1
|
Fair T, Lonergan P. The oocyte: the key player in the success of assisted reproduction technologies. Reprod Fertil Dev 2023; 36:133-148. [PMID: 38064189 DOI: 10.1071/rd23164] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
The ovulation of a mature oocyte at metaphase II of meiosis, with optimal potential to undergo fertilisation by a sperm cell, complete meiosis and sustain the switch to mitotic division, and support early embryo development, involves a protracted and disrupted/delayed series of processes. Many of these are targeted for exploitation in vivo , or recapitulation in vitro , by the livestock industry. Reproductive technologies, including AI, multiple ovulation embryo transfer, ovum pick-up, in vitro embryo production, and oestrus and ovulation synchronisation, offer practitioners and producers the opportunity to produce offspring from genetically valuable dams in much greater numbers than they would normally have in their lifetime, while in vitro oocyte and follicle culture are important platforms for researchers to interrogate the physiological mechanisms driving fertility. The majority of these technologies target the ovarian follicle and the oocyte within; thus, the quality and capability of the recovered oocyte determine the success of the reproductive intervention. Molecular and microscopical technologies have grown exponentially, providing powerful platforms to interrogate the molecular mechanisms which are integral to or affected by ART. The development of the bovine oocyte from its differentiation in the ovary to ovulation is described in the light of its relevance to key aspects of individual interventions, while highlighting the historical timeline.
Collapse
Affiliation(s)
- Trudee Fair
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
2
|
Costa CB, Fair T, Seneda MM. Review: Environment of the ovulatory follicle: modifications and use of biotechnologies to enhance oocyte competence and increase fertility in cattle. Animal 2023; 17 Suppl 1:100866. [PMID: 37567670 DOI: 10.1016/j.animal.2023.100866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 08/13/2023] Open
Abstract
The oocyte is the basis of life, supporting development from a fertilized cell to an independent multicellular organism. The oocyte's competence to drive the first cell cycles postfertilization are critical to embryonic survival and subsequent successful pregnancy. Coupled with the complex processes of follicle assembly, activation, differentiation, growth, and terminal maturation, oocyte developmental competence is gradually acquired during oocyte growth and meiotic maturation. Most reproduction management technologies and interventions are centered around these highly coordinated processes, targeting the ovarian follicle and the oocyte within. Thus, our objective was to highlight key aspects of oocyte and follicle development in cattle, and to discuss recent advances in oocyte and follicle-centered reproductive biotechnologies.
Collapse
Affiliation(s)
- Camila Bortoliero Costa
- Department of Biological Sciences, School of Sciences and Languages, São Paulo State University (UNESP), Campus Assis, São Paulo, Brazil; Graduate Program in Pharmacology and Biotechnology, Institute of Biosciences, UNESP, Botucatu, São Paulo, Brazil
| | - Trudee Fair
- School of Agriculture and Food Science, University College Dublin, Ireland
| | - Marcelo M Seneda
- State University of Londrina (UEL), Laboratory of Animal Reproduction, Londrina, PR, Brazil.
| |
Collapse
|
3
|
Lodde V, Luciano AM, Garcia Barros R, Giovanardi G, Sivelli G, Franciosi F. Review: The putative role of Progesterone Receptor membrane Component 1 in bovine oocyte development and competence. Animal 2023; 17 Suppl 1:100783. [PMID: 37567656 DOI: 10.1016/j.animal.2023.100783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 08/13/2023] Open
Abstract
Acquisition of developmental competence is a complex process in which many cell types cooperate to support oocyte maturation, fertilisation, and preimplantation embryonic development. In recent years, compelling evidence has shown that Progesterone Receptor Membra Component 1 (PGRMC1) is expressed in many cell types of the mammalian reproductive system where it exerts diverse functions. In the ovary, PGRMC1 affects follicular growth by controlling cell viability and proliferation of granulosa cells. PGRMC1 has also a direct role in promoting a proper completion of bovine oocyte maturation, as altering its function leads to defective chromosome segregation and polar body extrusion. Strikingly, the mechanism by which PGRMC1 controls mitotic and meiotic cell division seems to be conserved, involving an association with the spindle apparatus and the chromosomal passenger complex through Aurora kinase B. Conclusive data on a possible role of PGRMC1 in the preimplantation embryo are lacking and further research is needed to test whether the mechanisms that are set in place in mitotic cells also govern blastomere cleavage and subsequent differentiation. Finally, PGRMC1 is also expressed in oviductal cells and, as such, it might also impact fertilisation and early embryonic development, although this issue is completely unexplored. However, the study of PGRMC1 function in the mammalian reproductive system remains a complex matter, due to its pleiotropic function.
Collapse
Affiliation(s)
- V Lodde
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, via dell'Università 6, 26900 Lodi, Italy.
| | - A M Luciano
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, via dell'Università 6, 26900 Lodi, Italy
| | - R Garcia Barros
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, via dell'Università 6, 26900 Lodi, Italy
| | - G Giovanardi
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, via dell'Università 6, 26900 Lodi, Italy
| | - G Sivelli
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, via dell'Università 6, 26900 Lodi, Italy
| | - F Franciosi
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, via dell'Università 6, 26900 Lodi, Italy
| |
Collapse
|
4
|
Tetsuka M, Tanakadate M. Activation of HSD11B1 in the bovine cumulus-oocyte complex during IVM and IVF. Endocr Connect 2019; 8:1029-1039. [PMID: 31252401 PMCID: PMC6652248 DOI: 10.1530/ec-19-0188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 06/26/2019] [Indexed: 02/02/2023]
Abstract
The bovine cumulus-oocyte complex (COC) is capable of converting cortisone, an inert glucocorticoid to active cortisol. This mechanism is mediated by 11β-hydroxysteroid oxidoreductase type 1 (HSD11B1), whose expression dramatically increases in the mature COC. In this study, we investigate the time course expression of HSD11B1 and the enzyme activity in the bovine COC undergoing maturation and fertilization in relation to key events taking place in the COC. Bovine COCs were subjected to in vitro maturation (IVM) and fertilization (IVF). The activities of HSD11B1 and HSD11B2, which mediates the opposite reaction, were measured using a radiometric conversion assay. In parallel studies, cumulus expansion, P4 production and the expression of genes associated with ovulation were measured. The reductive activity of HSD11B1 increased in the latter half of IVM and remained high during IVF, whereas the oxidative activity of HSD11B2 remained unchanged over both periods. Consequently, the net glucocorticoid metabolism in the bovine COC shifted from inactivation to activation around the time of ovulation and fertilization. The increase in HSD11B1 expression lagged behind that of P4 increase and cumulus expansion but ahead of the expressions of genes responsible for PGE2 synthesis. The reductive activity of HSD11B1 was well correlated with the cumulus expansion rate. This outcome indicates that the ability of the cumulus to activate glucocorticoids is related to its ability to synthesize hyaluronan. These results also indicate that the activation of HSD11B1 is an integral part of the sequential events taking place at the ovulation and fertilization in the bovine COC.
Collapse
Affiliation(s)
- Masafumi Tetsuka
- Department of Life and Food Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
- Correspondence should be addressed to M Tetsuka:
| | - Misato Tanakadate
- Department of Life and Food Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| |
Collapse
|
5
|
O'Brien Y, Wingfield M, O'Shea LC. Anti-Müllerian hormone and progesterone levels in human follicular fluid are predictors of embryonic development. Reprod Biol Endocrinol 2019; 17:47. [PMID: 31217014 PMCID: PMC6585091 DOI: 10.1186/s12958-019-0492-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/11/2019] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Human follicular fluid is an intricate biological fluid contributing to the developing oocyte microenvironment. Accumulating evidence suggests that sex hormones present in follicular fluid (FF) may play an important role in regulating oocyte developmental potential. The aim of this study was to determine if anti-Müllerian hormone (AMH) and progesterone (P4) levels in FF are correlated with oocyte quality as defined by subsequent embryonic development. METHODS This was a prospective cohort study of 88 women undergoing IVF/ICSI at a university associated fertility clinic. Follicular fluid was collected from the first follicle aspirated at the time of oocyte retrieval. The corresponding oocyte was individually cultured in order to track its developmental outcome. FF-AMH and P4 concentrations from follicles where the oocyte fertilised normally and developed into a blastocyst on day 5 (Group 1: BLAST, n = 23) were compared with FF from follicles where the oocyte fertilised normally but failed to reach blastocyst stage by day 5 (Group 2: FERT, n = 19). No significant differences were observed between the two groups in terms of maternal age, body mass index, previous live births, previous pregnancy loss, number of antral follicles, number of oocytes recovered, IVF:ICSI ratio or percentage of recovered oocytes that fertilised. RESULTS FF-AMH and P4 levels were significantly increased in Group 1: BLAST compared to Group 2: FERT (P = 0.007 and P = 0.013 respectively). Twenty-one FF samples had an AMH level > 15 pmol/L, of which 17 related to oocytes that progressed to blastocyst stage, providing a positive prediction value (PPV) of 76.96%. Eleven FF samples had a P4 level > 60 mg/ml, of which 10 progressed to blastocyst stage, providing a PPV of 90.99%. Six samples had an AMH level > 15 pmol/L and a P4 level > 60 mg/ml, of which 100% progressed to blastocyst stage, providing a PPV of 96.83%. CONCLUSIONS FF-AMH and P4 levels from individual follicles can accurately predetermine subsequent embryonic development. Combining follicular fluid analysis with routine morphological assessment, could allow for a more accurate and sensitive method of determining embryonic developmental competence.
Collapse
Affiliation(s)
- Yvonne O'Brien
- Merrion Fertility Clinic, 60 Mount Street Lower, Dublin 2, Ireland
- National Maternity Hospital, Holles St, Grand Canal Dock, Dublin 2, Ireland
- UCD School of Medicine and Medical Science, Health Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - Mary Wingfield
- Merrion Fertility Clinic, 60 Mount Street Lower, Dublin 2, Ireland
- National Maternity Hospital, Holles St, Grand Canal Dock, Dublin 2, Ireland
- UCD School of Medicine and Medical Science, Health Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lynne C O'Shea
- UCD School of Medicine and Medical Science, Health Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
6
|
Wang S, Liu B, Liu W, Xiao Y, Zhang H, Yang L. The effects of melatonin on bovine uniparental embryos development in vitro and the hormone secretion of COCs. PeerJ 2017; 5:e3485. [PMID: 28698819 PMCID: PMC5502088 DOI: 10.7717/peerj.3485] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/31/2017] [Indexed: 12/23/2022] Open
Abstract
Melatonin is a unique multifunctional molecule that mediates reproductive functions in animals. In this study, we investigated the effects of melatonin on bovine parthenogenetic and androgenetic embryonic development, oocyte maturation, the reactive oxygen species (ROS) levels in parthenogenetic and androgenetic embryos and cumulus—oocyte complexes (COCs) hormone secretion with melatonin supplementation at four concentrations (0, 10, 20, and 30 pmol/mL), respectively. The results showed that melatonin significantly promoted the rates of bovine parthenogenetic and androgenetic embryonic cleavage and morula and blastocysts development (P < 0.05). The rate of cleavage was higher in the androgenetic embryo than that in the parthenogenetic embryo. Compared with the parthenogenetic embryos, the androgenetic embryos had a poor developmental competence from morula to blastocyst stage. Moreover, the levels of ROS were significantly lower in the parthenogenetic and androgenetic embryoes with melatonin-treated group than that of the control group (P < 0.05). Melatonin supplemented significantly increased the maturation rate of oocyte in vitro (P < 0.05). More importantly, melatonin significantly promoted the secretion of progesterone and estradiol by COCs (P < 0.05). To reveal the regulatory mechanism of melatonin on steroids synthesis, we found that steroidogenic genes (CYP11A1, CYP19A1 and StAR) were upregulated, suggesting that melatonin regulated estradiol and progesterone secretion through mediating the expression of steroidogenic genes (CYP11A1, CYP19A1 and StAR). In addition, MT1 and MT2 were identified in bovine early parthenogenetic and androgenetic embryos using western blot. It could be concluded that melatonin had beneficial effects on bovine oocyte in vitro maturation, COC hormone secretion, early development of subsequent parthenogenetic and androgenetic embryos. It is inferred that melatonin could be used to enhance the efficiency of in vitro developed embryos.
Collapse
Affiliation(s)
- Shujuan Wang
- College of Animal Science, Anhui Science and Technology University, Bengbu, Anhui, China.,Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan, Hubei, China
| | - Baoru Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan, Hubei, China
| | - Wenju Liu
- College of Animal Science, Anhui Science and Technology University, Bengbu, Anhui, China
| | - Yao Xiao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan, Hubei, China
| | - Hualin Zhang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan, Hubei, China
| | - Liguo Yang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan, Hubei, China
| |
Collapse
|
7
|
Ge H, Zhang F, Duan P, Zhu N, Zhang J, Ye F, Shan D, Chen H, Lu X, Zhu C, Ge R, Lin Z. Mitochondrial Uncoupling Protein 2 in human cumulus cells is associated with regulating autophagy and apoptosis, maintaining gap junction integrity and progesterone synthesis. Mol Cell Endocrinol 2017; 443:128-137. [PMID: 28089824 DOI: 10.1016/j.mce.2017.01.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 01/24/2023]
Abstract
To explore the roles of mitochondrial Uncoupling Protein 2 (UCP2) in cumulus cells (CCs), human CCs were cultured in vitro, and the UCP2 was inhibited by treatment with Genipin, a special UCP inhibitor, or by RNA interference targeting UCP2. No significant differences in adenosine triphosphate levels and the ratio of ADP/ATP were observed after UCP2 inhibition. UCP2 inhibition caused a significant increase in cellular oxidative damage, which was reflected in alterations to several key parameters, including reactive oxygen species (ROS) and lipid peroxidation levels and the ratio of reduced GSH to GSSG. UCP2 blocking resulted in an obvious increase in active Caspase-3, accompanied by the decline of proactive Caspase-3 and a significant increase in the LC3-II/LC3-I ratio, suggesting that UCP2 inhibition triggered cellular apoptosis and autophagy. The mRNA and protein expression of connexin 43 (Cx43), a gap junction channel protein, were significantly reduced after treatment with Genipin or siRNA. The progesterone level in the culture medium was also significantly decreased after UCP2 inhibition. Our data indicated that UCP2 plays highly important roles in mediating ROS production and regulating apoptosis and autophagy, as well as maintaining gap junction integrity and progesterone synthesis, which suggests that UCP2 is involved in the regulation of follicle development and early embryo implantation and implies that it might serve as a potential biomarker for oocyte quality and competency.
Collapse
Affiliation(s)
- Hongshan Ge
- Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, Taizhou People's Hospital, The Fifth Hospital Affiliated Nantong University, Taizhou, Jiangsu Province, 225300, People's Republic of China; The Second Affiliated Hospital and YuYing Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, People's Republic of China.
| | - Fan Zhang
- The Second Affiliated Hospital and YuYing Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, People's Republic of China
| | - Ping Duan
- The Second Affiliated Hospital and YuYing Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, People's Republic of China
| | - Nan Zhu
- The Second Affiliated Hospital and YuYing Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, People's Republic of China
| | - Jiayan Zhang
- The Second Affiliated Hospital and YuYing Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, People's Republic of China
| | - Feijun Ye
- Maternal and Child Health Hospital, Zhoushan Hospital Affiliated Wenzhou Medical University, Zhejiang Province, 316100, People's Republic of China
| | - Dan Shan
- The Second Affiliated Hospital and YuYing Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, People's Republic of China
| | - Hua Chen
- The Second Affiliated Hospital and YuYing Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, People's Republic of China
| | - XiaoSheng Lu
- The Second Affiliated Hospital and YuYing Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, People's Republic of China
| | - ChunFang Zhu
- The Second Affiliated Hospital and YuYing Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, People's Republic of China
| | - Renshan Ge
- The Second Affiliated Hospital and YuYing Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, People's Republic of China
| | - Zhenkun Lin
- The Second Affiliated Hospital and YuYing Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, People's Republic of China.
| |
Collapse
|
8
|
O'Shea LC, Daly E, Hensey C, Fair T. ATRX is a novel progesterone-regulated protein and biomarker of low developmental potential in mammalian oocytes. Reproduction 2017; 153:671-682. [PMID: 28250240 DOI: 10.1530/rep-16-0443] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 02/03/2017] [Accepted: 02/28/2017] [Indexed: 01/09/2023]
Abstract
A multi-species meta-analysis of published transcriptomic data from models of oocyte competence identified the chromatin remodelling factor ATRX as a putative biomarker of oocyte competence. The objective of the current study was to test the hypothesis that ATRX protein expression by cumulus-oocyte complexes (COCs) reflects their intrinsic quality and developmental potential. In excess of 10,000 bovine COCs were utilised to test our hypothesis. COCs were in vitro matured (IVM) under conditions associated with reduced developmental potential: IVM in the presence or absence of (1) progesterone synthesis inhibitor (Trilostane); (2) nuclear progesterone receptor inhibitor (Aglepristone) or (3) an inducer of DNA damage (Staurosporine). ATRX protein expression and localisation were determined using immunocytochemistry and Western blot analysis. A proportion of COCs matured in the presence or absence of Trilostane was in vitro fertilised and cultured, and subsequent embryo development characteristics were analysed. In addition, ATRX expression was investigated in 40 human germinal vesicle-stage COCs. Our results showed that ATRX is expressed in human and bovine germinal vesicle oocytes and cumulus cells. In bovine, expression decreases after IVM. However, this decline is not observed in COCs matured under sub-optimal conditions. Blastocyst development rate and cell number are decreased, whereas the incidence of abnormal metaphase phase spindle and chromosome alignment are increased, after IVM in the presence of Trilostane (P < 0.05). In conclusion, localisation of ATRX to the cumulus cell nuclei and oocyte chromatin, after IVM, is associated with poor oocyte quality and low developmental potential. Furthermore, ATRX is dynamically regulated in response to progesterone signalling.
Collapse
Affiliation(s)
- Lynne C O'Shea
- School of Agriculture and Food Sciences .,School of Medicine
| | | | - Carmel Hensey
- School of Bimolecular and Biomedical ScienceUniversity College Dublin, Belfield, Dublin 4, Ireland
| | | |
Collapse
|
9
|
McCallie BR, Parks JC, Patton AL, Griffin DK, Schoolcraft WB, Katz-Jaffe MG. Hypomethylation and Genetic Instability in Monosomy Blastocysts May Contribute to Decreased Implantation Potential. PLoS One 2016; 11:e0159507. [PMID: 27434648 PMCID: PMC4951028 DOI: 10.1371/journal.pone.0159507] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 07/05/2016] [Indexed: 02/03/2023] Open
Abstract
DNA methylation is a key epigenetic mechanism responsible for gene regulation, chromatin remodeling, and genome stability, playing a fundamental role during embryonic development. The aim of this study was to determine if these epigenetic marks are associated with chromosomal aneuploidy in human blastocysts. Surplus, cryopreserved blastocysts that were donated to research with IRB consent were chosen with varying chromosomal aneuploidies and respective implantation potential: monosomies and trisomies 7, 11, 15, 21, and 22. DNA methylation analysis was performed using the Illumina Infinium HumanMethylation450 BeadChip (~485,000 CpG sites). The methylation profiles of these human blastocysts were found to be similar across all samples, independent of chromosome constitution; however, more detailed examination identified significant hypomethylation in the chromosome involved in the monosomy. Real-time PCR was also performed to determine if downstream messenger RNA (mRNA) was affected for genes on the monosomy chromosome. Gene dysregulation was observed for monosomy blastocysts within significant regions of hypo-methylation (AVEN, CYFIP1, FAM189A1, MYO9A, ADM2, PACSIN2, PARVB, and PIWIL3) (P < 0.05). Additional analysis was performed to examine the gene expression profiles of associated methylation regulators including: DNA methyltransferases (DNMT1, DNMT3A, DNMT3B, DNMT3L), chromatin modifying regulators (CSNK1E, KDM1, PRKCA), and a post-translational modifier (PRMT5). Decreased RNA transcription was confirmed for each DNMT, and the regulators that impact DNMT activity, for only monosomy blastocysts (P < 0.05). In summary, monosomy blastocysts displayed hypomethylation for the chromosome involved in the error, as well as transcription alterations of associated developmental genes. Together, these modifications may be contributing to genetic instability and therefore be responsible for the limited implantation potential observed for full monosomy blastocysts.
Collapse
Affiliation(s)
- Blair R. McCallie
- National Foundation for Fertility Research, Lone Tree, Colorado, 80124, United States of America
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, United Kingdom
- * E-mail:
| | - Jason C. Parks
- National Foundation for Fertility Research, Lone Tree, Colorado, 80124, United States of America
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, United Kingdom
| | - Alyssa L. Patton
- National Foundation for Fertility Research, Lone Tree, Colorado, 80124, United States of America
| | - Darren K. Griffin
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, United Kingdom
| | - William B. Schoolcraft
- Colorado Center for Reproductive Medicine, Lone Tree, Colorado, 80124, United States of America
| | - Mandy G. Katz-Jaffe
- National Foundation for Fertility Research, Lone Tree, Colorado, 80124, United States of America
- Colorado Center for Reproductive Medicine, Lone Tree, Colorado, 80124, United States of America
| |
Collapse
|
10
|
Cerny KL, Anderson L, Burris WR, Rhoads M, Matthews JC, Bridges PJ. Form of supplemental selenium fed to cycling cows affects systemic concentrations of progesterone but not those of estradiol. Theriogenology 2015; 85:800-806. [PMID: 26559468 DOI: 10.1016/j.theriogenology.2015.10.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/09/2015] [Accepted: 10/12/2015] [Indexed: 01/28/2023]
Abstract
In areas where soils are deficient in selenium (Se), dietary supplementation of this trace mineral directly to cattle is recommended. Selenium status affects fertility, and the form of Se supplemented to cows affects tissue-specific gene expression profiles. The objective of this study was to determine whether the form of Se consumed by cows would affect follicular growth and the production of steroids. Thirty-three Angus-cross cows that had ad libitum access of a mineral mix containing 35 ppm of Se in free-choice vitamin-mineral mixes as either inorganic (ISe), organic (OSe), or a 50/50 mix of ISe and OSe (MIX) for 180 days were used. After 170 days of supplementation, all cows were injected with 25-mg PGF2α to induce regression of the CL and then monitored for behavioral estrus (Day 0). From Day 4 to Day 8 after estrus, follicular growth was determined by transrectal ultrasonography. On Day 6, cows were injected with PGF2α (20 then 15 mg, 8-12 hours apart) to induce regression of the developing CL and differentiation of the dominant follicle of the first follicular wave into a preovulatory follicle. On Day 8, 36 hours after PGF2α (20 mg), the contents of the preovulatory follicle were aspirated by ultrasound-guided follicular puncture. Blood collected on Days 6 and 8 and follicular fluid collected on Day 8 was analyzed for concentrations of progesterone and estradiol. Form of Se supplemented to cows affected (P = 0.04) the systemic concentration of progesterone on Day 6, but not on Day 8. Form of Se did not affect the systemic concentration of estradiol on Day 6 or Day 8. Form of Se tended to affect (P = 0.07) the concentration of progesterone, but not that of estradiol, in the follicular fluid. Form of Se did not affect diameter of the dominant ovarian follicle on Days 4 to 6, but tended to affect (P = 0.08) the diameter of the preovulatory follicle on Day 8. Our results suggest that form of Se fed to cows affects the production of progesterone but not that of estradiol. Further investigation of organic Se-induced increases in progesterone and potentially the effects of increased progesterone on the establishment of pregnancy, especially in cows of lower fertility, is warranted.
Collapse
Affiliation(s)
- Katheryn L Cerny
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Les Anderson
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Walter R Burris
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Michelle Rhoads
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - James C Matthews
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Phillip J Bridges
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky, USA.
| |
Collapse
|