1
|
Várnagy Á, Mauchart P, Nagy G, Bódis J, Sulyok E. Follicular Fluid Vanin-1 Levels in Patients Undergoing Ivf: A Preliminary Study. Antioxidants (Basel) 2025; 14:133. [PMID: 40002320 PMCID: PMC11851465 DOI: 10.3390/antiox14020133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/27/2024] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
This preliminary study was designed to determine follicular fluid (FF) vanin-1 levels, to assess their relation to serum vanin-1 and to reveal their potential to predict the outcome of in vitro fertilization (IVF). Eighteen unselected, consecutive women undergoing IVF were included. Serum and pooled FF samples were obtained simultaneously during routine IVF procedures. Vanin-1 levels were measured by using commercially available ELISA kits. As most of the values were below 0.6 ng/mL, the data are given as optical density. It was found that vanin-1 can be detected in FF and that it is not significantly related to its maternal serum levels (p = 0.06). FF vanin-1 levels proved to be higher in non-pregnant as compared to pregnant women (p < 0.04). There are significant positive relationships between the FF to serum vanin-1 ratio and body mass index (BMI, p < 0.02), anti-Müllerian hormone (AMH, p < 0.02) and baseline serum estradiol (p < 0.01). Moreover, the FF/serum vanin-1 ratio tended to increase with cumulative FSH dose, but this increase did not reach statistical significance (p = 0.064). It may be concluded that FF vanin-1 may serve as a biomarker to predict IVF outcome. To confirm this contention, further studies are to be performed.
Collapse
Affiliation(s)
- Ákos Várnagy
- National Laboratory on Human Reproduction, University of Pécs, H-7624 Pécs, Hungary; (Á.V.); (J.B.); (E.S.)
- HUN-REN–PTE Human Reproduction Research Group, H-7624 Pécs, Hungary
- Department of Obstetrics and Gynecology, School of Medicine, University of Pécs, H-7624 Pécs, Hungary
| | - Péter Mauchart
- National Laboratory on Human Reproduction, University of Pécs, H-7624 Pécs, Hungary; (Á.V.); (J.B.); (E.S.)
- HUN-REN–PTE Human Reproduction Research Group, H-7624 Pécs, Hungary
- Department of Obstetrics and Gynecology, School of Medicine, University of Pécs, H-7624 Pécs, Hungary
| | - Gábor Nagy
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary;
| | - József Bódis
- National Laboratory on Human Reproduction, University of Pécs, H-7624 Pécs, Hungary; (Á.V.); (J.B.); (E.S.)
- HUN-REN–PTE Human Reproduction Research Group, H-7624 Pécs, Hungary
- Department of Obstetrics and Gynecology, School of Medicine, University of Pécs, H-7624 Pécs, Hungary
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, H-7624 Pécs, Hungary
| | - Endre Sulyok
- National Laboratory on Human Reproduction, University of Pécs, H-7624 Pécs, Hungary; (Á.V.); (J.B.); (E.S.)
- HUN-REN–PTE Human Reproduction Research Group, H-7624 Pécs, Hungary
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, H-7624 Pécs, Hungary
| |
Collapse
|
2
|
Ramírez-López CJ, Barros E, Vidigal PM, Okano DS, Gomes LL, Carvalho RPR, de Castro AG, Baracat-Pereira MC, Guimarães SEF, Guimarães JD. Oxidative stress associated with proteomic and fatty acid profiles of sperm from Nellore bulls at rest†. Biol Reprod 2023; 109:878-891. [PMID: 37702320 DOI: 10.1093/biolre/ioad121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Sexual rest is a transient condition, which compromises conception rates, characterized by large volumes of ejaculate with high percentages of dead sperm observed in bulls. The biochemical mechanisms leading to this ejaculate pattern are not fully understood. Six adult resting Nellore bulls were submitted to Breeding Soundness Evaluation by four consecutive semen collections through the electroejaculation method during a 30 min period. Each ejaculate had its semen phenotypic parameters; morphology and physical aspects were evaluated. To assess enzymatic activity (superoxide dismutase, catalase, and glutathione S-transferase), lipid peroxidation (concentrations of malondialdehyde and nitric oxide), fatty acid, and proteomic profile aliquots of spermatozoa from the first and fourth ejaculates were used. All sperm parameters differed between the first and fourth ejaculates. Spermatozoa from the first ejaculate showed lower enzymatic activity and a higher concentration of lipid peroxidation markers. Among the 19 identified fatty acids, 52.7% are polyunsaturated. Relative abundance analysis showed that C12:0 and C18:0 fatty acids differed between the first and fourth ejaculates, being the fourth ejaculate richer in spermatozoa. The proteomics analysis identified a total of 974 proteins in both sample groups (first and fourth ejaculates). The majority of identified proteins are related to cellular processes and signaling. Quantitative proteomics showed 36 differentially abundant proteins, 6 up-regulated proteins in the first ejaculate, and 30 up-regulated proteins in the fourth ejaculate. Spermatozoa from bulls at sexual rest have less antioxidant capacity, causing changes in their fatty acid composition and protein profile, which generates the observed sperm pattern and lower fertilization capacity.
Collapse
Affiliation(s)
- Camilo José Ramírez-López
- Animal Reproduction Laboratory, Department of Veterinary Medicine, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Structural Biology Laboratory, Department of Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerai, Brazil
| | - Edvaldo Barros
- Nucleus for Analysis of Biomolecules, Universidade Federal de Viçosa, Brazil
| | | | - Denise Silva Okano
- Animal Reproduction Laboratory, Department of Veterinary Medicine, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Lidiany Lopes Gomes
- Animal Reproduction Laboratory, Department of Veterinary Medicine, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Alex Gazolla de Castro
- Biotechnology and Biodiversity for the Environment Laboratory, Department of Microbiology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Maria Cristina Baracat-Pereira
- Proteomics and Protein Biochemistry Laboratory, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Simone Eliza Facioni Guimarães
- LABTEC-Animal Biotechnology Laboratory, Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - José Domingos Guimarães
- Animal Reproduction Laboratory, Department of Veterinary Medicine, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
3
|
Jiang S, Qiao H, Fu H, Gu Z. Hepatopancreas Proteomic Analysis Reveals Key Proteins and Pathways in Regulatory of Ovary Maturation of Macrobrachium nipponense. Animals (Basel) 2023; 13:ani13060977. [PMID: 36978518 PMCID: PMC10044353 DOI: 10.3390/ani13060977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
A TMT-based (Tandem Mass Tag) liquid chromatography-tandem mass spectrometry (LC-MS/MS) proteomics approach was employed to explore differentially expressed proteins (DEPs) and KEGG pathways in hepatopancreas of 5 ovary stages. In total, 17,999 peptides were detected, among which 3395 proteins were identified. Further analysis revealed 26, 24, 37, and 308 DEPs in HE-I versus HE-II, HE-II versus HE-Ⅲ, HE-Ⅲ versus HE-Ⅳ, and HE-Ⅳ versus HE-Ⅴ, respectively (HE-I, HE-II, HE-III, HE-IV, and HE-V means hepatopancreas sampled from ovary stage I to V.). Gene ontology (GO) analysis indicated that DEPs were significantly enriched in "catalytic activity", "metabolic process", and "cell" of 4 comparison groups in turn. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment results showed that in hepatopancreas, as the ovaries developed to maturation, carbohydrate metabolism, lipid metabolism, amino acid metabolism, and lysosome played important roles in turn. The mRNA expression of 15 selected DEPs were consistent with proteome results by qPCR analysis. Further mRNA expression investigation results suggested 4 proteins (fatty acid-binding protein, NPC intracellular cholesterol transporter 1, Serine hydroxymethyltransferase, and Crustapin) were involved in ovary maturation. These results enhance the understanding of the regulatory role of hepatopancreas in M. nipponense ovary maturation and provide new insights for understanding the crustacean regulation mechanisms.
Collapse
Affiliation(s)
- Sufei Jiang
- College of Fisheries, Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Hongtuo Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Zemao Gu
- College of Fisheries, Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
4
|
Guo Y, Yang YX, Zhang YR, Huang YY, Chen KL, Chen SD, Dong PQ, Yu JT. Genome-wide association study of brain tau deposition as measured by 18F-flortaucipir positron emission tomography imaging. Neurobiol Aging 2022; 120:128-136. [DOI: 10.1016/j.neurobiolaging.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/22/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022]
|
5
|
Zheng K, Wang Y, Wang J, Wang C, Chen J. Integrated analysis of Helicobacter pylori-related prognostic gene modification patterns in the tumour microenvironment of gastric cancer. Front Surg 2022; 9:964203. [PMID: 36248367 PMCID: PMC9561901 DOI: 10.3389/fsurg.2022.964203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Helicobacter pylori (HP) infection is one of the leading causes of gastric cancer (GC). However, the interaction between HP and the TME, and its carcinogenic mechanism remains unknown. METHODS The HP-related prognostic genes were identified based on HP infection-related gene markers and HP infection sample datasets by risk method and NMF algorithm. Principal component analysis (PCA) algorithm was used to constructed the HPscore system. The "limma" R package was employed to determine differentially expressed genes. In addition, the R packages, such as "xCell" and "GSVA", was used to analyze the relationship between the HPscore and tumor microenvironment. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to verify the expression levels of 28 HP-related prognostic genes in tissues. RESULTS We successfully identified 28 HP-related prognostic genes that accurately classified the GC population. There are significant differences in survival between different subgroups (high-, low-risk and cluster_1,2). Thereafter, the HPscore system was constructed to evaluate the signatures of the 28 HP-related prognostic genes. The overall survival rate in the high-HPscore group was poor and immunological surveillance was reduced, whereas the low-HPscore group had a survival advantage and was related to the inflammatory response. HPscore was also strongly correlated with the tumour stage, TME cell infiltration and stemness. The qRT-PCR results showed that DOCK4 expression level of 28 HP-related prognostic genes was higher in gastric cancer tissues than in adjacent tissues. CONCLUSIONS HP signatures play a crucial role in the TME and tumourigenesis. HPscore evaluation of a single tumour sample can help identify the TME characteristics and the carcinogenic mechanism of GC patients infected with HP, based on which personalized treatment can be administered.
Collapse
Affiliation(s)
- Kaitian Zheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Clinical Research Center for Enhanced Recovery After Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ye Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Clinical Research Center for Enhanced Recovery After Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiancheng Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Clinical Research Center for Enhanced Recovery After Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Congjun Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Clinical Research Center for Enhanced Recovery After Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Junqiang Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Clinical Research Center for Enhanced Recovery After Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
6
|
Luongo C, González-Brusi L, Cots-Rodríguez P, Izquierdo-Rico MJ, Avilés M, García-Vázquez FA. Sperm Proteome after Interaction with Reproductive Fluids in Porcine: From the Ejaculation to the Fertilization Site. Int J Mol Sci 2020; 21:ijms21176060. [PMID: 32842715 PMCID: PMC7570189 DOI: 10.3390/ijms21176060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023] Open
Abstract
Ejaculated sperm are exposed to different environments before encountering the oocyte. However, how the sperm proteome changes during this transit remains unsolved. This study aimed to identify proteomic changes in boar sperm after incubation with male (seminal plasma, SP) and/or female (uterine fluid, UF; and oviductal fluid, OF) reproductive fluids. The following experimental groups were analyzed: (1) SP: sperm + 20% SP; (2) UF: sperm + 20% UF; (3) OF: sperm + 20% OF; (4) SP + UF: sperm + 20% SP + 20% UF; and (5) SP+OF: sperm + 20% SP + 20% OF. The proteome analysis, performed by HPLC-MS/MS, allowed the identification of 265 proteins. A total of 69 proteins were detected in the UF, SP, and SP + UF groups, and 102 proteins in the OF, SP, and SP + OF groups. Our results showed a higher number of proteins when sperm were incubated with only one fluid than when they were co-incubated with two fluids. Additionally, the number of sperm-interacting proteins from the UF group was lower than the OF group. In conclusion, the interaction of sperm with reproductive fluids alters its proteome. The description of sperm-interacting proteins in porcine species after co-incubation with male and/or female reproductive fluids may be useful to understand sperm transport, selection, capacitation, or fertilization phenomena.
Collapse
Affiliation(s)
- Chiara Luongo
- Department of Physiology, Veterinary School, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), University of Murcia, 30100 Murcia, Spain;
| | - Leopoldo González-Brusi
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain; (L.G.-B.); (P.C.-R.); (M.J.I.-R.)
| | - Paula Cots-Rodríguez
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain; (L.G.-B.); (P.C.-R.); (M.J.I.-R.)
| | - Mª José Izquierdo-Rico
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain; (L.G.-B.); (P.C.-R.); (M.J.I.-R.)
- Institute for Biomedical Research of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain
| | - Manuel Avilés
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain; (L.G.-B.); (P.C.-R.); (M.J.I.-R.)
- Institute for Biomedical Research of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain
- Correspondence: (M.A.); (F.A.G.-V.)
| | - Francisco Alberto García-Vázquez
- Department of Physiology, Veterinary School, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), University of Murcia, 30100 Murcia, Spain;
- Institute for Biomedical Research of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain
- Correspondence: (M.A.); (F.A.G.-V.)
| |
Collapse
|
7
|
Warma A, Ndiaye K. Functional effects of Tribbles homolog 2 in bovine ovarian granulosa cells†. Biol Reprod 2020; 102:1177-1190. [PMID: 32159216 DOI: 10.1093/biolre/ioaa030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/12/2019] [Accepted: 03/07/2020] [Indexed: 12/19/2022] Open
Abstract
Tribbles homologs (TRIB) 1, 2, and 3 represent atypical members of the serine/threonine kinase superfamily. We previously identified TRIB2 as a differentially expressed gene in granulosa cells (GCs) of bovine preovulatory follicles. The current study aimed to further investigate TRIB2 regulation and study its function in the ovary. GCs were collected from follicles at different developmental stages: small antral follicles (SF), dominant follicles (DF) at day 5 of the estrous cycle, and hCG-induced ovulatory follicles (OFs). RT-qPCR analyses showed greater expression of TRIB2 in GC of DF as compared to OF and a significant downregulation of TRIB2 steady-state mRNA amounts by hCG/LH, starting at 6 h through 24 h post-hCG as compared to 0 h. Specific anti-TRIB2 polyclonal antibodies were generated and western blot analysis confirmed TRIB2 downregulation by hCG at the protein level. In vitro studies showed that FSH stimulates TRIB2 expression in GC. Inhibition of TRIB2 using CRISPR/Cas9 resulted in a significant increase in PCNA expression and an increase in steroidogenic enzyme CYP19A1 expression, while TRIB2 overexpression tended to decrease GC proliferation. TRIB2 inhibition also resulted in a decrease in transcription factors connective tissue growth factor (CTGF) and ankyrin repeat domain-containing protein 1 (ANKRD1) expression, while TRIB2 overexpression increased CTGF and ANKRD1. Additionally, western blot analyses showed reduction in ERK1/2 (MAPK3/1) and p38MAPK (MAPK14) phosphorylation levels following TRIB2 inhibition, while TRIB2 overexpression increased p-ERK1/2 and p-p38MAPK. These results provide evidence that TRIB2 modulates MAPK signaling in GC and that TRIB2 could act as a regulator of GC proliferation and function, which could affect steroidogenesis during follicular development.
Collapse
Affiliation(s)
- Aly Warma
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Centre de Recherche en Reproduction et Fertilité (CRRF), Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Kalidou Ndiaye
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Centre de Recherche en Reproduction et Fertilité (CRRF), Université de Montréal, St-Hyacinthe, Québec, Canada
| |
Collapse
|
8
|
Baddela VS, Sharma A, Michaelis M, Vanselow J. HIF1 driven transcriptional activity regulates steroidogenesis and proliferation of bovine granulosa cells. Sci Rep 2020; 10:3906. [PMID: 32127571 PMCID: PMC7054295 DOI: 10.1038/s41598-020-60935-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/19/2020] [Indexed: 02/08/2023] Open
Abstract
Hypoxia-inducible factor 1 (HIF1) is a heterodimeric transcription factor, consisting of a constitutively expressed β-subunit (HIF1B) and a regulated α-subunit (HIF1A). In the present study, we analyzed the HIF1 driven transcriptional activity in bovine granulosa cells (GC). Treatment of GC with FSH (follicle stimulating hormone) and IGF1 (insulin-like growth factor 1) resulted in the upregulation of HIF1A mRNA expression under normoxia. Immunohistochemistry of bovine ovarian sections showed distinct staining of HIF1A in the GC layer of different staged ovarian follicles. Suppression of HIF1 using echinomycin and gene knockdown procedures revealed that HIF1 transcriptionally regulates the genes associated with steroidogenesis (STAR, HSD3B and CYP19A1) and proliferation (CCND2 and PCNA) of GC. Further, our data suggest that CYP19A1, the key gene of estradiol production, is one of the plausible downstream targets of HIF1 in bovine GC as shown by gene expression, radioimmunoassay, and chromatin precipitation analysis. Based on these results, we propose that HIF1 driven transcriptional activity plays a crucial role in GC functionality, especially steroidogenesis and proliferation in developing bovine ovarian follicles.
Collapse
Affiliation(s)
- Vijay Simha Baddela
- Experimental Reproductive Biology Unit, Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Arpna Sharma
- Experimental Reproductive Biology Unit, Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Marten Michaelis
- Reproductive Biochemistry Unit, Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Jens Vanselow
- Experimental Reproductive Biology Unit, Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany.
| |
Collapse
|
9
|
Baufeld A, Koczan D, Vanselow J. L-lactate induces specific genome wide alterations of gene expression in cultured bovine granulosa cells. BMC Genomics 2019; 20:273. [PMID: 30953450 PMCID: PMC6451254 DOI: 10.1186/s12864-019-5657-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/29/2019] [Indexed: 12/11/2022] Open
Abstract
Background Previously, we could show that L-lactate affects cultured bovine granulosa cells (GC) in a specific manner driving the cells into an early pre-ovulatory phenotype. Here we studied genome wide effects in L-lactate-treated GC to further elucidate the underlying mechanisms that are responsible for the L-lactate induced transformation. Cultured estrogen producing GC treated either with L-lactate or vehicle control were subjected to mRNA microarray analysis. Results The analysis revealed 487 differentially expressed clusters, representing 461 annotated genes. Of these, 333 (= 318 genes) were identified as up- and 154 (= 143 genes) as down-regulated. As the top up-regulated genes we detected TXNIP, H19 and AHSG as well as our previously established marker transcripts RGS2 and PTX3. The top down-regulated genes included VNN1, SLC27A2 and GFRA1, but also MYC and the GC marker transcript CYP19A1. Pathway analysis with differentially expressed genes indicated “cAMP-mediated signaling” and “Axon guidance signaling” among the most affected pathways. Furthermore, estradiol, progesterone and Vegf were identified as potential upstream regulators. An effector network analysis by IPA provided first hints that processes of “angiogenesis” and “vascularization”, but also “cell movement” appeared to be activated, whereas “organismal death” was predicted to be inhibited. Conclusions Our data clearly show that L-lactate alters gene expression in cultured bovine GC in a broad, but obviously specific manner. Pathway analysis revealed that the mode of L-lactate action in GC initiates angiogenic processes, but also migratory events like cell movement and axonal guidance signaling, thus supporting the transformation of GC into an early luteal phenotype. Electronic supplementary material The online version of this article (10.1186/s12864-019-5657-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anja Baufeld
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Dirk Koczan
- Institute for Immunology, University of Rostock, 18055, Rostock, Germany
| | - Jens Vanselow
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
10
|
Gonadotropin regulation of ankyrin-repeat and SOCS-box protein 9 (ASB9) in ovarian follicles and identification of binding partners. PLoS One 2019; 14:e0212571. [PMID: 30811458 PMCID: PMC6392328 DOI: 10.1371/journal.pone.0212571] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 02/05/2019] [Indexed: 11/23/2022] Open
Abstract
Ankyrin-repeat and SOCS-box protein 9 (ASB9) is a member of the large SOCS-box containing proteins family and acts as the specific substrate recognition component of E3 ubiquitin ligases in the process of ubiquitination and proteasomal degradation. We previously identified ASB9 as a differentially expressed gene in granulosa cells (GC) of bovine ovulatory follicles. This study aimed to further investigate ASB9 mRNA and protein regulation, identify binding partners in GC of bovine ovulatory follicles, and study its function. GC were obtained from small follicles (SF: 2–4 mm), dominant follicles at day 5 of the estrous cycle (DF), and ovulatory follicles, 24 hours following hCG injection (OF). Analyses by RT-PCR showed a 104-fold greater expression of ASB9 in GC of OF than in DF. Steady-state levels of ASB9 in follicular walls (granulosa and theca cells) analyzed at 0, 6, 12, 18 and 24 hours after hCG injection showed a significant induction of ASB9 expression at 12 and 18 hours, reaching a maximum induction of 10.2-fold at 24 hours post-hCG as compared to 0 hour. These results were confirmed in western blot analysis showing strongest ASB9 protein amounts in OF. Yeast two-hybrid screening of OF-cDNAs library resulted in the identification of 10 potential ASB9 binding partners in GC but no interaction was found between ASB9 and creatine kinase B (CKB) in these GC. Functional studies using CRISPR-Cas9 approach revealed that ASB9 inhibition led to increased GC proliferation and modulation of target genes expression. Overall, these results support a physiologically relevant role of ASB9 in the ovulatory follicle by targeting specific proteins likely for degradation, contributing to reduced GC proliferation, and could be involved in the final GC differentiation into luteal cells.
Collapse
|
11
|
Larabee JL, Hauck G, Ballard JD. Unique, Intersecting, and Overlapping Roles of C/EBP β and CREB in Cells of the Innate Immune System. Sci Rep 2018; 8:16931. [PMID: 30446701 PMCID: PMC6240029 DOI: 10.1038/s41598-018-35184-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/31/2018] [Indexed: 12/31/2022] Open
Abstract
CREB and C/EBP β signaling pathways are modulated during inflammation and also targeted by Bacillus anthracis edema toxin (ET), but how these factors individually and jointly contribute to changes in immune cell function is poorly understood. Using CRISPR/Cas9 gene editing, macrophage cell lines lacking CREB and isoforms of C/EBP β were generated and analyzed for changes in responses to LPS, ET, and IL-4. Macrophages lacking C/EBP β suppressed induction of IL-10 and Arg1, while IL-6 was increased in these cells following exposure to LPS. Examination of C/EBP β isoforms indicated the 38 kDa isoform was necessary for the expression of IL-10 and Arg1. ChIP-Seq analysis of CREB and C/EBP β binding to targets on the chromosome of human PBMC identified several regions where both factors overlapped in their binding, suggesting similar gene targeting or cooperative effects. Based on the ChIP-Seq data, a panel of previously unknown targets of CREB and C/EBP β was identified and includes genes such as VNN2, GINS4, CTNNBL1, and SULF2. Isoforms of a transcriptional corepressor, transducin-like enhancer of Split (TLE), were also found to have CREB and C/EBP β binding their promoter and were up regulated by ET. Finally, we explore a possible layer of C/EBP β regulation by a protein complex consisting of adenomatous polyposis coli (APC) and PKA. Collectively, these data provide new insights into the role of CREB and C/EBP β as immunosignaling regulators and targets of an important bacterial virulence factor.
Collapse
Affiliation(s)
- Jason L Larabee
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73190, USA
| | - Garrett Hauck
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73190, USA
| | - Jimmy D Ballard
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73190, USA.
| |
Collapse
|
12
|
Schuermann Y, Rovani MT, Gasperin B, Ferreira R, Ferst J, Madogwe E, Gonçalves PB, Bordignon V, Duggavathi R. ERK1/2-dependent gene expression in the bovine ovulating follicle. Sci Rep 2018; 8:16170. [PMID: 30385793 PMCID: PMC6212447 DOI: 10.1038/s41598-018-34015-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/30/2018] [Indexed: 02/06/2023] Open
Abstract
Ovulation is triggered by gonadotropin surge-induced signaling cascades. To study the role of extracellular signal-regulated kinase 1/2 (ERK1/2) in bovine ovulation, we administered the pharmacological inhibitor, PD0325901, into the preovulatory dominant follicle by intrafollicular injection. Four of five cows treated with 50 µM PD0325901 failed to ovulate. To uncover the molecular basis of anovulation in ERK1/2-inhibited cows, we collected granulosa and theca cells from Vehicle and PD0325901 treated follicles. Next-generation sequencing of granulosa cell RNA revealed 285 differentially expressed genes between Vehicle and PD0325901-treated granulosa cells at 6 h post-GnRH. Multiple inflammation-related pathways were enriched among the differentially expressed genes. The ERK1/2 dependent LH-induced genes in granulosa cells included EGR1, ADAMTS1, STAT3 and TNFAIP6. Surprisingly, PD0325901 treatment did not affect STAR expression in granulosa cells at 6 h post-GnRH. Granulosa cells had higher STAR protein and theca cells had higher levels of STAR mRNA in ERK1/2-inhibited follicles. Further, both granulosa and theca cells of ERK1/2-inhibited follicles had higher expression of SLC16A1, a monocarboxylate transporter, transporting substances including β-hydroxybutyrate across the plasma membrane. Taken together, ERK1/2 plays a significant role in mediating LH surge-induced gene expression in granulosa and theca cells of the ovulating follicle in cattle.
Collapse
Affiliation(s)
- Yasmin Schuermann
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Monique T Rovani
- Laboratory of Biotechnology and Animal Reproduction, BioRep, Veterinary Hospital, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Bernardo Gasperin
- Laboratory of Animal Reproduction-ReproPEL, Federal University of Pelotas, 96010-610, Capão do Leão, Brazil
| | - Rogério Ferreira
- Department of Animal Science, Santa Catarina State University, Santa Catarina, 88040-900, Brazil
| | - Juliana Ferst
- Laboratory of Biotechnology and Animal Reproduction, BioRep, Veterinary Hospital, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Ejimedo Madogwe
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Paulo B Gonçalves
- Laboratory of Biotechnology and Animal Reproduction, BioRep, Veterinary Hospital, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Raj Duggavathi
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
13
|
Baddela VS, Sharma A, Viergutz T, Koczan D, Vanselow J. Low Oxygen Levels Induce Early Luteinization Associated Changes in Bovine Granulosa Cells. Front Physiol 2018; 9:1066. [PMID: 30131718 PMCID: PMC6090175 DOI: 10.3389/fphys.2018.01066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/17/2018] [Indexed: 11/29/2022] Open
Abstract
During follicle maturation, oxygen levels continuously decrease in the follicular fluid and reach lowest levels in the preovulatory follicle. The current study was designed to comprehensively understand effects of low oxygen levels on bovine granulosa cells (GC) using our established estrogen active GC culture model. As evident from flow cytometry analysis the viability of GC was not found to be affected at severely low oxygen condition (1% O2) compared to normal (atmospheric) oxygen condition (21% O2). Estimations of hormone concentrations using competitive radioimmunoassay revealed that the production of estradiol and progesterone was significantly reduced at low oxygen condition. To understand the genome-wide changes of gene expression, mRNA microarray analysis was performed using Affymetrix's Bovine Gene 1.0 ST Arrays. This resulted in the identification of 1104 differentially regulated genes of which 505 were up- and 599 down-regulated under low oxygen conditions. Pathway analysis using Ingenuity pathway analyzer (IPA) identified 36 significantly affected (p < 0.05) canonical pathways. Importantly, pathways like "Estrogen-mediated S-phase Entry" and "Cyclins and Cell Cycle Regulation" were found to be greatly down-regulated at low oxygen levels. This was experimentally validated using flow cytometry based cell cycle analysis. Up-regulation of critical genes associated with angiogenesis, inflammation, and glucose metabolism, and down-regulation of FSH signaling, steroidogenesis and cell proliferation indicated that low oxygen levels induced early luteinization associated changes in granulosa cells. Identification of unmethylated CpG sites in the CYP19A1 promoter region suggests that granulosa cells were not completely transformed into luteal cells under the present low oxygen in vitro condition. In addition, the comparison with earlier published in vivo microarray data indicated that 1107 genes showed a similar expression pattern in granulosa cells at low oxygen levels (in vitro) as found in preovulatory follicles after the LH surge (in vivo). Overall, our findings demonstrate for the first time that low oxygen levels in preovulatory follicles may play an important role in supporting early events of luteinization in granulosa cells.
Collapse
Affiliation(s)
- Vijay S. Baddela
- Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Arpna Sharma
- Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Torsten Viergutz
- Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Dirk Koczan
- Institute of Immunology, University of Rostock, Rostock, Germany
| | - Jens Vanselow
- Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
14
|
Lussier JG, Diouf MN, Lévesque V, Sirois J, Ndiaye K. Gene expression profiling of upregulated mRNAs in granulosa cells of bovine ovulatory follicles following stimulation with hCG. Reprod Biol Endocrinol 2017; 15:88. [PMID: 29100496 PMCID: PMC5670713 DOI: 10.1186/s12958-017-0306-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 10/16/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ovulation and luteinization of follicles are complex biological processes initiated by the preovulatory luteinizing hormone surge. The objective of this study was to identify genes that are differentially expressed in bovine granulosa cells (GC) of ovulatory follicles. METHODS Granulosa cells were collected during the first follicular wave of the bovine estrous cycle from dominant follicles (DF) and from ovulatory follicles (OF) obtained 24 h following injection of human chorionic gonadotropin (hCG). A granulosa cell subtracted cDNA library (OF-DF) was generated using suppression subtractive hybridization and screened. RESULTS Detection of genes known to be upregulated in bovine GC during ovulation, such as ADAMTS1, CAV1, EGR1, MMP1, PLAT, PLA2G4A, PTGES, PTGS2, RGS2, TIMP1, TNFAIP6 and VNN2 validated the physiological model and analytical techniques used. For a subset of genes that were identified for the first time, gene expression profiles were further compared by semiquantitative RT-PCR in follicles obtained at different developmental stages. Results confirmed an induction or upregulation of the respective mRNAs in GC of OF 24 h after hCG-injection compared with those of DF for the following genes: ADAMTS9, ARAF, CAPN2, CRISPLD2, FKBP5, GFPT2, KIT, KITLG, L3MBLT3, MRO, NUDT10, NUDT11, P4HA3, POSTN, PSAP, RBP1, SAT1, SDC4, TIMP2, TNC and USP53. In bovine GC, CRISPLD2 and POSTN mRNA were found as full-length transcript whereas L3MBLT3 mRNA was alternatively spliced resulting in a truncated protein missing the carboxy-terminal end amino acids, 774KNSHNEL780. Conversely, L3MBLT3 is expressed as a full-length mRNA in a bovine endometrial cell line. The 774KNSHNEL780 sequence is well conserved in all mammalian species and follows a SAM domain known to confer protein/protein interactions, which suggest a key function for these amino acids in the epigenetic control of gene expression. CONCLUSIONS We conclude that we have identified novel genes that are upregulated by hCG in bovine GC of OF, thereby providing novel insight into peri-ovulatory regulation of genes that contribute to ovulation and/or luteinization processes.
Collapse
Affiliation(s)
- Jacques G Lussier
- Centre de recherche en reproduction et fertilité, Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe, Québec, J2S 2M2, Canada.
| | - Mame N Diouf
- Centre de recherche en reproduction et fertilité, Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe, Québec, J2S 2M2, Canada
- Institut Sénégalais de Recherches Agricoles (ISRA) Laboratoire National de l'Elevage et de Recherches Vétérinaires (LNERV), BP 2057, Dakar-Hann, Sénégal
| | - Valérie Lévesque
- Centre de recherche en reproduction et fertilité, Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe, Québec, J2S 2M2, Canada
| | - Jean Sirois
- Centre de recherche en reproduction et fertilité, Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe, Québec, J2S 2M2, Canada
| | - Kalidou Ndiaye
- Centre de recherche en reproduction et fertilité, Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe, Québec, J2S 2M2, Canada
| |
Collapse
|
15
|
Liu J, Tian Y, Ding Y, Heng D, Xu K, Liu W, Zhang C. Role of CYP51 in the Regulation of T3 and FSH-Induced Steroidogenesis in Female Mice. Endocrinology 2017; 158:3974-3987. [PMID: 28938463 DOI: 10.1210/en.2017-00249] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 08/15/2017] [Indexed: 01/31/2023]
Abstract
Cytochrome P450 lanosterol 14α-demethylase (CYP51) is a key enzyme in sterol and steroid biosynthesis that is involved in folliculogenesis and oocyte maturation, which is regulated by follicle-stimulating hormone (FSH), as a key reproductive hormone during follicular development. Thyroid hormone (TH) is also important for normal reproductive function. Although 3,5,3'-triiodothyronine (T3) enhances FSH-induced preantral follicle growth, whether and how TH combines with FSH to regulate CYP51 expression during the preantral to early antral transition stage is unclear. The objective of this study was to determine the cellular and molecular mechanisms by which T3 and FSH regulate CYP51 expression and steroid biosynthesis during preantral follicle growth. Our results indicated that CYP51 expression was upregulated in granulosa cells by FSH, and this response was enhanced by T3. Moreover, knockdown CYP51 decreased cell viability. Meanwhile, gene knockdown also blocked T3 and FSH-induced estradiol (E2) and progesterone (P4) synthesis. These changes were accompanied by upregulation of phospho-GATA-4 content. Results of small interfering RNA analysis showed that knockdown of GATA-4 significantly diminished CYP51 gene expression as well as E2/P4 levels. Furthermore, thyroid hormone receptor β was necessary to the activation of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), which was required for the regulation of CYP51 expression; activated GATA-4 was also involved these processes. Our data demonstrate that T3 and FSH cotreatment potentiates cellular development and steroid biosynthesis via CYP51 upregulation, which is mediated through the activation of the PI3K/Akt pathway. Meanwhile, activated GATA-4 is also involved in this regulatory system. These findings suggest that CYP51 is a mediator of T3 and FSH-induced follicular development.
Collapse
Affiliation(s)
- Juan Liu
- College of Life Science, Capital Normal University, Beijing 100048, Peoples' Republic of China
| | - Ye Tian
- College of Life Science, Capital Normal University, Beijing 100048, Peoples' Republic of China
| | - Yu Ding
- College of Life Science, Capital Normal University, Beijing 100048, Peoples' Republic of China
| | - Dai Heng
- College of Life Science, Capital Normal University, Beijing 100048, Peoples' Republic of China
| | - Kaili Xu
- College of Life Science, Capital Normal University, Beijing 100048, Peoples' Republic of China
| | - Wenbo Liu
- College of Life Science, Capital Normal University, Beijing 100048, Peoples' Republic of China
| | - Cheng Zhang
- College of Life Science, Capital Normal University, Beijing 100048, Peoples' Republic of China
| |
Collapse
|
16
|
Baufeld A, Koczan D, Vanselow J. Induction of altered gene expression profiles in cultured bovine granulosa cells at high cell density. Reprod Biol Endocrinol 2017; 15:3. [PMID: 28056989 PMCID: PMC5217602 DOI: 10.1186/s12958-016-0221-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/13/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND In previous studies it has been shown that bovine granulosa cells (GC) cultured at a high plating density dramatically change their physiological and molecular characteristics, thus resembling an early stage of luteinization. During the present study, these specific effects on the GC transcriptome were comprehensively analysed to clarify the underlying mechanisms. METHODS GC were cultured in serum free medium with FSH and IGF-1 stimulation at different initial plating density. The estradiol and progesterone production was determined by radioimmunoassays and the gene expression profiles were analysed by mRNA microarray analysis after 9 days. The data were statistically analysed and the abundance of selected, differentially expressed transcripts was re-evaluated by qPCR. Bioinformatic pathway analysis of density affected transcripts was done using Ingenuity Pathway Analysis. RESULTS The data showed that at high plating density the expression of 1510 annotated genes, represented by 1575 transcript clusters, showed highly altered expression levels. Nearly two-thirds were up- and one third down-regulated. Within the top up-regulated genes VNN2, RGS2 and PTX3 could be identified, as well as HBA or LOXL2. Down-regulated genes included important key genes of folliculogenesis like CYP19A1 and FSHR. Ingenuity pathway analysis identified "AMPK signaling" as well as "cAMP-mediated signaling" as major pathways affected by the alteration of the expression profile. Main putative upstream regulators were TGFB1 and VEGF, thus indicating a connection with cell differentiation and angiogenesis. A detailed cluster analysis revealed one single cluster that was highly associated with the upstream regulator beta-estradiol. Within this cluster key genes of steroid biosynthesis were not included, but instead, other genes importantly involved in follicular development, like OXT and VEGFA as well as the three most down-regulated genes TXNIP, PAG11 and ARRDC4 were identified. CONCLUSIONS From these data we hypothesize that high density conditions induce a stage of differentiation in cultured GC that is similar to early post-LH conditions in vivo. Furthermore we hypothesize that specific cell-cell-interactions led to this differentiation including transformations necessary to promote angiogenesis.
Collapse
Affiliation(s)
- Anja Baufeld
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Dirk Koczan
- Institute for Immunology, University of Rostock, 18055 Rostock, Germany
| | - Jens Vanselow
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| |
Collapse
|
17
|
Girard A, Dufort I, Sirard MA. The effect of energy balance on the transcriptome of bovine granulosa cells at 60 days postpartum. Theriogenology 2015; 84:1350-61.e6. [DOI: 10.1016/j.theriogenology.2015.07.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 07/04/2015] [Accepted: 07/09/2015] [Indexed: 12/13/2022]
|
18
|
Gagnon A, Khan DR, Sirard MA, Girard CL, Laforest JP, Richard FJ. Effects of intramuscular administration of folic acid and vitamin B12 on granulosa cells gene expression in postpartum dairy cows. J Dairy Sci 2015; 98:7797-809. [PMID: 26298749 DOI: 10.3168/jds.2015-9623] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/09/2015] [Indexed: 12/17/2022]
Abstract
The fertility of dairy cows is challenged during early lactation, and better nutritional strategies need to be developed to address this issue. Combined supplementation of folic acid and vitamin B12 improve energy metabolism in the dairy cow during early lactation. Therefore, the present study was undertaken to explore the effects of this supplement on gene expression in granulosa cells from the dominant follicle during the postpartum period. Multiparous Holstein cows received weekly intramuscular injection of 320 mg of folic acid and 10 mg of vitamin B12 (treated group) beginning 24 (standard deviation=4) d before calving until 56 d after calving, whereas the control group received saline. The urea plasma concentration was significantly decreased during the precalving period, and the concentration of both folate and vitamin B12 were increased in treated animals. Milk production and dry matter intake were not significantly different between the 2 groups. Plasma concentrations of folates and vitamin B12 were increased in treated animals. Daily dry matter intake was not significantly different between the 2 groups before [13.5 kg; standard error (SE)=0.5] and after (23.6 kg; SE=0.9) calving. Average energy-corrected milk tended to be greater in vitamin-treated cows, 39.7 (SE=1.4) and 38.1 (SE=1.3) kg/d for treated and control cows, respectively. After calving, average plasma concentration of β-hydroxybutyrate tended to be lower in cows injected with the vitamin supplement, 0.47 (SE=0.04) versus 0.55 (SE=0.03) for treated and control cows, respectively. The ovarian follicle ≥12 mm in diameter was collected by ovum pick-up after estrus synchronization. Recovered follicular fluid volumes were greater in the vitamin-treated group. A microarray platform was used to investigate the effect of treatment on gene expression of granulosa cells. Lower expression of genes involved in the cell cycle and higher expression of genes associated with granulosa cell differentiation before ovulation were observed. Selected candidate genes were analyzed by reverse transcription quantitative PCR. Although the effects of intramuscular injections of folic acid and vitamin B12 on lactational performance and metabolic status of animals were limited, ingenuity pathway analysis of gene expression in granulosa cells suggests a stimulation of cell differentiation in vitamin-treated cows, which may be the result of an increase in LH secretion.
Collapse
Affiliation(s)
- A Gagnon
- Centre de Recherche en Biologie de la Reproduction, Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada G1V 0A6
| | - D R Khan
- Centre de Recherche en Biologie de la Reproduction, Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada G1V 0A6
| | - M-A Sirard
- Centre de Recherche en Biologie de la Reproduction, Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada G1V 0A6
| | - C L Girard
- Agriculture et Agroalimentaire Canada, Centre de Recherche sur le Bovin Laitier et le Porc, Sherbrooke, QC, Canada J1M 0C8
| | - J-P Laforest
- Centre de Recherche en Biologie de la Reproduction, Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada G1V 0A6
| | - F J Richard
- Centre de Recherche en Biologie de la Reproduction, Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada G1V 0A6.
| |
Collapse
|
19
|
Yenuganti VR, Baddela VS, Baufeld A, Singh D, Vanselow J. The gene expression pattern induced by high plating density in cultured bovine and buffalo granulosa cells might be regulated by specific miRNA species. J Reprod Dev 2015; 61:154-60. [PMID: 25740097 PMCID: PMC4410314 DOI: 10.1262/jrd.2014-119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Precise regulation of cell type-specific gene expression profiles precedes the profound morphological reorganization of somatic cell layers during folliculogenesis, ovulation and luteinization. Cell culture models are essential to the study of corresponding molecular mechanisms of gene regulation. In a recent study, it was shown that an increased cell plating density can largely change gene expression profiles of cultured bovine granulosa cells. In our present study, we comparatively analyzed cell plating density effects on cultured bovine and buffalo granulosa cells. Cells were isolated from small- to medium-sized follicles (2–6 mm) and cultured under serum-free conditions at different plating densities. The abundance of selected marker transcripts and associated miRNA candidates was determined by quantitative real-time RT-PCR. We found in both species that the abundance of CYP19A1, CCNE1 and PCNA transcripts was
remarkably lower at a high plating density, whereas VNN2 and RGS2 transcripts significantly increased. In contrast, putative regulators of CYP19A1, miR-378, miR-106a and let-7f were significantly higher in both species or only in buffalo, respectively. Also miR-15a, a regulator of CCNE1, was upregulated in both species. Thus, increased plating density induced similar changes of mRNA and miRNA expression in granulosa cells from buffalo and cattle. From these data, we conclude that specific miRNA species might be involved in the observed density-induced gene regulation.
Collapse
|