total and progressive motility of sperm frozen in Steridyl was significantly higher than in semen frozen in LCCY. The number of spermatozoa with normal morphology in samples frozen in LCCY was 60.4 ± 1.72%, and with Steridyl, 72.4 ± 2.10% (p < 0.01). Semen frozen in Steridyl showed good stimulation of respiration by 2.4-DNP, which indicates that oxidative phosphorylation was retained after freezing–thawing. No differences among the extenders were seen with the DNA integrity of spermatozoa. Six out of ten (60%) mares were pregnant after artificial insemination (AI) by LCCY frozen semen, and 9/12 (75%) by Steridyl frozen semen. No differences among extenders were seen in pregnancy rate. In conclusion, Steridyl was proven to be a good diluent for freezing stallion semen, even though it was developed for ruminants.
Collapse
|
8
|
Ribas-Maynou J, Yeste M, Salas-Huetos A. The Relationship between Sperm Oxidative Stress Alterations and IVF/ICSI Outcomes: A Systematic Review from Nonhuman Mammals. BIOLOGY 2020; 9:biology9070178. [PMID: 32708086 PMCID: PMC7408105 DOI: 10.3390/biology9070178] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/15/2022]
Abstract
Achieving high embryo quality following IVF and ICSI procedures is a key factor in increasing fertility outcomes in human infertile couples. While the male factor is known to underlie infertility in about 50% of cases, studies performed in human infertile couples have not been able to define the precise effect of sperm affectations upon embryo development. This lack of consistency is, in most cases, due to the heterogeneity of the results caused by the multiple male and female factors that mask the concrete effect of a given sperm parameter. These biases can be reduced with the use of animal gametes, being a good approach for basic researchers to design more homogeneous studies analyzing the specific consequences of a certain affectation. Herein, we conducted a systematic review (March 2020) that assessed the relationship between sperm oxidative stress alterations and IVF/ICSI outcomes in nonhumans mammals. The review was conducted according to PRISMA guidelines and using the MEDLINE-PubMed and EMBASE databases. Thirty articles were included: 11 performed IVF, 17 conducted ICSI, and two carried out both fertilization methods. Most articles were conducted in mouse (43%), cattle (30%) and pig models (10%). After IVF treatments, 80% of studies observed a negative effect of sperm oxidative stress on fertilization rates, and 100% of studies observed a negative effect on blastocyst rates. After ICSI treatments, a positive relationship of sperm oxidative stress with fertilization rates (75% of studies) and with blastocyst rates (83% of studies) was found. In conclusion, the present systematic review shows that sperm oxidative stress is associated with a significant reduction in fertilization rates and in vitro embryo development.
Collapse
Affiliation(s)
- Jordi Ribas-Maynou
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, 17003 Girona, Spain;
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, 17003 Girona, Spain
- Correspondence: (J.R.-M.); (A.S.-H.); Tel.: +34-972-419-514 (J.R.-M.); +1-(385)-210-5534 (A.S.-H.)
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, 17003 Girona, Spain;
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, 17003 Girona, Spain
| | - Albert Salas-Huetos
- Andrology and IVF Laboratory, Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
- Correspondence: (J.R.-M.); (A.S.-H.); Tel.: +34-972-419-514 (J.R.-M.); +1-(385)-210-5534 (A.S.-H.)
| |
Collapse
|
9
|
Peña FJ, O’Flaherty C, Ortiz Rodríguez JM, Martín Cano FE, Gaitskell-Phillips GL, Gil MC, Ortega Ferrusola C. Redox Regulation and Oxidative Stress: The Particular Case of the Stallion Spermatozoa. Antioxidants (Basel) 2019; 8:antiox8110567. [PMID: 31752408 PMCID: PMC6912273 DOI: 10.3390/antiox8110567] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/05/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023] Open
Abstract
Redox regulation and oxidative stress have become areas of major interest in spermatology. Alteration of redox homeostasis is recognized as a significant cause of male factor infertility and is behind the damage that spermatozoa experience after freezing and thawing or conservation in a liquid state. While for a long time, oxidative stress was just considered an overproduction of reactive oxygen species, nowadays it is considered as a consequence of redox deregulation. Many essential aspects of spermatozoa functionality are redox regulated, with reversible oxidation of thiols in cysteine residues of key proteins acting as an “on–off” switch controlling sperm function. However, if deregulation occurs, these residues may experience irreversible oxidation and oxidative stress, leading to malfunction and ultimately death of the spermatozoa. Stallion spermatozoa are “professional producers” of reactive oxygen species due to their intense mitochondrial activity, and thus sophisticated systems to control redox homeostasis are also characteristic of the spermatozoa in the horse. As a result, and combined with the fact that embryos can easily be collected in this species, horses are a good model for the study of redox biology in the spermatozoa and its impact on the embryo.
Collapse
Affiliation(s)
- Fernando J. Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, 10003 Cáceres, Spain; (J.M.O.R.); (F.E.M.C.); (G.L.G.-P.); (M.C.G.); (C.O.F.)
- Correspondence: ; Tel.: +34-927-257-167
| | - Cristian O’Flaherty
- Departments of Surgery (Urology Division) and Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montréal, QC H4A 3J1, Canada;
| | - José M. Ortiz Rodríguez
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, 10003 Cáceres, Spain; (J.M.O.R.); (F.E.M.C.); (G.L.G.-P.); (M.C.G.); (C.O.F.)
| | - Francisco E. Martín Cano
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, 10003 Cáceres, Spain; (J.M.O.R.); (F.E.M.C.); (G.L.G.-P.); (M.C.G.); (C.O.F.)
| | - Gemma L. Gaitskell-Phillips
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, 10003 Cáceres, Spain; (J.M.O.R.); (F.E.M.C.); (G.L.G.-P.); (M.C.G.); (C.O.F.)
| | - María C. Gil
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, 10003 Cáceres, Spain; (J.M.O.R.); (F.E.M.C.); (G.L.G.-P.); (M.C.G.); (C.O.F.)
| | - Cristina Ortega Ferrusola
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, 10003 Cáceres, Spain; (J.M.O.R.); (F.E.M.C.); (G.L.G.-P.); (M.C.G.); (C.O.F.)
| |
Collapse
|
10
|
Ortiz-Rodriguez JM, Ortega-Ferrusola C, Gil MC, Martín-Cano FE, Gaitskell-Phillips G, Rodríguez-Martínez H, Hinrichs K, Álvarez-Barrientos A, Román Á, Peña FJ. Transcriptome analysis reveals that fertilization with cryopreserved sperm downregulates genes relevant for early embryo development in the horse. PLoS One 2019; 14:e0213420. [PMID: 31237882 PMCID: PMC6592594 DOI: 10.1371/journal.pone.0213420] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/11/2019] [Indexed: 12/16/2022] Open
Abstract
Artificial insemination with cryopreserved spermatozoa is a major assisted reproductive technology in many species. In horses, as in humans, insemination with cryopreserved sperm is associated with lower pregnancy rates than those for fresh sperm, however, direct effects of sperm cryopreservation on the development of resulting embryos are largely unexplored. The aim of this study was to investigate differences in gene expression between embryos resulting from fertilization with fresh or cryopreserved sperm. Embryos were obtained at 8, 10 or 12 days after ovulation from mares inseminated post-ovulation on successive cycles with either fresh sperm or frozen-thawed sperm from the same stallion, providing matched embryo pairs at each day. RNA was isolated from two matched pairs (4 embryos) for each day, and cDNA libraries were built and sequenced. Significant differences in transcripts per kilobase million (TPM) were determined using (i) genes for which the expression difference between treatments was higher than 99% of that in the random case (P < 0.01), and (ii) genes for which the fold change was ≥ 2, to avoid expression bias in selection of the candidate genes. Molecular pathways were explored using the DAVID webserver, followed by network analyses using STRING, with a threshold of 0.700 for positive interactions. The transcriptional profile of embryos obtained with frozen-thawed sperm differed significantly from that for embryos derived from fresh sperm on all days, showing significant down-regulation of genes involved in biological pathways related to oxidative phosphorylation, DNA binding, DNA replication, and immune response. Many genes with reduced expression were orthologs of genes known to be embryonic lethal in mice. This study, for the first time, provides evidence of altered transcription in embryos resulting from fertilization with cryopreserved spermatozoa in any species. As sperm cryopreservation is commonly used in many species, including human, the effect of this intervention on expression of developmentally important genes in resulting embryos warrants attention.
Collapse
Affiliation(s)
- José M. Ortiz-Rodriguez
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Cristina Ortega-Ferrusola
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - María C. Gil
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Francisco E. Martín-Cano
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Gemma Gaitskell-Phillips
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Heriberto Rodríguez-Martínez
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Katrin Hinrichs
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas
| | | | - Ángel Román
- Department of Biochemistry and Molecular Biology, University of Extremadura, Badajoz, Spain
| | - Fernando J. Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
- * E-mail:
| |
Collapse
|
11
|
Oxidative stress in sperm affects the epigenetic reprogramming in early embryonic development. Epigenetics Chromatin 2018; 11:60. [PMID: 30333056 PMCID: PMC6192351 DOI: 10.1186/s13072-018-0224-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 09/17/2018] [Indexed: 12/27/2022] Open
Abstract
Background Reactive oxygen species (ROS)-induced oxidative stress is well known to play a major role in male infertility. Sperm are sensitive to ROS damaging effects because as male germ cells form mature sperm they progressively lose the ability to repair DNA damage. However, how oxidative DNA lesions in sperm affect early embryonic development remains elusive. Results Using cattle as model, we show that fertilization using sperm exposed to oxidative stress caused a major developmental arrest at the time of embryonic genome activation. The levels of DNA damage response did not directly correlate with the degree of developmental defects. The early cellular response for DNA damage, γH2AX, is already present at high levels in zygotes that progress normally in development and did not significantly increase at the paternal genome containing oxidative DNA lesions. Moreover, XRCC1, a factor implicated in the last step of base excision repair (BER) pathway, was recruited to the damaged paternal genome, indicating that the maternal BER machinery can repair these DNA lesions induced in sperm. Remarkably, the paternal genome with oxidative DNA lesions showed an impairment of zygotic active DNA demethylation, a process that previous studies linked to BER. Quantitative immunofluorescence analysis and ultrasensitive LC–MS-based measurements revealed that oxidative DNA lesions in sperm impair active DNA demethylation at paternal pronuclei, without affecting 5-hydroxymethylcytosine (5hmC), a 5-methylcytosine modification that has been implicated in paternal active DNA demethylation in mouse zygotes. Thus, other 5hmC-independent processes are implicated in active DNA demethylation in bovine embryos. The recruitment of XRCC1 to damaged paternal pronuclei indicates that oxidative DNA lesions drive BER to repair DNA at the expense of DNA demethylation. Finally, this study highlighted striking differences in DNA methylation dynamics between bovine and mouse zygotes that will facilitate the understanding of the dynamics of DNA methylation in early development. Conclusions The data demonstrate that oxidative stress in sperm has an impact not only on DNA integrity but also on the dynamics of epigenetic reprogramming, which may harm the paternal genetic and epigenetic contribution to the developing embryo and affect embryo development and embryo quality. Electronic supplementary material The online version of this article (10.1186/s13072-018-0224-y) contains supplementary material, which is available to authorized users.
Collapse
|
12
|
Chitwood JL, Burruel VR, Halstead MM, Meyers SA, Ross PJ. Transcriptome profiling of individual rhesus macaque oocytes and preimplantation embryos. Biol Reprod 2018; 97:353-364. [PMID: 29025079 DOI: 10.1093/biolre/iox114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/01/2017] [Indexed: 11/12/2022] Open
Abstract
Early mammalian embryonic transcriptomes are dynamic throughout the process of preimplantation development. Cataloging of primate transcriptomics during early development has been accomplished in humans, but global characterization of transcripts is lacking in the rhesus macaque: a key model for human reproductive processes. We report here the systematic classification of individual macaque transcriptomes using RNA-Seq technology from the germinal vesicle stage oocyte through the blastocyst stage embryo. Major differences in gene expression were found between sequential stages, with the 4- to 8-cell stages showing the highest level of differential gene expression. Analysis of putative transcription factor binding sites also revealed a striking increase in key regulatory factors in 8-cell embryos, indicating a strong likelihood of embryonic genome activation occurring at this stage. Furthermore, clustering analyses of gene co-expression throughout this period resulted in distinct groups of transcripts significantly associated to the different embryo stages assayed. The sequence data provided here along with characterizations of major regulatory transcript groups present a comprehensive atlas of polyadenylated transcripts that serves as a useful resource for comparative studies of preimplantation development in humans and other species.
Collapse
Affiliation(s)
- James L Chitwood
- Department of Animal Science, University of California, Davis, California, USA
| | - Victoria R Burruel
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Michelle M Halstead
- Department of Animal Science, University of California, Davis, California, USA
| | - Stuart A Meyers
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Pablo J Ross
- Department of Animal Science, University of California, Davis, California, USA
| |
Collapse
|
13
|
Máté G, Bernstein LR, Török AL. Endometriosis Is a Cause of Infertility. Does Reactive Oxygen Damage to Gametes and Embryos Play a Key Role in the Pathogenesis of Infertility Caused by Endometriosis? Front Endocrinol (Lausanne) 2018; 9:725. [PMID: 30555421 PMCID: PMC6281964 DOI: 10.3389/fendo.2018.00725] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/15/2018] [Indexed: 12/11/2022] Open
Abstract
Approximately, 10-15% of women of reproductive age are affected by endometriosis, which often leads to infertility. Endometriosis often has an inherited component, and several causative predisposing factors are hypothesized to underlie the pathogenesis of endometriosis. One working hypothesis is the theory of retrograde menstruation. According to the theory of retrograde menstruation, components of refluxed blood, including apoptotic endometrial tissue, desquamated menstrual cells, lysed erythrocytes, and released iron, induce inflammation in the peritoneal cavity. This in turn activates macrophage release of reactive oxygen species (ROS), leading to oxidative stress via the respiratory burst. Refluxed blood promotes the Fenton reaction, terminating in the production of hydroxyl radical, the most potently destructive ROS. In this article, we review the papers that demonstrate decreased quantity and quality of oocytes and embryos retrieved from IVF/ICSI patients with endometriosis. We discuss literature data demonstrating that ROS are generated in endometriotic tissues that have physical proximity to gametes and embryos, and demonstrating adverse impacts on oocyte, sperm and embryo microtubule apparatus, chromosomes, and DNA. Data that addresses the notions that endometriosis causes oocyte and fetal aneuploidy and that these events are mediated by ROS species are also discussed. Literature data are also discussed that employ use of anti-oxidant molecules to evaluate the importance of ROS-mediated oxidative damage in the pathogenesis of endometriosis. Studies are discussed that have employed anti-oxidants compounds as therapeutics to improve oocyte and embryo quality in infertile subjects, and improve fertility in patients with endometriosis.
Collapse
Affiliation(s)
- Gábor Máté
- Pannon Reproduction Institute, Tapolca, Hungary
| | - Lori R. Bernstein
- Pregmama, LLC, Gaithersburg, MD, United States
- Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, MD, United States
- Department of Veterinary Integrative Biosciences, Texas A&M College of Veterinary Medicine, College Station, TX, United States
| | - Attila L. Török
- Pannon Reproduction Institute, Tapolca, Hungary
- *Correspondence: Attila L. Török
| |
Collapse
|
14
|
Bittner L, Wyck S, Herrera C, Siuda M, Wrenzycki C, van Loon B, Bollwein H. Negative effects of oxidative stress in bovine spermatozoa on in vitro development and DNA integrity of embryos. Reprod Fertil Dev 2018; 30:1359-1368. [DOI: 10.1071/rd17533] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 03/22/2018] [Indexed: 11/23/2022] Open
Abstract
Oxidative stress in spermatozoa has effects on subsequent embryo development. The aim of the present study was to elucidate whether sperm oxidative stress results in increased DNA damage in the embryo. To this end, bovine spermatozoa were incubated for 1 h at 37°C without or with 100 µM H2O2, resulting in non-oxidised (NOX-S) and oxidised (OX-S) spermatozoa respectively. Non-incubated spermatozoa served as the control group (CON-S). After IVF, developmental rates 30, 46 and 60 h and 7 days after IVF were assessed. DNA damage was analysed in embryos using the comet assay and a DNA damage marker (γH2AX immunostaining); the apoptotic index was determined in blastocysts. Exposure of spermatozoa to H2O2 induced a significant amount of sperm chromatin damage. The use of OX-S in IVF resulted in significantly reduced cleavage and blastocyst rates compared with the use of CON-S and NOX-S. Furthermore, in embryos resulting from the use of OX-S, a developmental delay was evident 30 and 46 h after IVF. γH2AX immunostaining was lower in blastocysts than in early embryos. In blastocysts, the comet and apoptotic indices were significantly higher in embryos resulting from the use of OX-S than CON-S and NOX-S. In conclusion, oxidative stress in spermatozoa induces developmental abnormalities and is a source of DNA damage in the resulting embryos.
Collapse
|
15
|
Zhu L, Tan X, Liu W, Mao F, Wu C, Zhou J, Liu X, Lu S, Ma K, Yin B, Luo J, Yuan J, Qiang B, Chen R, Peng X. Identification and analysis of intermediate-size noncoding RNAs in the rhesus macaque fetal brain. J Genet Genomics 2017; 44:171-174. [PMID: 28302421 DOI: 10.1016/j.jgg.2017.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 01/01/2017] [Accepted: 01/06/2017] [Indexed: 11/19/2022]
Affiliation(s)
- Liyuan Zhu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Xiaochao Tan
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Wei Liu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Fengbiao Mao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Chao Wu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Junjie Zhou
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Xiao Liu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Shuaiyao Lu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, CAMS & PUMC, Kunming 650118, China; Medical Primate Research Center, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100005, China
| | - Kaili Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences, CAMS & PUMC, Kunming 650118, China; Medical Primate Research Center, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100005, China
| | - Bin Yin
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Jianjun Luo
- Bioinformatics Laboratory and CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiangang Yuan
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Boqin Qiang
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Runsheng Chen
- Bioinformatics Laboratory and CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xiaozhong Peng
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
16
|
Supplementation of sperm media with zinc, D-aspartate and co-enzyme Q10 protects bull sperm against exogenous oxidative stress and improves their ability to support embryo development. ZYGOTE 2017; 25:168-175. [DOI: 10.1017/s0967199416000459] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
SummaryHigh levels of reactive oxygen species in the semen of infertile patients or spontaneously generated during in vitro sperm handling may impair sperm quality, fertilization and embryo developmental competence. We recently reported that zinc, d-aspartate and co-enzyme Q10, contained in the dietary supplement Genadis® (Merck Serono), have protective effects on human and bull sperm motility, lipid peroxidation and DNA fragmentation in vitro; furthermore, in bovine, treated spermatozoa had an improved ability to support embryo development. However, only a few studies have investigated the protective role of antioxidants during in vitro sperm handling in the presence of an exogenous oxidative stress. Herein, to simulate such conditions in an animal model, we induced exogenous oxidative stress on spermatozoa through the xanthine–xanthine oxidase system and investigated its effects on sperm function and subsequent embryo developmental competence in the presence of zinc, d-Asp and CoQ10 protection. The main results showed that exogenous oxidative stress decreased sperm motility, increased sperm DNA fragmentation, and reduced fertilization and blastocyst rates and quality. Pre-treatment with zinc, d-aspartate and co-enzyme Q10 before exogenous oxidative stress was able to prevent these effects. Supplementation of sperm culture media with zinc, d-aspartate and co-enzyme Q10 could protect sperm from oxidative stress damage during in vitro handling in assisted reproductive technologies.
Collapse
|
17
|
Meyers S, Riejo-Pera R. The Non-Human Primate Model for Early Human Development. Hum Reprod 2016. [DOI: 10.1002/9781118849613.ch9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Stuart Meyers
- Department of Anatomy, Physiology, and Cell Biology; School of Veterinary Medicine, University of California; Davis CA USA
| | - Renee Riejo-Pera
- Department of Cell Biology and Neurosciences, and Department of Chemistry and Biochemistry; Montana State University; Bozeman MT USA
| |
Collapse
|
18
|
Champroux A, Torres-Carreira J, Gharagozloo P, Drevet JR, Kocer A. Mammalian sperm nuclear organization: resiliencies and vulnerabilities. Basic Clin Androl 2016; 26:17. [PMID: 28031843 PMCID: PMC5175393 DOI: 10.1186/s12610-016-0044-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/12/2016] [Indexed: 01/07/2023] Open
Abstract
Sperm cells are remarkably complex and highly specialized compared to somatic cells. Their function is to deliver to the oocyte the paternal genomic blueprint along with a pool of proteins and RNAs so a new generation can begin. Reproductive success, including optimal embryonic development and healthy offspring, greatly depends on the integrity of the sperm chromatin structure. It is now well documented that DNA damage in sperm is linked to reproductive failures both in natural and assisted conception (Assisted Reproductive Technologies [ART]). This manuscript reviews recent important findings concerning - the unusual organization of mammalian sperm chromatin and its impact on reproductive success when modified. This review is focused on sperm chromatin damage and their impact on embryonic development and transgenerational inheritance.
Collapse
Affiliation(s)
- A. Champroux
- GReD “Genetics, Reproduction & Development” Laboratory, UMR CNRS 6293, INSERM U1103, Clermont Université, BP60026 - TSA60026, 63178 Aubière cedex, France
| | - J. Torres-Carreira
- Centro Universitário Rio Preto, UNIRP, Rodovia Br153, Km 69, CEP15093-450 São José do Rio Preto, São Paulo Brazil
| | - P. Gharagozloo
- CellOxess LLC, 830 Bear Tavern Road, Ewing, NJ 08628 USA
| | - J. R. Drevet
- GReD “Genetics, Reproduction & Development” Laboratory, UMR CNRS 6293, INSERM U1103, Clermont Université, BP60026 - TSA60026, 63178 Aubière cedex, France
| | - A. Kocer
- GReD “Genetics, Reproduction & Development” Laboratory, UMR CNRS 6293, INSERM U1103, Clermont Université, BP60026 - TSA60026, 63178 Aubière cedex, France
| |
Collapse
|
19
|
|
20
|
Hayden RP, Wright DL, Toth TL, Tanrikut C. Selective use of percutaneous testis biopsy to optimize IVF-ICSI outcomes: a case series. FERTILITY RESEARCH AND PRACTICE 2016; 2:7. [PMID: 28620534 PMCID: PMC5424330 DOI: 10.1186/s40738-016-0020-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/22/2016] [Indexed: 01/14/2023]
Abstract
Background Sperm quality may degrade during transit through the male reproductive tract in some individuals. In this setting surgically retrieved testicular sperm may outperform ejaculated samples for use with in vitro fertilization (IVF) and intracytoplasmic sperm injection (IVF-ICSI). We sought to describe one center’s experience with the use of fresh testicular sperm after prior failed IVF-ICSI with ejaculated samples. Results A retrospective review was conducted evaluating IVF-ICSI cycles performed at a tertiary IVF unit between 2009 and 2014. Couples who were managed with percutaneous testis biopsy to obtain sperm, despite availability of ejaculated sperm, were included. Four couples who underwent a total of 6 percutaneous testis biopsy/IVF-ICSI cycles were identified. Collectively, the couples had undergone 9 prior IVF-ICSI cycles using fresh ejaculated sperm without successful pregnancy. From the six cycles that used fresh testicular sperm four live births resulted (1 twin gestation, 3 singletons). Only 1 of the 4 couples remained childless. Conclusions For patients who have had prior failed IVF-ICSI attempts, this small case series demonstrates a possible therapeutic benefit when freshly procured testicular sperm are used in lieu of ejaculated samples.
Collapse
Affiliation(s)
- Russell P Hayden
- Department of Urology, Massachusetts General Hospital, Boston, MA USA
| | | | - Thomas L Toth
- Department of Obstetrics & Gynecology, Massachusetts General Hospital, Boston, MA USA.,MGH Fertility Center, 55 Fruit Street, YAW 10A, Boston, MA 02114 USA
| | - Cigdem Tanrikut
- Department of Urology, Massachusetts General Hospital, Boston, MA USA.,MGH Fertility Center, 55 Fruit Street, YAW 10A, Boston, MA 02114 USA
| |
Collapse
|
21
|
Aitken RJ, Gibb Z, Baker MA, Drevet J, Gharagozloo P. Causes and consequences of oxidative stress in spermatozoa. Reprod Fertil Dev 2016; 28:1-10. [DOI: 10.1071/rd15325] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Spermatozoa are highly vulnerable to oxidative attack because they lack significant antioxidant protection due to the limited volume and restricted distribution of cytoplasmic space in which to house an appropriate armoury of defensive enzymes. In particular, sperm membrane lipids are susceptible to oxidative stress because they abound in significant amounts of polyunsaturated fatty acids. Susceptibility to oxidative attack is further exacerbated by the fact that these cells actively generate reactive oxygen species (ROS) in order to drive the increase in tyrosine phosphorylation associated with sperm capacitation. However, this positive role for ROS is reversed when spermatozoa are stressed. Under these conditions, they default to an intrinsic apoptotic pathway characterised by mitochondrial ROS generation, loss of mitochondrial membrane potential, caspase activation, phosphatidylserine exposure and oxidative DNA damage. In responding to oxidative stress, spermatozoa only possess the first enzyme in the base excision repair pathway, 8-oxoguanine DNA glycosylase. This enzyme catalyses the formation of abasic sites, thereby destabilising the DNA backbone and generating strand breaks. Because oxidative damage to sperm DNA is associated with both miscarriage and developmental abnormalities in the offspring, strategies for the amelioration of such stress, including the development of effective antioxidant formulations, are becoming increasingly urgent.
Collapse
|
22
|
Sperm Oxidative Stress Is Detrimental to Embryo Development: A Dose-Dependent Study Model and a New and More Sensitive Oxidative Status Evaluation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:8213071. [PMID: 26770658 PMCID: PMC4684862 DOI: 10.1155/2016/8213071] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/31/2015] [Indexed: 11/29/2022]
Abstract
Our study aimed to assess the impact of sperm oxidative stress on embryo development by means of a dose-dependent model. In experiment 1, straws from five bulls were subjected to incubation with increasing H2O2 doses (0, 12.5, 25, and 50 μM). Motility parameters were evaluated by Computed Assisted System Analysis (CASA). Experiment 2 was designed to study a high (50 μM) and low dose (12.5 μM) of H2O2 compared to a control (0 μM). Samples were incubated and further used for in vitro fertilization. Analyses of motility (CASA), oxidative status (CellROX green and 2'-7' dichlorofluorescein diacetate), mitochondrial potential (JC-1), chromatin integrity (AO), and sperm capacitation status (chlortetracycline) were performed. Embryos were evaluated based on fast cleavage (30 h.p.i.), cleavage (D = 3), development (D = 5), and blastocyst rates (D = 8). We observed a dose-dependent deleterious effect of H2O2 on motility and increase on the percentages of positive cells for CellROX green, capacitated sperm, and AO. A decrease on cleavage and blastocyst rates was observed as H2O2 increased. Also, we detected a blockage on embryo development. We concluded that sperm when exposed to oxidative environment presents impaired motility traits, prooxidative status, and premature capacitation; such alterations resulting in embryo development fail.
Collapse
|
23
|
Reinhardt K, Dobler R, Abbott J. An Ecology of Sperm: Sperm Diversification by Natural Selection. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2015. [DOI: 10.1146/annurev-ecolsys-120213-091611] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Using basic ecological concepts, we introduce sperm ecology as a framework to study sperm cells. First, we describe environmental effects on sperm and conclude that evolutionary and ecological research should not neglect the overwhelming evidence presented here (both in external and internal fertilizers and in terrestrial and aquatic habitats) that sperm function is altered by many environments, including the male environment. Second, we determine that the evidence for sperm phenotypic plasticity is overwhelming. Third, we find that genotype-by-environment interaction effects on sperm function exist, but their general adaptive significance (e.g., local adaptation) awaits further research. It remains unresolved whether sperm diversification occurs by natural selection acting on sperm function or by selection on male and female microenvironments that enable optimal plastic performance of sperm (sperm niches). Environmental effects reduce fitness predictability under sperm competition, predict species distributions under global change, explain adaptive behavior, and highlight the role of natural selection in behavioral ecology and reproductive medicine.
Collapse
Affiliation(s)
- Klaus Reinhardt
- Applied Zoology, Department of Biology, Technische Universität Dresden, 01062 Dresden, Germany;,
| | - Ralph Dobler
- Applied Zoology, Department of Biology, Technische Universität Dresden, 01062 Dresden, Germany;,
| | - Jessica Abbott
- Department of Biology, Lund University, 223 62 Lund, Sweden
| |
Collapse
|
24
|
Changes in Sperm Motility and Capacitation Induce Chromosomal Aberration of the Bovine Embryo following Intracytoplasmic Sperm Injection. PLoS One 2015; 10:e0129285. [PMID: 26061876 PMCID: PMC4465702 DOI: 10.1371/journal.pone.0129285] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 05/06/2015] [Indexed: 01/04/2023] Open
Abstract
Intracytoplasmic sperm injection (ICSI) has become the method of choice to treat human male infertility. One of the outstanding problems associated with this technique is our current lack of knowledge concerning the effect of sperm capacitation and motility upon the subsequent development of oocytes following ICSI. In the present study, we first examined the capacitation state of sperm exhibiting normal motility, along with sperm that had been activated, and examined the effect of reactive oxygen species (ROS) produced by these sperm types upon embryogenesis following bovine in vitro fertilization (IVF) and ICSI. Data showed that activated sperm reduced the chromosomal integrity of IVF/ICSI embryos at the blastocyst stage, while capacitated sperm produced ROS in capacitation media. Secondly, we treated sperm with carbonyl cyanide m-chlorophenyl hydrazine (CCCP), a chemical known to uncouple cell respiration within the mitochondria, and investigated the effect of this treatment upon blastocyst formation and chromosomal integrity at the blastocyst stage. Activated sperm in which the mitochondria had been treated with CCCP reduced levels of chromosomal aberration at the blastocyst stage following ICSI, by reducing mitochondrial activity in activated sperm. In conclusion, these findings suggest that capacitated sperm exhibiting activated motility induced chromosomal aberration during development to the blastocyst stage following ICSI. The injection of sperm exhibiting normal motility, or activated sperm in which mitochondrial activity had been reduced, improved the quality of ICSI-derived embryos. Therefore, the selection of sperm exhibiting progressive motility may not always be better for early embryo development and fetal growth following human ICSI, and that the use of a bovine model may contribute to a deeper understanding of sperm selection for human ICSI embryo development.
Collapse
|
25
|
Schrader L, Simola DF, Heinze J, Oettler J. Sphingolipids, Transcription Factors, and Conserved Toolkit Genes: Developmental Plasticity in the Ant Cardiocondyla obscurior. Mol Biol Evol 2015; 32:1474-86. [PMID: 25725431 PMCID: PMC4615751 DOI: 10.1093/molbev/msv039] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Developmental plasticity allows for the remarkable morphological specialization of individuals into castes in eusocial species of Hymenoptera. Developmental trajectories that lead to alternative caste fates are typically determined by specific environmental stimuli that induce larvae to express and maintain distinct gene expression patterns. Although most eusocial species express two castes, queens and workers, the ant Cardiocondyla obscurior expresses diphenic females and males; this provides a unique system with four discrete phenotypes to study the genomic basis of developmental plasticity in ants. We sequenced and analyzed the transcriptomes of 28 individual C. obscurior larvae of known developmental trajectory, providing the first in-depth analysis of gene expression in eusocial insect larvae. Clustering and transcription factor binding site analyses revealed that different transcription factors and functionally distinct sets of genes are recruited during larval development to induce the four alternative trajectories. In particular, we found complex patterns of gene regulation pertaining to sphingolipid metabolism, a conserved molecular pathway involved in development, obesity, and aging.
Collapse
Affiliation(s)
- Lukas Schrader
- Department for Zoology/Evolutionary Biology, Institut für Zoologie, Universität Regensburg, Regensburg, Germany
| | - Daniel F Simola
- Department of Cell and Developmental Biology, University of Pennsylvania
| | - Jürgen Heinze
- Department for Zoology/Evolutionary Biology, Institut für Zoologie, Universität Regensburg, Regensburg, Germany
| | - Jan Oettler
- Department for Zoology/Evolutionary Biology, Institut für Zoologie, Universität Regensburg, Regensburg, Germany
| |
Collapse
|
26
|
Ogata K, Sasaki A, Kato Y, Takeda A, Wakabayashi M, Sarentonglaga B, Yamaguchi M, Hara A, Fukumori R, Nagao Y. Glutathione supplementation to semen extender improves the quality of frozen-thawed canine spermatozoa for transcervical insemination. J Reprod Dev 2015; 61:116-22. [PMID: 25736550 PMCID: PMC4410309 DOI: 10.1262/jrd.2014-130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The present study was conducted to evaluate whether supplementation of semen extender with glutathione (GSH) can maintain the quality of frozen-thawed canine spermatozoa. Eighteen ejaculates were obtained from 5 dogs and placed in extender (20% egg yolk, Tris, citric acid, lactose, raffinose, antibiotics and 6.5% glycerol) containing 0 (control), 2.5, 5, 7.5 or 10 mM GSH. The samples were cooled to 4 C and then frozen in liquid nitrogen vapor. Motility parameters of the sperm were evaluated at 0, 1, 2, 3, 4, 12 and 24 h after thawing. Sperm motility was higher in the 5 mM GSH group than in the control or 2.5 and 10 mM GSH groups; this effect was observed at 1 to 24 h after thawing (P < 0.05). The 5 mM GSH group had a higher sperm viability index at 12 and 24 h after thawing compared with the other groups (P < 0.05). Acrosome integrity, evaluated at 4 h after thawing, was greater in two of the GSH-treated groups (5 and 10 mM) compared with the control. Lipid peroxidation (LP) levels immediately after thawing were lower in the 5 and 10 mM GSH groups compared with the control, while those at 12 h after thawing did not differ significantly. Frozen-thawed semen in the 5 mM GSH group was used for transcervical insemination of 4 bitches, resulting in delivery of 5 puppies from 2 bitches. These results indicate that supplementation of semen extender with 5 mM GSH was effective in improving motility, longevity and acrosomal integrity and inhibiting LP levels in post-thaw canine spermatozoa, without any adverse impacts on full-term development after transcervical insemination.
Collapse
Affiliation(s)
- Kazuko Ogata
- Department of Animal Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology; University Farm, Faculty of Agriculture, Utsunomiya University, Tochigi 321-4415, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abnormal early cleavage events predict early embryo demise: sperm oxidative stress and early abnormal cleavage. Sci Rep 2014; 4:6598. [PMID: 25307782 PMCID: PMC4194434 DOI: 10.1038/srep06598] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 09/18/2014] [Indexed: 12/16/2022] Open
Abstract
Human embryos resulting from abnormal early cleavage can result in aneuploidy and failure to develop normally to the blastocyst stage. The nature of paternal influence on early embryo development has not been directly demonstrated although many studies have suggested effects from spermatozoal chromatin packaging, DNA damage, centriolar and mitotic spindle integrity, and plasma membrane integrity. The goal of this study was to determine whether early developmental events were affected by oxidative damage to the fertilizing sperm. Survival analysis was used to compare patterns of blastocyst formation based on P2 duration. Kaplan-Meier survival curves demonstrate that relatively few embryos with short (<1 hr) P2 times reached blastocysts, and the two curves diverged beginning on day 4, with nearly all of the embryos with longer P2 times reaching blastocysts by day 6 (p < .01). We determined that duration of the 2nd to 3rd mitoses were sensitive periods in the presence of spermatozoal oxidative stress. Embryos that displayed either too long or too short cytokineses demonstrated an increased failure to reach blastocyst stage and therefore survive for further development. Although paternal-derived gene expression occurs later in development, this study suggests a specific role in early mitosis that is highly influenced by paternal factors.
Collapse
|