1
|
Han N, Xia W, Zhu C, Zhang X, Wang F, Yin Z, Zeng Q. Association of human leukocyte antigen-G and -F with recurrent miscarriage and implantation failure: A systematic review and meta-analysis. Am J Reprod Immunol 2023; 90:e13792. [PMID: 38009058 DOI: 10.1111/aji.13792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/21/2023] [Accepted: 10/14/2023] [Indexed: 11/28/2023] Open
Abstract
PROBLEM The immune system plays an essential role in embryonic implantation and pregnancy, but the molecular details remain controversial. In the past four decades, human leukocyte antigen (HLA)-G and -F have garnered significant attention. METHOD OF STUDY MEDLINE, EMBASE, Web of Science, and the Cochrane Trials Registry were searched from their inception dates until December 2022. Studies were selected following PRISMA guidelines. Meta-analyses were used to assess the relationship of soluble HLA-G (sHLA-G) and HLA-G 3'-untranslated region polymorphisms with recurrent miscarriage (RM) and recurrent implantation failure (RIF). Narrative synthesis was conducted to determine the association of RM with other single nucleotide polymorphisms (SNPs) and HLA-G protein in tissues and of RIF with HLA-F. Risk-of-bias was assessed using ROBINS-I. Publication bias was assessed using Egger's and Begg's tests. RESULTS Finally, 42 articles were eligible for inclusion in the systematic review (32 in the meta-analysis; 13 in narrative synthesis). We found a significant association between the 14-bp ins/del HLA-G polymorphism and RM risk, but no definitive association with RIF risk. Women with RM had lower blood concentrations of sHLA-G during pregnancy and non-pregnancy than did controls. For women in the RIF group, no significant difference was found. CONCLUSION HLA-G protein and gene expression levels may be closely related to RM. The relevance of HLA-G to RIF is still being determined. A narrative synthesis of current studies has shown that HLA-F is likely associated with RIF.
Collapse
Affiliation(s)
- Nana Han
- Clinical medical school, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wanting Xia
- Gynecology Department, Hospital of Chengdu University of TCM, Chengdu, China
| | - Can Zhu
- Clinical medical school, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuan Zhang
- Clinical medical school, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fan Wang
- Clinical medical school, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhixing Yin
- Clinical medical school, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Zeng
- Gynecology Department, Hospital of Chengdu University of TCM, Chengdu, China
| |
Collapse
|
2
|
OUP accepted manuscript. Hum Reprod Update 2022; 28:435-454. [DOI: 10.1093/humupd/dmac007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/15/2021] [Indexed: 11/13/2022] Open
|
3
|
Würfel FM, Winterhalter C, Trenkwalder P, Wirtz RM, Würfel W. European Patent in Immunoncology: From Immunological Principles of Implantation to Cancer Treatment. Int J Mol Sci 2019; 20:ijms20081830. [PMID: 31013867 PMCID: PMC6514949 DOI: 10.3390/ijms20081830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 12/19/2022] Open
Abstract
The granted European patent EP 2 561 890 describes a procedure for an immunological treatment of cancer. It is based on the principles of the HLA-supported communication of implantation and pregnancy. These principles ensure that the embryo is not rejected by the mother. In pregnancy, the placenta, more specifically the trophoblast, creates an “interface” between the embryo/fetus and the maternal immune system. Trophoblasts do not express the “original” HLA identification of the embryo/fetus (HLA-A to -DQ), but instead show the non-classical HLA groups E, F, and G. During interaction with specific receptors of NK cells (e.g., killer-immunoglobulin-like receptors (KIR)) and lymphocytes (lymphocyte-immunoglobulin-like receptors (LIL-R)), the non-classical HLA groups inhibit these immunocompetent cells outside pregnancy. However, tumors are known to be able to express these non-classical HLA groups and thus make use of an immuno-communication as in pregnancies. If this occurs, the prognosis usually worsens. This patent describes, in a first step, the profiling of the non-classical HLA groups in primary tumor tissue as well as metastases and recurrent tumors. The second step comprises tailored antibody therapies, which is the subject of this patent. In this review, we analyze the underlying mechanisms and describe the currently known differences between HLA-supported communication of implantation and that of tumors.
Collapse
Affiliation(s)
- Franziska M Würfel
- STRATIFYER Molecular Pathology GmbH, D-50935 Cologne, Werthmannstrasse 1c, 50935 Cologne, Germany.
| | | | | | - Ralph M Wirtz
- STRATIFYER Molecular Pathology GmbH, D-50935 Cologne, Werthmannstrasse 1c, 50935 Cologne, Germany.
| | | |
Collapse
|
4
|
Ssadh HA, Spencer PS, Alabdulmenaim W, Alghamdi R, Madar IH, Miranda-Sayago JM, Fernández N. Measurements of heterotypic associations between cluster of differentiation CD74 and CD44 in human breast cancer-derived cells. Oncotarget 2017; 8:92143-92156. [PMID: 29190904 PMCID: PMC5696170 DOI: 10.18632/oncotarget.20922] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/17/2017] [Indexed: 01/06/2023] Open
Abstract
Interactions between pairs of membrane-bound receptors can enhance tumour development with implications for targeted therapies for cancer. Here we demonstrate clear heterotypic interaction between CD74 and CD44, which might act in synergy and hence contribute to breast cancer progression. CD74, a type II transmembrane glycoprotein, is a chaperone for MHC class II biosynthesis and a receptor for the MIF. CD44 is the receptor for hyaluronic acid and is a Type I transmembrane protein. Interactions between CD74, MIF and the intra-cytoplasmic domain of CD44 result in activation of ERK1/2 pathway, leading to increased cell proliferation and decreased apoptosis. The level of CD44 in the breast tumor cell lines CAMA-1, MDA-MB-231, MDA-MB-435 and the immortalized normal luminal cell line 226LDM was higher than that of CD74. It was also observed that CD74 and CD44 exhibit significant variation in expression levels across the cells. CD74 and CD44 were observed to accumulate in cytoplasmic compartments, suggesting they associate with each other to facilitate tumour growth and metastasis. Use of a novel and validated colocalisation and image processing approach, coupled with co-immunoprecipitation, confirmed that CD74 and CD44 physically interact, suggesting a possible role in breast tumour growth. This is the first time that CD74 and CD44 colocalization has been quantified in breast cancer cells using a non-invasive and validated bioimaging procedure. Measuring the co-expression levels of CD74 and CD44 could potentially be used as a ‘biomarker signature’ to monitor different stages of breast cancer.
Collapse
Affiliation(s)
- Hussain Al Ssadh
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, United Kingdom
| | - Patrick S Spencer
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, United Kingdom
| | - Waleed Alabdulmenaim
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, United Kingdom.,Pathology Department, College of Medicine, Qassim University, Qassim, Saudi Arabia
| | - Rana Alghamdi
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, United Kingdom.,King Abdulaziz University, Rabigh Campus, Rabigh, Saudi Arabia
| | - Inamul Hasan Madar
- Department of Biotechnology and Genetic Engineering, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Jose M Miranda-Sayago
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, United Kingdom
| | - Nelson Fernández
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, United Kingdom
| |
Collapse
|
5
|
Thaker YR, Recino A, Raab M, Jabeen A, Wallberg M, Fernandez N, Rudd CE. Activated Cdc42-associated kinase 1 (ACK1) binds the sterile α motif (SAM) domain of the adaptor SLP-76 and phosphorylates proximal tyrosines. J Biol Chem 2017; 292:6281-6290. [PMID: 28188290 PMCID: PMC5391757 DOI: 10.1074/jbc.m116.759555] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 02/09/2017] [Indexed: 01/24/2023] Open
Abstract
The adaptor protein Src homology 2 domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76) plays a crucial role in T cell activation by linking antigen receptor (T cell receptor, TCR) signals to downstream pathways. At its N terminus, SLP-76 has three key tyrosines (Tyr-113, Tyr-128, and Tyr-145, "3Y") as well as a sterile α motif (SAM) domain whose function is unclear. We showed previously that the SAM domain has two binding regions that mediate dimer and oligomer formation. In this study, we have identified SAM domain-carrying non-receptor tyrosine kinase, activated Cdc42-associated tyrosine kinase 1 (ACK1; also known as Tnk2, tyrosine kinase non-receptor 2) as a novel binding partner of SLP-76. Co-precipitation, laser-scanning confocal microscopy, and in situ proximity analysis confirmed the binding of ACK1 to SLP-76. Further, the interaction was induced in response to the anti-TCR ligation and abrogated by the deletion of SLP-76 SAM domain (ΔSAM) or mutation of Tyr-113, Tyr-128, and Tyr-145 to phenylalanine (3Y3F). ACK1 induced phosphorylation of the SLP-76 N-terminal tyrosines (3Y) dependent on the SAM domain. Further, ACK1 promoted calcium flux and NFAT-AP1 promoter activity and decreased the motility of murine CD4+ primary T cells on ICAM-1-coated plates, an event reversed by a small molecule inhibitor of ACK1 (AIM-100). These findings identify ACK1 as a novel SLP-76-associated protein-tyrosine kinase that modulates early activation events in T cells.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/immunology
- Adaptor Proteins, Signal Transducing/metabolism
- Amino Acid Motifs
- Amino Acid Substitution
- Animals
- Humans
- Jurkat Cells
- Lymphocyte Activation/physiology
- Mice
- Mutation, Missense
- Phosphoproteins/genetics
- Phosphoproteins/immunology
- Phosphoproteins/metabolism
- Phosphorylation/physiology
- Protein Domains
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/immunology
- Protein-Tyrosine Kinases/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Tyrosine
Collapse
Affiliation(s)
- Youg R Thaker
- From the Cell Signaling Section, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom,
| | - Asha Recino
- From the Cell Signaling Section, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| | - Monika Raab
- the Department of Obstetrics and Gynecology, School of Medicine, J. W. Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Asma Jabeen
- the School of Biological Science, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Maja Wallberg
- From the Cell Signaling Section, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| | - Nelson Fernandez
- the School of Biological Science, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Christopher E Rudd
- From the Cell Signaling Section, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
- the Division of Immunology-Oncology Research Center Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada, and
- the Département de Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
6
|
Burrows CK, Kosova G, Herman C, Patterson K, Hartmann KE, Velez Edwards DR, Stephenson MD, Lynch VJ, Ober C. Expression Quantitative Trait Locus Mapping Studies in Mid-secretory Phase Endometrial Cells Identifies HLA-F and TAP2 as Fecundability-Associated Genes. PLoS Genet 2016; 12:e1005858. [PMID: 27447835 PMCID: PMC4957750 DOI: 10.1371/journal.pgen.1005858] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/20/2016] [Indexed: 12/29/2022] Open
Abstract
Fertility traits in humans are heritable, however, little is known about the genes that influence reproductive outcomes or the genetic variants that contribute to differences in these traits between individuals, particularly women. To address this gap in knowledge, we performed an unbiased genome-wide expression quantitative trait locus (eQTL) mapping study to identify common regulatory (expression) single nucleotide polymorphisms (eSNPs) in mid-secretory endometrium. We identified 423 cis-eQTLs for 132 genes that were significant at a false discovery rate (FDR) of 1%. After pruning for strong LD (r2 >0.95), we tested for associations between eSNPs and fecundability (the ability to get pregnant), measured as the length of the interval to pregnancy, in 117 women. Two eSNPs were associated with fecundability at a FDR of 5%; both were in the HLA region and were eQTLs for the TAP2 gene (P = 1.3x10-4) and the HLA-F gene (P = 4.0x10-4), respectively. The effects of these SNPs on fecundability were replicated in an independent sample. The two eSNPs reside within or near regulatory elements in decidualized human endometrial stromal cells. Our study integrating eQTL mapping in a primary tissue with association studies of a related phenotype revealed novel genes and associated alleles with independent effects on fecundability, and identified a central role for two HLA region genes in human implantation success. Little is known about the genetics of female fertility. In this study, we addressed this gap in knowledge by first searching for genetic variants that regulate gene expression in uterine endometrial cells, and then testing those functional variants for associations with the length of time to pregnancy in fertile women. Two functional genetic variants were associated with time to pregnancy in women after correcting for multiple testing. Those variants were each associated with the expression of genes in the HLA region, HLA-F and TAP2, which are have not previously been implicated female fertility. The association between HLA-F and TAP2 genotypes on the length of time to pregnancy was replicated in an independent cohort of women. Because HLA-F and TAP2 are involved in immune processes, these results suggest their role in specific immune regulation in the endometrium during implantation. Future studies will characterize these molecules in the implantation process and their potential as drug targets for treatment of conditions related to implantation failure.
Collapse
Affiliation(s)
- Courtney K. Burrows
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
| | - Gülüm Kosova
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
| | - Catherine Herman
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
| | - Kristen Patterson
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
| | - Katherine E. Hartmann
- Institute for Medicine and Public Health, Vanderbilt Epidemiology Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Departments of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Digna R. Velez Edwards
- Institute for Medicine and Public Health, Vanderbilt Epidemiology Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Departments of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Mary D. Stephenson
- Department of Obstetrics and Gynecology, The University of Chicago, Chicago, Illinois, United States of America
| | - Vincent J. Lynch
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
| | - Carole Ober
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
- Department of Obstetrics and Gynecology, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
7
|
Hayrabedyan S, Todorova K, Jabeen A, Metodieva G, Toshkov S, Metodiev MV, Mincheff M, Fernández N. Sertoli cells have a functional NALP3 inflammasome that can modulate autophagy and cytokine production. Sci Rep 2016; 6:18896. [PMID: 26744177 PMCID: PMC4705529 DOI: 10.1038/srep18896] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/27/2015] [Indexed: 02/07/2023] Open
Abstract
Sertoli cells, can function as non-professional tolerogenic antigen-presenting cells, and sustain the blood-testis barrier formed by their tight junctions. The NOD-like receptor family members and the NALP3 inflammasome play a key role in pro-inflammatory innate immunity signalling pathways. Limited data exist on NOD1 and NOD2 expression in human and mouse Sertoli cells. Currently, there is no data on inflammasome expression or function in Sertoli cells. We found that in primary pre-pubertal Sertoli cells and in adult Sertoli line, TLR4\NOD1 and NOD2 crosstalk converged in NFκB activation and elicited a NALP3 activation, leading to de novo synthesis and inflammasome priming. This led to caspase-1 activation and IL-1β secretion. We demonstrated this process was controlled by mechanisms linked to autophagy. NOD1 promoted pro-IL-1β restriction and autophagosome maturation arrest, while NOD2 promoted caspase-1 activation, IL-1β secretion and autophagy maturation. NALP3 modulated NOD1 and pro-IL-1β expression, while NOD2 inversely promoted IL-1β. This study is proof of concept that Sertoli cells, upon specific stimulation, could participate in male infertility pathogenesis via inflammatory cytokine induction.
Collapse
Affiliation(s)
- Soren Hayrabedyan
- Institute of Biology and Immunology of Reproduction, Laboratory of Reproductive Omics Technologies, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Krassimira Todorova
- Institute of Biology and Immunology of Reproduction, Laboratory of Reproductive Omics Technologies, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Asma Jabeen
- School of Biological Sciences, Wivenhoe Park, University of Essex, Colchester, UK
| | - Gergana Metodieva
- School of Biological Sciences, Wivenhoe Park, University of Essex, Colchester, UK
| | - Stavri Toshkov
- Cellular and Gene Therapy Ward, National Specialized Haematology Hospital, Sofia, Bulgaria
| | - Metodi V Metodiev
- School of Biological Sciences, Wivenhoe Park, University of Essex, Colchester, UK
| | - Milcho Mincheff
- Cellular and Gene Therapy Ward, National Specialized Haematology Hospital, Sofia, Bulgaria
| | - Nelson Fernández
- School of Biological Sciences, Wivenhoe Park, University of Essex, Colchester, UK
| |
Collapse
|
8
|
Civetta A. Adaptive evolution at immune system genes and deep pregnancy implantation in primates. Genomics 2015; 105:17-22. [PMID: 25451741 DOI: 10.1016/j.ygeno.2014.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 12/31/2022]
Abstract
A major evolutionary change in the lineage ancestral to humans, chimpanzee and gorilla (HCG) has been the embedding of the embryo into maternal tissue. Thus, the first layer of cells (trophoblast) to differentiate after fertilization must adapt to invade the uterus. Such event would likely leave signatures of positive selection at genes with roles in embryo implantation. Here, 163 pregnancy implantation genes are tested for evidence of adaptive diversification in the ancestral lineage to HCG. Two immune system genes, HLA-E and KIR2DL4 showed evidence of positive selection. Some of the positive selected sites involve amino acid substitution with predicted damaging effects on protein function, thus highlighting the possibility of antagonistic pleiotropic effects. Selection at a gene coding for a receptor expressed in uterine cells (KIR) that interacts with trophoblast human leukocyte antigen (HLA) genes suggests a main role for immunological adaptations in embryo deep invasion of the maternal endometrium.
Collapse
Affiliation(s)
- Alberto Civetta
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada.
| |
Collapse
|
9
|
Djurisic S, Hviid TVF. HLA Class Ib Molecules and Immune Cells in Pregnancy and Preeclampsia. Front Immunol 2014; 5:652. [PMID: 25566263 PMCID: PMC4274990 DOI: 10.3389/fimmu.2014.00652] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 12/05/2014] [Indexed: 01/14/2023] Open
Abstract
Despite decades of research, the highly prevalent pregnancy complication preeclampsia, “the disease of theories,” has remained an enigma. Indeed, the etiology of preeclampsia is largely unknown. A compiling amount of studies indicates that the pathological basis involves a complex array of genetic predisposition and immunological maladaptation, and that a contribution from the mother, the father, and the fetus is likely to be important. The Human Leukocyte Antigen (HLA)-G is an increasing focus of research in relation to preeclampsia. The HLA-G molecule is primarily expressed by the extravillous trophoblast cells lining the placenta together with the two other HLA class Ib molecules, HLA-E and HLA-F. Soluble isoforms of HLA-G have been detected in the early endometrium, the matured cumulus–oocyte complex, maternal blood of pregnant women, in umbilical cord blood, and lately, in seminal plasma. HLA-G is believed to be involved in modulating immune responses in the context of vascular remodeling during pregnancy as well as in dampening potential harmful immune attacks raised against the semi-allogeneic fetus. In addition, HLA-G genetic variants are associated with both membrane-bound and soluble forms of HLA-G, and, in some studies, with preeclampsia. In this review, a genetic contribution from the mother, the father, and the fetus, together with the presence and function of various immune cells of relevance in pregnancy are reviewed in relation to HLA-G and preeclampsia.
Collapse
Affiliation(s)
- Snezana Djurisic
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Copenhagen University Hospital (Roskilde), University of Copenhagen , Roskilde , Denmark
| | - Thomas Vauvert F Hviid
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Copenhagen University Hospital (Roskilde), University of Copenhagen , Roskilde , Denmark
| |
Collapse
|