1
|
Pérez-Atehortúa M, Short SE, Aranzaez-Rios C, Farías J, Oliveira RPS, Pereira WA, Risopatrón J, Valdebenito I, Villalobos EF. Preparation and extraction of chorion proteins from Salmo salar embryos at the pigmented eye stage for electrophoresis with SDS-polyacrylamide gel. MethodsX 2024; 12:102533. [PMID: 38223216 PMCID: PMC10784690 DOI: 10.1016/j.mex.2023.102533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/22/2023] [Indexed: 01/16/2024] Open
Abstract
The chorion fulfills important functions in fish embryos, including protecting the embryo during development. The characterization of the protein profile of this envelope could be used as a bioindicator in the evaluation of the quality of embryonic development. The object of this work was to validate a standardized protocol for protein extraction from chorion of Salmo salar embryos at 280 accumulated thermal units (ATU) by comparing and combining existing methods. The protocol consists of consecutive washing of the chorion samples followed by protein extraction with the solution that was named SDS solution (Tris-HCl 100 mM (pH 8), Urea 8 M, 1% SDS, β-mercaptoethanol 300 mM and EGTA 10 Mm, and 1% protease inhibitor cocktail) and mechanical methods. Protein extraction is enhanced by a working temperature of 75 °C and use of a disperser. The protein concentration was quantified by Bradford Assay. After extraction, the samples were diluted (dilution factor 10) before reading against the calibration curve. After gel electrophoresis with a load of 3 µg of protein, staining showed more than 4 bands, with molecular weights between 25 kDa and 180 kDa.•The protein profile of fish chorion was between 25 kDa and 180 kDa.•Solution containing 1% SDS allows a higher extraction of proteins from the chorion of Atlantic salmon embryos with 280 ATU.•Chorion protein identification is a valuable tool in determining gamete and embryo quality in fish.
Collapse
Affiliation(s)
- Maritza Pérez-Atehortúa
- Doctoral student in Agricultural Sciences, Faculty of Natural Resources, Catholic University of Temuco, Temuco 4781312 Chile
- Nucleus of Research in Food Production, Faculty of Natural Resources, Catholic University of Temuco, Temuco 4781312 Chile
| | - Stefania E. Short
- Department of Chemical Engineering, Faculty of Engineering and Sciences, La Frontera University, Temuco, Chile
| | - Cristian Aranzaez-Rios
- Department of Chemical Engineering, Faculty of Engineering and Sciences, La Frontera University, Temuco, Chile
| | - Jorge Farías
- Department of Chemical Engineering, Faculty of Engineering and Sciences, La Frontera University, Temuco, Chile
| | - Ricardo Pinheiro S. Oliveira
- Laboratory of Microbial Biomolecules, School of Pharmaceutical Sciences, University of São Paulo, Rua Do Lago, 250, Cidade Universitária, São Paulo 05508 000, Brazil
| | - Wellison Amorim Pereira
- Laboratory of Microbial Biomolecules, School of Pharmaceutical Sciences, University of São Paulo, Rua Do Lago, 250, Cidade Universitária, São Paulo 05508 000, Brazil
| | - Jennie Risopatrón
- Center of Excellence in Biotechnology on Reproduction (BIOREN-CEBIOR), Faculty of Medicine, La Frontera University, Temuco 4811230, Chile
| | - Iván Valdebenito
- Nucleus of Research in Food Production, Faculty of Natural Resources, Catholic University of Temuco, Temuco 4781312 Chile
| | - Elías Figueroa Villalobos
- Nucleus of Research in Food Production, Faculty of Natural Resources, Catholic University of Temuco, Temuco 4781312 Chile
| |
Collapse
|
2
|
Vijay P, Panwar D, Narwal R, Sehgal N. Structural modeling and gene expression analysis of phosvitinless vitellogenin (vgc) in the Indian freshwater murrel, Channa punctatus (Bloch, 1793). Gen Comp Endocrinol 2024; 352:114491. [PMID: 38494038 DOI: 10.1016/j.ygcen.2024.114491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Abstract
Vitellogenin (Vg) is a female-specific egg-yolk precursor protein, synthesized in the liver of fish in response to estrogens. In the present study, complete gene of phosvitinless vitellogenin (vgc) was sequenced, its 3D structure was predicted and validated by web-based softwares. The complete nucleotide sequence of vgc was 4126 bp which encodes for 1272 amino acids and showed the presence of three conserved domains viz. LPD_N, DUF1943 and DUF1944. The retrieved amino acid sequence of VgC protein was subjected to in silico analysis for understanding the structural and functional properties of protein. mRNA levels of multiple vg genes have also been quantified during annual reproductive cycle employing qPCR. A correlation has been observed between seasonal changes in gonadosomatic index with estradiol levels and hepatic expression of three types of vg genes (vga, vgb, vgc) during ovarian cycle of murrel. During preparatory phase, when photoperiod and temperature are low; low titre of E2 in blood induces expression of vgc gene. A rapid increase in the levels of E2 favours induction of vgb and vga genes in liver of murrel during early pre-spawning phase when photoperiod is long and temperature is high in nature. These results suggest that among three vitellogenin proteins, VgC is synthesized earlier than VgA and VgB during oogenesis.
Collapse
Affiliation(s)
- Pooja Vijay
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Deepak Panwar
- Center for Individualized Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Ritu Narwal
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Neeta Sehgal
- Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|
3
|
Ma Y, Luo Y, Li W, Wang D, Ning Z. White Isthmus Transcriptome Analysis Reveals the Mechanism of Translucent Eggshell Formation. Animals (Basel) 2024; 14:1477. [PMID: 38791694 PMCID: PMC11117225 DOI: 10.3390/ani14101477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The presence of translucent eggshells is a type of egg quality issue that impacts egg sales. While many researchers have studied them, the exact mechanisms behind their formation remain unclear. In this study, we conducted a transcriptomic differential expression analysis of the isthmus region of the oviduct in both normal egg- and translucent egg-laying hens. The analysis revealed that differentially expressed gene pathways were predominantly concentrated in the synthesis, modification, and transport of eggshell membrane proteins, particularly collagen proteins, which provide structural support. These findings suggest that variations in the physical structure of the eggshell membrane, resulting from changes in its chemical composition, are the fundamental cause of translucent eggshell formation. This research provides a theoretical reference for reducing the occurrence of translucent eggs.
Collapse
Affiliation(s)
- Ying Ma
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.M.); (Y.L.); (W.L.)
| | - Yuxing Luo
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.M.); (Y.L.); (W.L.)
| | - Wen Li
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.M.); (Y.L.); (W.L.)
| | - Dehe Wang
- Department of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China;
| | - Zhonghua Ning
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.M.); (Y.L.); (W.L.)
| |
Collapse
|
4
|
Kodzik N, Ciereszko A, Szczepkowska B, Malinowska A, Dietrich MA. Comparative proteomic analysis of the ovarian fluid and eggs of Siberian sturgeon. BMC Genomics 2024; 25:451. [PMID: 38714919 PMCID: PMC11077782 DOI: 10.1186/s12864-024-10309-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Sturgeon species are living fossils that exhibit unique reproductive characteristics, and elucidation of the molecular processes governing the formation and quality of sturgeon eggs is crucial. However, comprehensive data on the protein composition of sturgeon ovarian fluid (OF) and eggs and their functional significance are lacking. To address this knowledge gap, the aim of the present study was to conduct a comprehensive comparative proteomic analysis of Siberian sturgeon OF and eggs using liquid chromatography-mass spectrometry (LC-MS/MS). RESULTS A total of 617 proteins were identified in OF, and 565 proteins were identified in eggs. A total of 772 proteins showed differential abundance. Among the differentially abundant proteins, 365 were more abundant in OFs, while 407 were more abundant in eggs. We identified 339 proteins unique to OFs and 287 proteins specific to eggs, and further investigated the top 10 most abundant proteins in each. The functional annotation of the OF proteins highlighted their predominant association with immune system processes, including the complement and coagulation cascade, neutrophil and leukocyte-mediated immunity, cholesterol metabolism, and regulation of the actin cytoskeleton. Analysis of egg proteins revealed enrichment in metabolic pathways, such as oxidative phosphorylation and fatty acid metabolism, and protein ubiquitination and translation. OF-specific proteins included extracellular matrix and secretory vesicles, and eggs were enriched in proteins localized to mitochondria and ribosome components. CONCLUSIONS This study presents the first comprehensive characterization of the protein composition of sturgeon OF and eggs and elucidates their distinct functional roles. These findings advance our understanding of sturgeon reproduction, OF-egg signaling and the origin of OF proteins. The mass spectrometry proteomics data have been deposited in the ProteomeXchange Consortium with the dataset identifier PXD044168 to ensure accessibility for further research.
Collapse
Affiliation(s)
- Natalia Kodzik
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, Olsztyn, 10-748, Poland
| | - Andrzej Ciereszko
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, Olsztyn, 10-748, Poland
| | - Bożena Szczepkowska
- Department of Sturgeon Fish Breeding, Inland Fisheries Institute in Olsztyn, Pozezdrze, Pieczarki, 11-610, Poland
| | - Agata Malinowska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, Warsaw, Warszawa, 02-106, Poland
| | - Mariola Aleksandra Dietrich
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, Olsztyn, 10-748, Poland.
| |
Collapse
|
5
|
Birk DS, Onose S, Kinoshita M, Murata K. Medaka, Oryzias latipes, egg envelopes are created by ovarian-expressed ZP proteins and liver-expressed choriogenins. ZOOLOGICAL LETTERS 2022; 8:11. [PMID: 35902919 PMCID: PMC9330664 DOI: 10.1186/s40851-022-00194-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
The medaka (Oryzias latipes) egg envelope (chorion) is composed of three major glycoproteins, Zona Interna (ZI)-1, -2, and -3, that originate in the spawning female liver as the precursor proteins Choriogenin (Chg.)H, Chg.Hm, and Chg.L, respectively. These ZI and Chg. proteins contain a structural ZP protein domain that is conserved among the egg envelope proteins of all animals. While ovarian expression of ZP proteins (e.g., ZPCs and ZPB) has been reported in medakas, the functions of these proteins remain unknown. Thus, the present study aimed to determine whether the ovary-expressed medaka ZP protein, mZPC5, is involved in forming the chorion matrix.The mZPC5 gene (mzpc5) was expressed in the ovaries but not the livers of mature female medakas, as shown by reverse transcription-polymerase chain reaction assays with mzpc5-specific primers. In situ hybridization analysis revealed that ovarian mzpc5 expression was restricted to the ooplasm of early (stage I-III) previtellogenic oocytes, and its expression signal weakened with oocyte growth. Following sodium-dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting analysis with anti-mZPC5 antibodies, two immunoreactive proteins were detected in the ovary and chorion extracts. These proteins were approximately 50 and 74 kDa in size, like ZI-3 and ZI-2, respectively.Immunohistochemical assays using anti-mZPC5 and anti-Chg.H antibodies localized the mZPC5 protein in the ooplasm of early previtellogenic oocytes. With oocyte growth, mZPC5 tended to accumulate in the chorion, co-localizing with Chg.H.We previously showed that ovary-expressed ZP proteins could not compensate for Chg.L function loss in gene knock-out (chg.l -/-) medakas. As in our previous study, the chg.l-/- females produced oocytes with thin chorions, resulting in infertile soft eggs. However, in the present study, mZPC5 and Chg.H were co-localized in the chg.l-/- chorions. These results suggested that in the medaka previtellogenic oocyte, 1) mZPC5 is secreted from the ooplasm and deposited on the outer surface of its plasma membrane, creating the thin chorion layer; and 2) following the accumulation of liver-derived Chgs., the 3D structure of the chorion matrix is formed cooperatively with mZPC5 and Chgs. during oogenesis. More research is needed to confirm the functions of mZPC5 in chorion structure and physiology.
Collapse
Affiliation(s)
- Devun S. Birk
- University of California, Davis. Center for Health and the Environment, Davis, CA 95616 USA
| | - Shinji Onose
- University of California, Davis. Center for Health and the Environment, Davis, CA 95616 USA
- Fordays Co., Ltd, Tokyo, 103-0016 Japan
| | - Masato Kinoshita
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502 Japan
| | - Kenji Murata
- University of California, Davis. Center for Health and the Environment, Davis, CA 95616 USA
| |
Collapse
|
6
|
Murata K, Kinoshita M. Targeted deletion of liver-expressed Choriogenin L results in the production of soft eggs and infertility in medaka, Oryzias latipes. ZOOLOGICAL LETTERS 2022; 8:1. [PMID: 34983666 PMCID: PMC8729012 DOI: 10.1186/s40851-021-00185-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/20/2021] [Indexed: 06/14/2023]
Abstract
Egg envelopes (chorions) in medaka, Oryzias latipes, are composed of three major glycoproteins: ZI-1, - 2, and - 3. These gene-encoded chorion glycoproteins are expressed in the liver and/or ovarian oocytes of sexually mature female fish. In medaka, the glycoproteins produced in the female liver are induced by estrogen as Choriogenin (Chg.) H and Chg. H minor (m), which correspond to the zona pellucida (ZP) B (ZPB) protein in mammals, and Chg. L, which corresponds to ZPC in mammals. Chg. H, Chg. Hm, and Chg. L, are then converted to ZI-1, - 2, and - 3, respectively, during oogenesis in medaka ovaries.In the present study, we established a medaka line in which the chg.l gene was inactivated using the transcription activator-like effector nuclease (TALEN) technique. Neither intact chg.l transcripts nor Chg. L proteins were detected in livers of sexually mature female homozygotes for the mutation (homozygous chg.l knockout: chg.l-/-). The chg.l-/- females spawned string-like materials containing "smashed eggs." Closer examination revealed the oocytes in the ovaries of chg.l-/- females had thin chorions, particularly at the inner layer, despite a normal growth rate. In comparing chorions from normal (chg.l+/+) and chg.l-/- oocytes, the latter exhibited abnormal architecture in the chorion pore canals through which the oocyte microvilli pass. These microvilli mediate the nutritional exchange between the oocyte and surrounding spaces and promote sperm-egg interactions during fertilization. Thus, following in vitro fertilization, no embryos developed in the artificially inseminated oocytes isolated from chg.l-/- ovaries. These results demonstrated that medaka ZI-3 (Chg.L) is the major component of the inner layer of the chorion, as it supports and maintains the oocyte's structural shape, enabling it to withstand the pressures exerted against the chorion during spawning, and is essential for successful fertilization. Therefore, gene products of oocyte-specific ZP genes that may be expressed in medaka oocytes cannot compensate for the loss Chg. L function to produce offspring for this species.
Collapse
Affiliation(s)
- Kenji Murata
- University of California, Davis. Center for Health and the Environment, Davis, CA 95616 USA
| | - Masato Kinoshita
- Division of Applied Bioscience, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502 Japan
| |
Collapse
|
7
|
Embryonic cuticle from artemia cyst shell displays amyloid-like characteristics and nontoxicity after oral consumption. J Biosci 2021. [DOI: 10.1007/s12038-020-00130-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Rojas J, Hinostroza F, Vergara S, Pinto-Borguero I, Aguilera F, Fuentes R, Carvacho I. Knockin' on Egg's Door: Maternal Control of Egg Activation That Influences Cortical Granule Exocytosis in Animal Species. Front Cell Dev Biol 2021; 9:704867. [PMID: 34540828 PMCID: PMC8446563 DOI: 10.3389/fcell.2021.704867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/16/2021] [Indexed: 12/23/2022] Open
Abstract
Fertilization by multiple sperm leads to lethal chromosomal number abnormalities, failed embryo development, and miscarriage. In some vertebrate and invertebrate eggs, the so-called cortical reaction contributes to their activation and prevents polyspermy during fertilization. This process involves biogenesis, redistribution, and subsequent accumulation of cortical granules (CGs) at the female gamete cortex during oogenesis. CGs are oocyte- and egg-specific secretory vesicles whose content is discharged during fertilization to block polyspermy. Here, we summarize the molecular mechanisms controlling critical aspects of CG biology prior to and after the gametes interaction. This allows to block polyspermy and provide protection to the developing embryo. We also examine how CGs form and are spatially redistributed during oogenesis. During egg activation, CG exocytosis (CGE) and content release are triggered by increases in intracellular calcium and relies on the function of maternally-loaded proteins. We also discuss how mutations in these factors impact CG dynamics, providing unprecedented models to investigate the genetic program executing fertilization. We further explore the phylogenetic distribution of maternal proteins and signaling pathways contributing to CGE and egg activation. We conclude that many important biological questions and genotype–phenotype relationships during fertilization remain unresolved, and therefore, novel molecular players of CG biology need to be discovered. Future functional and image-based studies are expected to elucidate the identity of genetic candidates and components of the molecular machinery involved in the egg activation. This, will open new therapeutic avenues for treating infertility in humans.
Collapse
Affiliation(s)
- Japhet Rojas
- Laboratorio Fisiología de la Reproducción, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile.,Escuela de Ingeniería en Biotecnología, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca, Chile
| | - Fernando Hinostroza
- Laboratorio Fisiología de la Reproducción, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile.,Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile.,Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca, Chile
| | - Sebastián Vergara
- Laboratorio Fisiología de la Reproducción, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile.,Escuela de Ingeniería en Biotecnología, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca, Chile
| | - Ingrid Pinto-Borguero
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Felipe Aguilera
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ricardo Fuentes
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ingrid Carvacho
- Laboratorio Fisiología de la Reproducción, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile
| |
Collapse
|
9
|
Killingbeck EE, Wilburn DB, Merrihew GE, MacCoss MJ, Swanson WJ. Proteomics support the threespine stickleback egg coat as a protective oocyte envelope. Mol Reprod Dev 2021; 88:500-515. [PMID: 34148267 PMCID: PMC8362008 DOI: 10.1002/mrd.23517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/20/2022]
Abstract
Ancestrally marine threespine stickleback fish (Gasterosteus aculeatus) have undergone an adaptive radiation into freshwater environments throughout the Northern Hemisphere, creating an excellent model system for studying molecular adaptation and speciation. Ecological and behavioral factors have been suggested to underlie stickleback reproductive isolation and incipient speciation, but reproductive proteins mediating gamete recognition during fertilization have so far remained unexplored. To begin to investigate the contribution of reproductive proteins to stickleback reproductive isolation, we have characterized the stickleback egg coat proteome. We find that stickleback egg coats are comprised of homologs to the zona pellucida (ZP) proteins ZP1 and ZP3, as in other teleost fish. Our molecular evolutionary analyses indicate that across teleosts, ZP3 but not ZP1 has experienced positive Darwinian selection. Mammalian ZP3 is also rapidly evolving, and surprisingly some residues under selection in stickleback and mammalian ZP3 directly align. Despite broad homology, however, we find differences between mammalian and stickleback ZP proteins with respect to glycosylation, disulfide bonding, and sites of synthesis. Taken together, the changes we observe in stickleback ZP protein architecture suggest that the egg coats of stickleback fish, and perhaps fish more generally, have evolved to fulfill a more protective functional role than their mammalian counterparts.
Collapse
Affiliation(s)
- Emily E Killingbeck
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Damien B Wilburn
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Gennifer E Merrihew
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Willie J Swanson
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
10
|
Wilson LB, Truong L, Simonich MT, Tanguay RL. Systematic Assessment of Exposure Variations on Observed Bioactivity in Zebrafish Chemical Screening. TOXICS 2020; 8:toxics8040087. [PMID: 33066419 PMCID: PMC7712973 DOI: 10.3390/toxics8040087] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/03/2020] [Accepted: 10/07/2020] [Indexed: 11/16/2022]
Abstract
The embryonic zebrafish is a powerful tool for high-throughput screening of chemicals. While this model has significant potential for use in safety assessments and chemical prioritization, a lack of exposure protocol harmonized across laboratories has limited full model adoption. To assess the potential that exposure protocols alter chemical bioactivity, we screened a set of eight chemicals and one 2D nanomaterial across four different regimens: (1) the current Tanguay laboratory's standard protocol of dechorionated embryos and static exposure in darkness; (2) exposure with chorion intact; (3) exposure under a 14 h light: 10 h dark cycle; and (4) exposure with daily chemical renewal. The latter three regimens altered the concentrations, resulting in bioactivity of the test agents compared to that observed with the Tanguay laboratory's standard regimen, though not directionally the same for each chemical. The results of this study indicate that with the exception for the 2D nanomaterial, the screening design did not change the conclusion regarding chemical bioactivity, just the nominal concentrations producing the observed activity. Since the goal of tier one chemical screening often is to differentiate active from non-active chemicals, researchers could consider the trade-offs regarding cost, labor, and sensitivity in their study design without altering hit rates. Taken further, these results suggest that it is reasonably feasible to reach agreement on a standardized exposure regiment, which will promote data sharing without sacrificing data content.
Collapse
|
11
|
Vijay P, Sehgal N. Structural analysis and characterization of egg-envelope in the Indian freshwater murrel, Channa punctatus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1847-1856. [PMID: 32535727 DOI: 10.1007/s10695-020-00834-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Egg-envelope, an acellular coat, surrounds the egg and is essential for vitellogenin incorporation. It also plays a pivotal role during fertilization and provides protection to the developing embryo. In the present study, scanning electron microscopy was used to elucidate the structural details of isolated egg-envelopes from the Indian freshwater murrel, Channa punctatus. Several pores and single micropyle were observed on outer surface, whereas inner layer indicated deposition of proteinaceous material. The constituent proteins of egg-envelope were further characterized by Fourier transform infrared (FT-IR) spectroscopy, and electrophoresis and mass-spectrometry (MALDI-TOF-MS/MS). The secondary structure of egg-envelope proteins showed the presence of antiparallel ß-pleated sheets and aromatic amino acids. These proteins resolved into two peptides (130 kDa and 68 kDa) under denaturing conditions, which exhibited glycoprotein nature. The peptide band with low molecular mass showed significant similarity with transmembrane protein, whereas peptide band with high molecular mass matched with choriogenin protein of other fishes. These results confirm that chorion is derived from precursor protein, Choriogenin, in murrel. Chemical composition of egg-envelope supports that chorion is responsible exchange material and chemical defence during embryogenesis.
Collapse
Affiliation(s)
- Pooja Vijay
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Neeta Sehgal
- Department of Zoology, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
12
|
Carnevali O, Maradonna F, Sagrati A, Candelma M, Lombardo F, Pignalosa P, Bonfanti E, Nocillado J, Palma P, Gioacchini G, Elizur A. Insights on the seasonal variations of reproductive features in the Eastern Atlantic Bluefin Tuna. Gen Comp Endocrinol 2019; 282:113216. [PMID: 31278920 DOI: 10.1016/j.ygcen.2019.113216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023]
Abstract
The Atlantic Bluefin Tuna (ABFT, Thunnus thynnus) is one of the most intensely exploited fisheries resources in the world. In spite of the years of studies on ABFT, basic aspects of its reproductive biology remain uncertain. To gain insight regarding the seasonal changes of the reproductive characteristics of the eastern stock of ABFT, blood and tissue samples were collected from mature specimens caught in the Mediterranean basin during the reproductive (May-June) and non-reproductive season (Oct-Nov). Histological analysis of the gonads of May-June samples indicated that there were females which were actively spawning (contained post-ovulatory follicles) and females that were not actively spawning that had previtellogenic and fully vitellogenic oocytes. In males, testis were at early or late stage of spermatogenesis during the reproductive season. In Oct-Nov, ovaries contained mostly previtellogenic oocytes as well as β and α atretic follicles while the testis predominantly contained spermatogonia and few cysts with spermatocytes and spermatozoa. Gonadosomatic index (GSI) in females was highest among the actively spawning individuals while in males GSI was higher in early and late spermatogenic individuals compared to those that were spent. Plasma sex steroids levels varied with the reproductive season. In females, estradiol (E2), was higher in May-June while testosterone (T) and progesterone (P) did not vary. In males, E2 and T were higher in May-June while P levels were similar at the two sampling points. Circulating follicle stimulating hormone (FSH) was higher in Oct-Nov than in May-June both in males and females. Vitellogenin (VTG) was detected in plasma from both males and females during the reproductive season with levels in females significantly higher than in males. VTG was undetected in Oct-Nov samples. Since choriogenesis is an important event during follicle growth, the expression of three genes involved in vitelline envelope formation and hardening was measured and results showed significantly higher levels in ovaries in fish caught in May-June with respect to those sampled in Oct-Nov. In addition, a set of genes encoding for ion channels that are responsible for oocyte hydration and buoyancy, as well as sperm viability, were characterized at the two time points, and these were found to be more highly expressed in females during the reproductive season. Finally, the expression level of three mRNAs encoding for different lipid-binding proteins was analyzed with significantly higher levels detected in males, suggesting sex-specific expression. Our findings provide additional information on the reproductive biology of ABFT, particularly on biomarkers for the assessment of the state of maturation of the gonad, highlighting gender-specific signals and seasonal differences.
Collapse
Affiliation(s)
- Oliana Carnevali
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Francesca Maradonna
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Andrea Sagrati
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Michela Candelma
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Francesco Lombardo
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | | | - Erica Bonfanti
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; Genecology Research Centre, University of the Sunshine Coast, Qld, Australia
| | - Josephine Nocillado
- Genecology Research Centre, University of the Sunshine Coast, Qld, Australia
| | - Peter Palma
- Genecology Research Centre, University of the Sunshine Coast, Qld, Australia; Aquaculture Department, Southeast Asian Fisheries Development Center, 5021 Tigbauan, Iloilo, Philippines
| | - Giorgia Gioacchini
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Abigail Elizur
- Genecology Research Centre, University of the Sunshine Coast, Qld, Australia
| |
Collapse
|
13
|
Vo NTK, Moore LC, Spiteri KW, Hanner R, Wilkie MP, DeWitte-Orr SJ. Assessing off-target cytotoxicity of the field lampricide 3-trifluoromethyl-4-nitrophenol using novel lake sturgeon cell lines. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:536-545. [PMID: 30016760 DOI: 10.1016/j.ecoenv.2018.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/29/2018] [Accepted: 07/04/2018] [Indexed: 06/08/2023]
Abstract
Lampricides are currently being applied to streams and rivers to control the population of sea lamprey, an invasive species, in the Great Lakes. The most commonly used lampricide agent used in the field is 3-trifluoromethyl-4-nitrophenol (TFM), which targets larval sea lamprey in lamprey-infested rivers and streams. The specificity of TFM is due to the relative inability of sea lamprey to detoxify the agent relative to non-target fishes. There is increasing concern, however, about non-target effects on fishes, particularly threatened populations of juvenile lake sturgeon (LS; Acipenser fulvescens). There is therefore a need to develop models to better define lake sturgeon's response to TFM. Here we report the establishment of five LS cell lines derived from the liver, gill, skin and intestinal tract of juvenile LS and some of their cellular characteristics. All LS cell lines grew well at 25 °C in Leibovitz's (L)- 15 medium supplemented with 10% FBS. All cell lines demonstrated high senescence-associated β-galactosidase activity and varying levels of Periodic acid Schiff-positive polysaccharides, indicating substantial production of glycoproteins and mucosubstances by the cells. Comparative toxicity of TFM in the five LS cell lines was assessed by two fluorescent cell viability dyes, Alamar Blue and CFDA-AM, in conditions with and without serum and at 24 or 72 h exposure. Deduced EC50 values were compared between the cell lines and to the reported in vivo LC50s. Tissues sensitive to the effects of TFM in vivo correlated with cell lines from the same tissues being most sensitive to TFM in vitro. EC50 values for the LSliver-e cells was significantly lower than the EC50 for the rainbow trout (RBT) liver cells RTL-W1, reaffirming the in vivo observation that LS was generally more TFM-sensitive than rainbow trout. Our data suggests that whole-fish sensitivity of LS to TFM is likely attributable to sensitivity at the cellular level. Thus, LS cell lines, as well as those of RBT, can be used to screen and evaluate the toxicity of the next generation of lampricides on non-target fish such as lake sturgeon.
Collapse
Affiliation(s)
- Nguyen T K Vo
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Levi C Moore
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Katelin W Spiteri
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Robert Hanner
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Michael P Wilkie
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Stephanie J DeWitte-Orr
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada; Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada.
| |
Collapse
|
14
|
Viana IKS, Gonçalves LAB, Ferreira MAP, Mendes YA, Rocha RM. Oocyte growth, follicular complex formation and extracellular-matrix remodeling in ovarian maturation of the imperial zebra pleco fish Hypancistrus zebra. Sci Rep 2018; 8:13760. [PMID: 30213994 PMCID: PMC6137070 DOI: 10.1038/s41598-018-32117-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 08/16/2018] [Indexed: 01/29/2023] Open
Abstract
This contribution describes the growth of oocytes, addressing the formation of structures that compose the follicular complex, as well as the remodeling of the extracellular matrix, specifically laminin, fibronectin and type IV collagen during gonadal maturation. Thirty-seven females of the Acari zebra fish, Hypancistrus zebra were captured and the ovaries were submitted to histological processing for light and electron microscopy and immunohistochemistry techniques. Oogonia and four stages (I – IV) of oocytes were distinguished, and structures such as the postovulatory follicle and atretic oocytes (initial and advanced atresia) were observed. The follicular complex consists of the mature oocyte, zona radiata (Zr1, Zr2 and Zr3), follicular cells, basement membrane and theca. During oocyte growth, proteins of the extracellular matrix showed different intensities of staining. Based on these observations, a model of oocyte growth is proposed to define specific characteristics of the oocyte and the remodeling of the extracellular matrix in the ovary of H. zebra. This model of oocyte growth can be extended to other species of ornamental fishes. This study contributes data for induced fertilization and eventual conservation of this species.
Collapse
Affiliation(s)
- Ivana Kerly S Viana
- Institute of Biological Sciences, Universidade Federal do Pará, Belém, Pará, Brazil.
| | | | | | - Yanne A Mendes
- Institute of Biological Sciences, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Rossineide M Rocha
- Institute of Biological Sciences, Universidade Federal do Pará, Belém, Pará, Brazil
| |
Collapse
|
15
|
Wu T, Cheng Y, Liu Z, Tao W, Zheng S, Wang D. Bioinformatic analyses of zona pellucida genes in vertebrates and their expression in Nile tilapia. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:435-449. [PMID: 29307115 DOI: 10.1007/s10695-017-0434-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/17/2017] [Indexed: 06/07/2023]
Abstract
Zona pellucida (ZP) genes encode ZP glycoproteins which constitute the coat surrounding oocytes and early embryos. Genome-wide identification of ZP genes is still lacking in vertebrates, especially in fish species. Herein, we conducted bioinformatic analyses of the ZP genes of the Nile tilapia and other vertebrates. Totally 16, 9, 17, 27, 21, 20, 26, 19, 14,11, 24, 17, 9, 18, 8, 11, 9, 8, 5, and 4 ZP genes belonging to 5 subfamilies (ZPA, ZPB, ZPC, ZPD, and ZPAX) were found in the sea lamprey, elephant shark, coelacanth, spotted gar, zebrafish, medaka, stickleback, Nile tilapia, Amazon molly, platyfish, seahorse, Northern snakehead, cavefish, tetraodon, clawed frog, turtle, chicken, platypus, kangaroo rat, and human genomes, respectively. The expansion of ZP genes in basal vertebrates was mainly achieved by gene duplication of ZPB, ZPC, and ZPAX subfamilies, while the shrink of ZP gene number in viviparous mammals was achieved by keeping only one copy of the ZP genes in each subfamily or even secondary loss of some subfamilies. The number of ZP gene is related to the environment where the eggs are fertilized and the embryos develop in vertebrates. Transcriptomic analysis showed that 14 ZP genes were expressed in the ovary of Nile tilapia, while two (ZPB2b and ZPC2) were highly expressed in the liver. On the other hand, ZPB1a and ZPB2c were not found to be expressed in any tissue or at any developmental stage of the gonads examined. In the ovary, the expression of ZP genes started from 30 dah (days after hatching), significantly upregulated at 90 dah and maintained this level at 180 dah. The expression of ZPC2 in the liver and ZPC5-2 and ZPAX1 in the ovary was confirmed by in situ hybridization. The ovary- and liver-expressed ZP genes are expressed coordinately with oocyte growth in tilapia.
Collapse
Affiliation(s)
- Tianli Wu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Fisheries College, Guangdong Ocean University, Zhanjiang, Guangdong, 524025, China
| | - Yunying Cheng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Zhilong Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Shuqing Zheng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
16
|
|
17
|
Niksirat H, Andersson L, Golpour A, Chupani L, James P. Quantification of egg proteome changes during fertilization in sterlet Acipenser ruthenus. Biochem Biophys Res Commun 2017; 490:189-193. [DOI: 10.1016/j.bbrc.2017.06.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 06/02/2017] [Indexed: 11/25/2022]
|
18
|
Cao L, Huang Q, Wu Z, Cao DD, Ma Z, Xu Q, Hu P, Fu Y, Shen Y, Chan J, Zhou CZ, Zhai W, Chen L. Neofunctionalization of zona pellucida proteins enhances freeze-prevention in the eggs of Antarctic notothenioids. Nat Commun 2016; 7:12987. [PMID: 27698404 PMCID: PMC5059455 DOI: 10.1038/ncomms12987] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 08/24/2016] [Indexed: 12/26/2022] Open
Abstract
The mechanisms by which the eggs of the Antarctic notothenioid fishes avoid freezing are not fully understood. Zona pellucida proteins (ZPs) are constituents of the chorion which forms a protective matrix surrounding the egg. Here we report occurrence of freezing temperature-related gene expansion and acquisition of unusual ice melting-promoting (IMP) activity in a family of Antarctic notothenioid ZPs (AnnotoZPs). Members of AnnotoZPs are shown to bind with ice and non-colligatively depress the melting point of a solution in a range of 0.26 to 0.65 °C at a moderate concentration. Eggs of zebrafishes expressing an AnnotoZP transgene show improved melting point depression and enhanced survival in freezing conditions. Mutational analyses in a representative AnnotoZP indicate the ZP domain and patches of acidic residues are essential structures for the IMP activity. AnnotoZPs, therefore, represent a group of macromolecules that prevent freezing by a unique ZP-ice interaction mechanism distinct from the known antifreeze proteins.
Collapse
Affiliation(s)
- Lixue Cao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiao Huang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Zhichao Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Dong-dong Cao
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhanling Ma
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Qianghua Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Peng Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Yanxia Fu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Yu Shen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiulin Chan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Cong-zhao Zhou
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wanying Zhai
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Liangbiao Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
19
|
Ribas L, Robledo D, Gómez-Tato A, Viñas A, Martínez P, Piferrer F. Comprehensive transcriptomic analysis of the process of gonadal sex differentiation in the turbot (Scophthalmus maximus). Mol Cell Endocrinol 2016; 422:132-149. [PMID: 26586209 DOI: 10.1016/j.mce.2015.11.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 11/03/2015] [Accepted: 11/03/2015] [Indexed: 10/22/2022]
Abstract
The turbot is a flatfish with a ZW/ZZ sex determination system but with a still unknown sex determining gene(s), and with a marked sexual growth dimorphism in favor of females. To better understand sexual development in turbot we sampled young turbot encompassing the whole process of gonadal differentiation and conducted a comprehensive transcriptomic study on its sex differentiation using a validated custom oligomicroarray. Also, the expression profiles of 18 canonical reproduction-related genes were studied along gonad development. The expression levels of gonadal aromatase cyp19a1a alone at three months of age allowed the accurate and early identification of sex before the first signs of histological differentiation. A total of 56 differentially expressed genes (DEG) that had not previously been related to sex differentiation in fish were identified within the first three months of age, of which 44 were associated with ovarian differentiation (e.g., cd98, gpd1 and cry2), and 12 with testicular differentiation (e.g., ace, capn8 and nxph1). To identify putative sex determining genes, ∼4.000 DEG in juvenile gonads were mapped and their positions compared with that of previously identified sex- and growth-related quantitative trait loci (QTL). Although no genes mapped to the previously identified sex-related QTLs, two genes (foxl2 and 17βhsd) of the canonical reproduction-related genes mapped to growth-QTLs in linkage group (LG) 15 and LG6, respectively, suggesting that these genes are related to the growth dimorphism in this species.
Collapse
Affiliation(s)
- L Ribas
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), 08003, Barcelona, Spain
| | - D Robledo
- Departamento de Genética. Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002, Lugo, Spain
| | - A Gómez-Tato
- Departamento de Matemática Aplicada, Facultad de Matemáticas, Universidad de Santiago de Compostela, 15781, Santiago de Compostela, Spain
| | - A Viñas
- Departamento de Genética. Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002, Lugo, Spain
| | - P Martínez
- Departamento de Genética. Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002, Lugo, Spain
| | - F Piferrer
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), 08003, Barcelona, Spain.
| |
Collapse
|
20
|
Murata K, Kinoshita M. Establishment of proprotein convertase, furinA knocked-out lines in medaka, Oryzias latipes, and unique form of medaka furin-like prorprotein convertase (mflPC). Comp Biochem Physiol C Toxicol Pharmacol 2015; 178:169-180. [PMID: 26475985 DOI: 10.1016/j.cbpc.2015.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/09/2015] [Accepted: 10/09/2015] [Indexed: 10/22/2022]
Abstract
Furin is a member of the subtilisin-like proprotein convertase family. Medaka furin-like proprotein convertase (mflPC), a unique form of medaka FurinA (mFurinA) (GenBank accession no. AB092685.1) was cloned from the ovary cDNA library. Compared to human furin (GenBank accession no. NM_002569.3) and mFurinA in the structural motif of mflPC, only the catalytic domain and the N-terminal region of the P domain are highly conserved, but more C-terminal domains are truncated. Based on our research, there three forms of furin, mFurinA, mflPC and mFurinB that exist in medaka. These three genes are expressed in the developing embryos and ubiquitously in adult tissues. To investigate the function of mFurinA and mflPC, as a first step, mFurinA KO lines were established. The mFurinA KO larvae with abnormal phenotypes exhibit edema, abnormal body fluid accumulation in the pericardial and yolk sacs, enlarged hearts, clogged blood vessels, structurally weak eyes, and a very short life. The data suggests that abnormal processing of TGF-β may be one of the causes of these disorders. FurinA KO medaka is a good model for the study of human diseases such as Fraser Syndrome and Marfan syndrome. The creation of human genomic disorder models using recently advanced genome editing procedures informs us of the function of key molecules and their role in causing equivalent human disorders and will be useful as a tool to identify the mechanisms involved.
Collapse
Affiliation(s)
- Kenji Murata
- Center for Health and the Environment, University of CA, Davis, Old Davis Road, Davis, CA 95616, USA.
| | - Masato Kinoshita
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| |
Collapse
|