1
|
Sun W, Ma S, Jin X, Ma Y. Combined analysis of mRNA-miRNA from testis tissue in Tibetan sheep with different FecB genotypes. Open Life Sci 2023; 18:20220605. [PMID: 37250847 PMCID: PMC10224625 DOI: 10.1515/biol-2022-0605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 05/31/2023] Open
Abstract
Testis size is important for identifying breeding animals with adequate sperm production. The aim of this study was to survey the expression profile of mRNA and miRNA in testis tissue from rams carrying different FecB genotypes, including the wild-type and heterozygous genotypes in Tibetan sheep. Comparative transcriptome profiles for ovine testes were established for wild-type and heterozygote Tibetan sheep by next-generation sequencing. RNA-seq results identified 3,910 (2,034 up- and 1,876 downregulated) differentially expressed (DE) genes and 243 (158 up- and 85 downregulated) DE microRNAs (miRNAs) in wild-type vs heterozygote sheep, respectively. Combined analysis of mRNA-seq and miRNA-seq revealed that 20 miRNAs interacted with 48 true DE target genes in wild-type testes compared to heterozygous genotype testes. These results provide evidence for a functional series of genes operating in Tibetan sheep testis. In addition, quantitative real-time PCR analysis showed that the expression trends of randomly selected DE genes in testis tissues from different genotypes were consistent with high-throughput sequencing results.
Collapse
Affiliation(s)
- Wu Sun
- Department of Animal Science and Veterinary Medicine, Qinghai University, Xining, Qinghai, 810016, China
- Key Laboratory of Livestock and Poultry Genetics and Breeding on the Qinghai-Tibet Plateau, Ministry of Agriculture and Rural Affairs, Xining, 810016, China
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, 810016, China
| | - Shike Ma
- Department of Animal Science and Veterinary Medicine, Qinghai University, Xining, Qinghai, 810016, China
- Key Laboratory of Livestock and Poultry Genetics and Breeding on the Qinghai-Tibet Plateau, Ministry of Agriculture and Rural Affairs, Xining, 810016, China
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, 810016, China
| | - Xiayang Jin
- Department of Animal Science and Veterinary Medicine, Qinghai University, Xining, Qinghai, 810016, China
- Key Laboratory of Livestock and Poultry Genetics and Breeding on the Qinghai-Tibet Plateau, Ministry of Agriculture and Rural Affairs, Xining, 810016, China
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, 810016, China
| | - Yuhong Ma
- Department of Animal Science and Veterinary Medicine, Qinghai University, Xining, Qinghai, 810016, China
- Key Laboratory of Livestock and Poultry Genetics and Breeding on the Qinghai-Tibet Plateau, Ministry of Agriculture and Rural Affairs, Xining, 810016, China
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, 810016, China
| |
Collapse
|
2
|
Bai X, Zheng L, Xu Y, Liang Y, Li D. Role of microRNA-34b-5p in cancer and injury: how does it work? Cancer Cell Int 2022; 22:381. [PMID: 36457043 PMCID: PMC9713203 DOI: 10.1186/s12935-022-02797-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) are a class of noncoding single-stranded RNAs that can regulate gene expression by binding to the untranslated sequences at the 3 ' end of messenger RNAs. The microRNA-34 family is dysregulated in various human diseases. It is considered as a tumor-suppressive microRNA because of its synergistic effect with the well-known tumor suppressor p53. As a member of the miRNA-34 family, miR-34b-5p serves as a powerful regulator of a suite of cellular activities, including cell growth, multiplication, development, differentiation, and apoptosis. It promotes or represses disease occurrence and progression by participating in some important signaling pathways. This review aimed to provide an overview and update on the differential expression and function of miR-34b-5p in pathophysiologic processes, especially cancer and injury. Additionally, miR-34b-5p-mediated clinical trials have indicated promising consequences for the therapies of carcinomatosis and injury. With the application of the first tumor-targeted microRNA drug based on miR-34a mimics, it can be inferred that miR-34b-5p may become a crucial factor in the therapy of various diseases. However, further studies on miR-34b-5p should shed light on its involvement in disease pathogenesis and treatment options.
Collapse
Affiliation(s)
- Xuechun Bai
- grid.452829.00000000417660726The Second Hospital of Jilin University, Changchun, Jilin China
| | - Lianwen Zheng
- grid.452829.00000000417660726The Second Hospital of Jilin University, Changchun, Jilin China
| | - Ying Xu
- grid.452829.00000000417660726The Second Hospital of Jilin University, Changchun, Jilin China
| | - Yan Liang
- grid.452829.00000000417660726The Second Hospital of Jilin University, Changchun, Jilin China
| | - Dandan Li
- grid.452829.00000000417660726The Second Hospital of Jilin University, Changchun, Jilin China
| |
Collapse
|
3
|
Kang K, Niu B, Wu C, Hua J, Wu J. The construction and application of lentiviral overexpression vector of goat miR-204 in testis. Res Vet Sci 2020; 130:52-58. [PMID: 32145457 DOI: 10.1016/j.rvsc.2020.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 10/25/2022]
Abstract
The miRNA gene in DNA is first transcribed to Pri-miRNA, and then processed to Pre-miRNA, a stem-loop RNA segment (precursor) and further to miRNA which binds to mRNA by Dicer protein complex. It was confirmed that goat miR-204 could regulate the expressions of Sirt1 and the SSCs' (Spermatogonial Stem Cells) important genes Oct4 and Plzf, and inhibit the proliferation of dairy goat SSCs in vitro in our previous work. So, the research in vivo was needed next. In this study, the recombinant lentivirus vector pCDH-CMV-mir204-EF1-GreenPuro containing a goat chi-pri-mir-204 gene DNA segment was structured, and transfected into 293 T cells for packaged lentivirus, which then were injected into mouse seminiferous tubules. After 7 days, the goat miR-204 and the related genes such as Sirt1 and Plzf were detected in the mouse testis. This work laid a good foundation for further study of miR-204 biological function in vivo.
Collapse
Affiliation(s)
- Kai Kang
- College of Agriculture, Guangdong Ocean University, Zhanjiang, China
| | - Bowen Niu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A&F University, Yangling, Shaanxi, China
| | - Chongyang Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A&F University, Yangling, Shaanxi, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A&F University, Yangling, Shaanxi, China.
| | - Jiang Wu
- College of Agriculture, Guangdong Ocean University, Zhanjiang, China; College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
4
|
Jacques C, Tesfaye R, Lavaud M, Georges S, Baud’huin M, Lamoureux F, Ory B. Implication of the p53-Related miR-34c, -125b, and -203 in the Osteoblastic Differentiation and the Malignant Transformation of Bone Sarcomas. Cells 2020; 9:cells9040810. [PMID: 32230926 PMCID: PMC7226610 DOI: 10.3390/cells9040810] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
The formation of the skeleton occurs throughout the lives of vertebrates and is achieved through the balanced activities of two kinds of specialized bone cells: the bone-forming osteoblasts and the bone-resorbing osteoclasts. Impairment in the remodeling processes dramatically hampers the proper healing of fractures and can also result in malignant bone diseases such as osteosarcoma. MicroRNAs (miRNAs) are a class of small non-coding single-strand RNAs implicated in the control of various cellular activities such as proliferation, differentiation, and apoptosis. Their post-transcriptional regulatory role confers on them inhibitory functions toward specific target mRNAs. As miRNAs are involved in the differentiation program of precursor cells, it is now well established that this class of molecules also influences bone formation by affecting osteoblastic differentiation and the fate of osteoblasts. In response to various cell signals, the tumor-suppressor protein p53 activates a huge range of genes, whose miRNAs promote genomic-integrity maintenance, cell-cycle arrest, cell senescence, and apoptosis. Here, we review the role of three p53-related miRNAs, miR-34c, -125b, and -203, in the bone-remodeling context and, in particular, in osteoblastic differentiation. The second aim of this study is to deal with the potential implication of these miRNAs in osteosarcoma development and progression.
Collapse
|
5
|
Salilew-Wondim D, Gebremedhn S, Hoelker M, Tholen E, Hailay T, Tesfaye D. The Role of MicroRNAs in Mammalian Fertility: From Gametogenesis to Embryo Implantation. Int J Mol Sci 2020; 21:ijms21020585. [PMID: 31963271 PMCID: PMC7014195 DOI: 10.3390/ijms21020585] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/11/2022] Open
Abstract
The genetic codes inscribed during two key developmental processes, namely gametogenesis and embryogenesis, are believed to determine subsequent development and survival of adult life. Once the embryo is formed, its further development mainly depends on its intrinsic characteristics, maternal environment (the endometrial receptivity), and the embryo–maternal interactions established during each phase of development. These developmental processes are under strict genetic regulation that could be manifested temporally and spatially depending on the physiological and developmental status of the cell. MicroRNAs (miRNAs), one of the small non-coding classes of RNAs, approximately 19–22 nucleotides in length, are one of the candidates for post-transcriptional developmental regulators. These tiny non-coding RNAs are expressed in ovarian tissue, granulosa cells, testis, oocytes, follicular fluid, and embryos and are implicated in diverse biological processes such as cell-to-cell communication. Moreover, accumulated evidences have also highlighted that miRNAs can be released into the extracellular environment through different mechanisms facilitating intercellular communication. Therefore, understanding miRNAs mediated regulatory mechanisms during gametogenesis and embryogenesis provides further insights about the molecular mechanisms underlying oocyte/sperm formation, early embryo development, and implantation. Thus, this review highlights the role of miRNAs in mammalian gametogenesis and embryogenesis and summarizes recent findings about miRNA-mediated post-transcriptional regulatory mechanisms occurring during early mammalian development.
Collapse
Affiliation(s)
- Dessie Salilew-Wondim
- Institute of Animal Sciences, Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany; (D.S.-W.); (M.H.); (E.T.); (T.H.)
| | - Samuel Gebremedhn
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, 1351 Rampart Rd, Fort Collins, CO 80523, USA;
| | - Michael Hoelker
- Institute of Animal Sciences, Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany; (D.S.-W.); (M.H.); (E.T.); (T.H.)
- Teaching and Research Station Frankenforst, Faculty of Agriculture, University of Bonn, 53639 Königswinter, Germany
| | - Ernst Tholen
- Institute of Animal Sciences, Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany; (D.S.-W.); (M.H.); (E.T.); (T.H.)
| | - Tsige Hailay
- Institute of Animal Sciences, Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany; (D.S.-W.); (M.H.); (E.T.); (T.H.)
| | - Dawit Tesfaye
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, 1351 Rampart Rd, Fort Collins, CO 80523, USA;
- Correspondence: ; Tel.: +1-530-564-2806
| |
Collapse
|
6
|
MicroRNA Signaling in Embryo Development. BIOLOGY 2017; 6:biology6030034. [PMID: 28906477 PMCID: PMC5617922 DOI: 10.3390/biology6030034] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/03/2017] [Accepted: 09/12/2017] [Indexed: 02/06/2023]
Abstract
Expression of microRNAs (miRNAs) is essential for embryonic development and serves important roles in gametogenesis. miRNAs are secreted into the extracellular environment by the embryo during the preimplantation stage of development. Several cell types secrete miRNAs into biological fluids in the extracellular environment. These fluid-derived miRNAs have been shown to circulate the body. Stable transport is dependent on proper packaging of the miRNAs into extracellular vesicles (EVs), including exosomes. These vesicles, which also contain RNA, DNA and proteins, are on the forefront of research on cell-to-cell communication. Interestingly, EVs have been identified in many reproductive fluids, such as uterine fluid, where their miRNA content is proposed to serve as a mechanism of crosstalk between the mother and conceptus. Here, we review the role of miRNAs in molecular signaling and discuss their transport during early embryo development and implantation.
Collapse
|
7
|
Altered micro-ribonucleic acid expression profiles of extracellular microvesicles in the seminal plasma of patients with oligoasthenozoospermia. Fertil Steril 2016; 106:1061-1069.e3. [PMID: 27424049 DOI: 10.1016/j.fertnstert.2016.06.030] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 06/13/2016] [Accepted: 06/17/2016] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To determine whether microRNA (miRNA) expression profile is different in extracellular microvesicles collected from seminal plasma of men with oligoasthenozoospermia, to gain further insight into molecular mechanisms underlying male infertility. DESIGN Microarray with quantitative real-time polymerase chain reaction validation and Western blot analysis confirmation. SETTING University research and clinical institutes. PATIENT(S) A total of 24 men, including 12 oligoasthenozoospermic subfertile men and 12 normozoospermic men. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Statistically significant altered miRNA expression profiles in oligoasthenozoospermic subfertile men compared with normozoospermic fertile men. RESULT(S) Extracellular microvesicles including exosomes were isolated from seminal plasma by ultracentrifugation. Presence of exosome-specific proteins was confirmed by Western blotting. In the extracellular microvesicles, we analyzed 1,205 miRNAs by microarray and identified 36 miRNAs with altered expression levels in oligoasthenozoospermic compared with normozoospermic fertile men. Seven miRNAs were overexpressed and 29 miRNAs were underexpressed in oligoasthenozoospermic men. Using quantitative real-time polymerase chain reaction as an independent method, we confirmed the significantly higher expression levels of miR-765 and miR-1275 and the significantly lower expression level of miR-15a in oligoasthenozoospermic subfertile men as compared with the normozoospermic men. CONCLUSION(S) We identified altered expression levels of miRNAs in extracellular microvesicles from seminal plasma as part of the molecular events in the male genital tract. These miRNAs may help to understand the molecular mechanisms underlying male infertility.
Collapse
|
8
|
Grossman H, Shalgi R. A Role of MicroRNAs in Cell Differentiation During Gonad Development. Results Probl Cell Differ 2016; 58:309-36. [PMID: 27300184 DOI: 10.1007/978-3-319-31973-5_12] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are a group of small noncoding RNA molecules that play a major role in posttranscriptional regulation of gene expression and are expressed in an organ-specific manner. One miRNA can potentially regulate the expression of several genes, depending on cell type and differentiation stage. miRNAs are differentially expressed in the male and female gonads and have an organ-specific reproductive function. Exerting their affect through germ cells and gonadal somatic cells, miRNAs regulate key proteins necessary for gonad development. The role of miRNAs in the testes is only starting to emerge though they have been shown to be required for adequate spermatogenesis. Widely explored in the ovary, miRNAs were suggested to play a fundamental role in follicles' assembly, growth, differentiation, and ovulation. In this chapter, we focus on data obtained from mice in which distinct proteins that participate in the biosynthesis of miRNAs were conditionally knocked out from germ cells (spermatogonial cells or oocytes) or gonadal somatic cells (Sertoli or granulosa cells). We detail recent advances in identification of particular miRNAs and their significance in the development and function of male and female gonads. miRNAs can serve as biomarkers and therapeutic agents of pathological conditions; thus, elucidating the branched and complex network of reproduction-related miRNAs will aid understanding of gonads' physiology and managing reproduction disorders.
Collapse
Affiliation(s)
- Hadas Grossman
- Department of Cell Biology and Development, Tel Aviv University, Ramat Aviv, Israel
| | - Ruth Shalgi
- Department of Cell Biology and Development, Tel Aviv University, Ramat Aviv, Israel.
| |
Collapse
|
9
|
Abstract
microRNAs constitute a large family of approximately 21-nucleotide-long, noncoding RNAs. They emerged more than 20 years ago as key posttranscriptional regulators of gene expression. The regulatory role of these small RNA molecules has recently begun to be explored in the human reproductive system. microRNAs have been shown to play an important role in control of reproductive functions, especially in the processes of oocyte maturation, folliculogenesis, corpus luteum function, implantation, and early embryonic development. Knockout of Dicer, the cytoplasmic enzyme that cleaves the pre-miRNA to its mature form, results in postimplantation embryonic lethality in several animal models, attributing to these small RNA vital functions in reproduction and development. Another intriguing characteristic of microRNAs is their presence in body fluids in a remarkably stable form that is protected from endogenous RNase activity. In this chapter we will describe the current knowledge on microRNAs, specifically relating to human gonadal cells. We will focus on their role in the ovarian physiologic process and ovulation dysfunction, regulation of spermatogenesis and male fertility, and putative involvement in human normal and aberrant trophoblast differentiation and invasion through the process of placentation.
Collapse
|
10
|
Ran M, Chen B, Wu M, Liu X, He C, Yang A, Li Z, Xiang Y, Li Z, Zhang S. Integrated analysis of miRNA and mRNA expression profiles in development of porcine testes. RSC Adv 2015. [DOI: 10.1039/c5ra07488f] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gene expression profile in the development of porcine testes investigates the intricate physiological process in pig testis development and spermatogenesis.
Collapse
Affiliation(s)
- Maoliang Ran
- College of Animal Science and Technology
- Hunan Agriculture University
- Changsha
- China
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal
| | - Bin Chen
- College of Animal Science and Technology
- Hunan Agriculture University
- Changsha
- China
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal
| | - Maisheng Wu
- Xiangtan Bureau of Animal Husbandry and Veterinary Medicine and Aquatic Product
- Xiangtan
- China
| | - Xiaochun Liu
- College of Animal Science and Technology
- Hunan Agriculture University
- Changsha
- China
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal
| | - Changqing He
- College of Animal Science and Technology
- Hunan Agriculture University
- Changsha
- China
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal
| | - Anqi Yang
- College of Animal Science and Technology
- Hunan Agriculture University
- Changsha
- China
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal
| | - Zhi Li
- College of Animal Science and Technology
- Hunan Agriculture University
- Changsha
- China
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal
| | - Yongjun Xiang
- Xiangtan Bureau of Animal Husbandry and Veterinary Medicine and Aquatic Product
- Xiangtan
- China
| | - Zhaohui Li
- Xiangtan Bureau of Animal Husbandry and Veterinary Medicine and Aquatic Product
- Xiangtan
- China
| | - Shanwen Zhang
- Xiangtan Bureau of Animal Husbandry and Veterinary Medicine and Aquatic Product
- Xiangtan
- China
| |
Collapse
|
11
|
Schubert C. Guiding Sperm Development. Biol Reprod 2015. [DOI: 10.1095/biolreprod.114.125666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|