1
|
Chitkara M, Gurao A, Kaur H, Dige MS, Sodhi M, Mukesh M, Kataria RS. Omics approaches to understand impact of heat stress on semen quality and fertility in bovines. Anim Reprod Sci 2025; 274:107786. [PMID: 39914185 DOI: 10.1016/j.anireprosci.2025.107786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 01/11/2025] [Accepted: 01/20/2025] [Indexed: 02/25/2025]
Abstract
Recent surge in global climate change poses unprecedented challenges to traditional livestock breeding methods. In tropical countries, where large bovines are vital source of meat and milk, the escalating global warming significantly impact their productivity. Central to this challenge is the resilient ability of the animals, which directly influences the productivity. Artificial insemination (AI) programs, a cornerstone in modern livestock production, have also been severely hampered by climate change-induced heat stress, affecting the quality semen production. This stress not only affects the blood biochemical profiles of the animals but also their testicular physiology, leading to the issues such as low-quality semen with compromised freezability and fertility. Researchers have identified specific markers, including single nucleotide polymorphisms (SNPs), copy number variations (CNV), and epigenetic signatures like histone modifications, DNA methylation, and noncoding RNAs, influencing the semen quality in livestock species. Furthermore, the issue of heat stress has been addressed in a very precise way, and biomarkers have been identified, which can be integrated into the breeding programme to keep up the sire summary. Transcriptomic studies have further illuminated the temporal expression patterns of genes related to sperm quality during heat stress, pinpointing candidate genes for further exploration. This review comprehensively summarizes the progress made in understanding the intricacies of sperm biology in bovines, with a specific focus on cattle and buffalo delving into a spectrum of changes, from biochemical shifts to profound cellular alterations, including genomic, transcriptomic, and epigenetic modifications.
Collapse
Affiliation(s)
- Meenakshi Chitkara
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132001, India; ICAR, National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Ankita Gurao
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132001, India
| | - Harsimran Kaur
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132001, India; ICAR, National Dairy Research Institute, Karnal, Haryana 132001, India
| | | | - Monika Sodhi
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132001, India
| | - Manishi Mukesh
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132001, India
| | - Ranjit Singh Kataria
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132001, India.
| |
Collapse
|
2
|
Cieleń G, Sell-Kubiak E. Importance and variability of the paternal component in sow reproductive traits. J Appl Genet 2024; 65:853-866. [PMID: 39422876 PMCID: PMC11561000 DOI: 10.1007/s13353-024-00910-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/23/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
Reproductive traits are an integral part of the goals of the breeding programs that contribute to the economic success of production. Reproductive phenotypes such as litter size, number of piglets born alive, or litter weight at birth are mainly attributed to females. Thus, the maternal components can be found by default in quantitative genetics' animal models. Still, paternal contribution to variance components should not be discarded. In this review, we indicate the importance of paternal effects in pig breeding by describing both the biology and genetics of boars' traits, the use of (non-)genetic service sire effects in quantitative genetic models for traits measured on females, and genes involved in male reproduction. We start by describing the important biological traits of boars that have the most important effect on their reproductive abilities, i.e., sexual maturity, sperm quality, and testes parameters. Then we move to the possible environmental effects that could affect those traits of boars (e.g., feed, temperature). The main part of the review in detail describes the genetics of boars' reproductive traits (i.e., heritability) and their direct effect on reproductive traits of females (i.e., genetic correlations). We then move to the use of both genetic and non-genetic service sire effects in quantitative models estimated as their percentage in the total variance of traits, which vary depending on the breed from 1 to 4.5% or from 1 to 2%, respectively. Finally, we focus on the description of candidate genes and confirmed mutations affecting male reproduction success: IGF2, Tgm8, ESR1, ZSWIM7, and ELMO1. In conclusion, the observed variance of paternal effects in female reproduction traits might come from various attributes of boars including biological and genetic aspects. Those attributes of boars should not be neglected as they contribute to the success of female reproductive traits.
Collapse
Affiliation(s)
- G Cieleń
- Department of Genetics and Animal Breeding, Poznań University of Life Sciences, Wołyńska 33, 60-637, Poznań, Poland
| | - E Sell-Kubiak
- Department of Genetics and Animal Breeding, Poznań University of Life Sciences, Wołyńska 33, 60-637, Poznań, Poland.
| |
Collapse
|
3
|
Hosseini M, Khalafiyan A, Zare M, Karimzadeh H, Bahrami B, Hammami B, Kazemi M. Sperm epigenetics and male infertility: unraveling the molecular puzzle. Hum Genomics 2024; 18:57. [PMID: 38835100 PMCID: PMC11149391 DOI: 10.1186/s40246-024-00626-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND The prevalence of infertility among couples is estimated to range from 8 to 12%. A paradigm shift has occurred in understanding of infertility, challenging the notion that it predominantly affects women. It is now acknowledged that a significant proportion, if not the majority, of infertility cases can be attributed to male-related factors. Various elements contribute to male reproductive impairments, including aberrant sperm production caused by pituitary malfunction, testicular malignancies, aplastic germ cells, varicocele, and environmental factors. MAIN BODY The epigenetic profile of mammalian sperm is distinctive and specialized. Various epigenetic factors regulate genes across different levels in sperm, thereby affecting its function. Changes in sperm epigenetics, potentially influenced by factors such as environmental exposures, could contribute to the development of male infertility. CONCLUSION In conclusion, this review investigates the latest studies pertaining to the mechanisms of epigenetic changes that occur in sperm cells and their association with male reproductive issues.
Collapse
Affiliation(s)
- Maryam Hosseini
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Anis Khalafiyan
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammadreza Zare
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Haniye Karimzadeh
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Basireh Bahrami
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Behnaz Hammami
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Kazemi
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
- Reproductive Sciences and Sexual Health Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
4
|
Hubert JN, Perret M, Riquet J, Demars J. Livestock species as emerging models for genomic imprinting. Front Cell Dev Biol 2024; 12:1348036. [PMID: 38500688 PMCID: PMC10945557 DOI: 10.3389/fcell.2024.1348036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/19/2024] [Indexed: 03/20/2024] Open
Abstract
Genomic imprinting is an epigenetically-regulated process of central importance in mammalian development and evolution. It involves multiple levels of regulation, with spatio-temporal heterogeneity, leading to the context-dependent and parent-of-origin specific expression of a small fraction of the genome. Genomic imprinting studies have therefore been essential to increase basic knowledge in functional genomics, evolution biology and developmental biology, as well as with regard to potential clinical and agrigenomic perspectives. Here we offer an overview on the contribution of livestock research, which features attractive resources in several respects, for better understanding genomic imprinting and its functional impacts. Given the related broad implications and complexity, we promote the use of such resources for studying genomic imprinting in a holistic and integrative view. We hope this mini-review will draw attention to the relevance of livestock genomic imprinting studies and stimulate research in this area.
Collapse
Affiliation(s)
| | | | | | - Julie Demars
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| |
Collapse
|
5
|
Fogliano C, Motta CM, Acloque H, Avallone B, Carotenuto R. Water contamination by delorazepam induces epigenetic defects in the embryos of the clawed frog Xenopus laevis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165300. [PMID: 37414173 DOI: 10.1016/j.scitotenv.2023.165300] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/23/2023] [Accepted: 07/01/2023] [Indexed: 07/08/2023]
Abstract
Delorazepam, a derivative of diazepam, is a psychotropic drug belonging to the benzodiazepine class. Used as a nervous-system inhibitor, it treats anxiety, insomnia, and epilepsy, but is also associated with misuse and abuse. Nowadays benzodiazepines are considered emerging pollutants: conventional wastewater treatment plants indeed are unable to eliminate these compounds. Consequently, they persist in the environment and bioaccumulate in non-target aquatic organisms with consequences still not fully clear. To collect more information, we investigated the possible epigenetic activity of delorazepam, at three concentrations (1, 5 and 10 μg/L) using Xenopus laevis embryos as a model. Analyses demonstrated a significant increase in genomic DNA methylation and differential methylation of the promoters of some early developmental genes (otx2, sox3, sox9, pax6, rax1, foxf1, and myod1). Moreover, studies on gene expression highlighted an unbalancing in apoptosis/proliferation pathways and an aberrant expression of DNA-repair genes. Results are alarming considering the growing trend of benzodiazepine concentrations in superficial waters, especially after the peak occurred as a consequence of the pandemic COVID-19, and the fact that benzodiazepine GABA-A receptors are highly conserved and present in all aquatic organisms.
Collapse
Affiliation(s)
- Chiara Fogliano
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Chiara Maria Motta
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Hervé Acloque
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Bice Avallone
- Department of Biology, University of Naples "Federico II", Naples, Italy.
| | - Rosa Carotenuto
- Department of Biology, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
6
|
Wang X, Li W, Feng X, Li J, Liu GE, Fang L, Yu Y. Harnessing male germline epigenomics for the genetic improvement in cattle. J Anim Sci Biotechnol 2023; 14:76. [PMID: 37277852 PMCID: PMC10242889 DOI: 10.1186/s40104-023-00874-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/02/2023] [Indexed: 06/07/2023] Open
Abstract
Sperm is essential for successful artificial insemination in dairy cattle, and its quality can be influenced by both epigenetic modification and epigenetic inheritance. The bovine germline differentiation is characterized by epigenetic reprogramming, while intergenerational and transgenerational epigenetic inheritance can influence the offspring's development through the transmission of epigenetic features to the offspring via the germline. Therefore, the selection of bulls with superior sperm quality for the production and fertility traits requires a better understanding of the epigenetic mechanism and more accurate identifications of epigenetic biomarkers. We have comprehensively reviewed the current progress in the studies of bovine sperm epigenome in terms of both resources and biological discovery in order to provide perspectives on how to harness this valuable information for genetic improvement in the cattle breeding industry.
Collapse
Affiliation(s)
- Xiao Wang
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Konge Larsen ApS, Kongens Lyngby, 2800, Denmark
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Wenlong Li
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xia Feng
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jianbing Li
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - George E Liu
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, Henry A. Wallace Beltsville Agricultural Research Center, USDA, Beltsville, MD, 20705, USA
| | - Lingzhao Fang
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, 8000, Denmark.
| | - Ying Yu
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
7
|
Martino NA, Picardi E, Ciani E, D’Erchia AM, Bogliolo L, Ariu F, Mastrorocco A, Temerario L, Mansi L, Palumbo V, Pesole G, Dell’Aquila ME. Cumulus Cell Transcriptome after Cumulus-Oocyte Complex Exposure to Nanomolar Cadmium in an In Vitro Animal Model of Prepubertal and Adult Age. BIOLOGY 2023; 12:biology12020249. [PMID: 36829526 PMCID: PMC9953098 DOI: 10.3390/biology12020249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
Cadmium (Cd), a highly toxic pollutant, impairs oocyte fertilization, through oxidative damage on cumulus cells (CCs). This study analysed the transcriptomic profile of CCs of cumulus-oocyte complexes (COCs) from adult and prepubertal sheep, exposed to Cd nanomolar concentration during in vitro maturation. In both age-groups, CCs of matured oocytes underwent RNA-seq, data analysis and validation. Differentially expressed genes (DEGs) were identified in adult (n = 99 DEGs) and prepubertal (n = 18 DEGs) CCs upon Cd exposure. Transcriptomes of adult CCs clustered separately between Cd-exposed and control samples, whereas prepubertal ones did not as observed by Principal Component Analysis. The transcriptomic signature of Cd-induced CC toxicity was identified by gene annotation and literature search. Genes associated with previous studies on ovarian functions and/or Cd effects were confirmed and new genes were identified, thus implementing the knowledge on their involvement in such processes. Enrichment and validation analysis showed that, in adult CCs, Cd acted as endocrine disruptor on DEGs involved in hormone biosynthesis, cumulus expansion, regulation of cell signalling, growth and differentiation and oocyte maturation, whereas in prepubertal CCs, Cd affected DEGs involved in CC development and viability and CC-oocyte communications. In conclusion, these DEGs could be used as valuable non-invasive biomarkers for oocyte competence.
Collapse
Affiliation(s)
- Nicola Antonio Martino
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
- Correspondence: ; Tel.: +39-0805443888
| | - Ernesto Picardi
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Elena Ciani
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Anna Maria D’Erchia
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Luisa Bogliolo
- Department of Veterinary Medicine, University of Sassari, Via Vienna n. 2, 07100 Sassari, Italy
| | - Federica Ariu
- Department of Veterinary Medicine, University of Sassari, Via Vienna n. 2, 07100 Sassari, Italy
| | - Antonella Mastrorocco
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Letizia Temerario
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Luigi Mansi
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Valeria Palumbo
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Graziano Pesole
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Maria Elena Dell’Aquila
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| |
Collapse
|
8
|
Rotondo JC, Lanzillotti C, Mazziotta C, Tognon M, Martini F. Epigenetics of Male Infertility: The Role of DNA Methylation. Front Cell Dev Biol 2021; 9:689624. [PMID: 34368137 PMCID: PMC8339558 DOI: 10.3389/fcell.2021.689624] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022] Open
Abstract
In recent years, a number of studies focused on the role of epigenetics, including DNA methylation, in spermatogenesis and male infertility. We aimed to provide an overview of the knowledge concerning the gene and genome methylation and its regulation during spermatogenesis, specifically in the context of male infertility etiopathogenesis. Overall, the findings support the hypothesis that sperm DNA methylation is associated with sperm alterations and infertility. Several genes have been found to be differentially methylated in relation to impaired spermatogenesis and/or reproductive dysfunction. Particularly, DNA methylation defects of MEST and H19 within imprinted genes and MTHFR within non-imprinted genes have been repeatedly linked with male infertility. A deep knowledge of sperm DNA methylation status in association with reduced reproductive potential could improve the development of novel diagnostic tools for this disease. Further studies are needed to better elucidate the mechanisms affecting methylation in sperm and their impact on male infertility.
Collapse
|
9
|
Morgan HL, Ampong I, Eid N, Rouillon C, Griffiths HR, Watkins AJ. Low protein diet and methyl-donor supplements modify testicular physiology in mice. Reproduction 2021; 159:627-641. [PMID: 32163913 PMCID: PMC7159163 DOI: 10.1530/rep-19-0435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/10/2020] [Indexed: 12/13/2022]
Abstract
The link between male diet and sperm quality has received significant investigation. However, the impact diet and dietary supplements have on the testicular environment has been examined to a lesser extent. Here, we establish the impact of a sub-optimal low protein diet (LPD) on testicular morphology, apoptosis and serum fatty acid profiles. Furthermore, we define whether supplementing a LPD with specific methyl donors abrogates any detrimental effects of the LPD. Male C57BL6 mice were fed either a control normal protein diet (NPD; 18% protein; n = 8), an isocaloric LPD (LPD; 9% protein; n = 8) or an LPD supplemented with methyl donors (MD-LPD; choline chloride, betaine, methionine, folic acid, vitamin B12; n = 8) for a minimum of 7 weeks. Analysis of male serum fatty acid profiles by gas chromatography revealed elevated levels of saturated fatty acids and lower levels of mono- and polyunsaturated fatty acids in MD-LPD males when compared to NPD and/or LPD males. Testes of LPD males displayed larger seminiferous tubule cross section area when compared to NPD and MD-LPD males, while MD-LPD tubules displayed a larger luminal area. Furthermore, TUNNEL staining revealed LPD males possessed a reduced number of tubules positive for apoptosis, while gene expression analysis showed MD-LPD testes displayed decreased expression of the pro-apoptotic genes Bax, Csap1 and Fas when compared to NPD males. Finally, testes from MD-LPD males displayed a reduced telomere length but increased telomerase activity. These data reveal the significance of sub-optimal nutrition for paternal metabolic and reproductive physiology.
Collapse
Affiliation(s)
- Hannah L Morgan
- Division of Child Health, Obstetrics and Gynaecology, Faculty of Medicine, University of Nottingham, Nottingham, UK
| | - Isaac Ampong
- Faculty of Health and Medical Sciences, University of Surrey, Stag Hill, Guildford, UK
| | - Nader Eid
- Division of Child Health, Obstetrics and Gynaecology, Faculty of Medicine, University of Nottingham, Nottingham, UK
| | - Charlène Rouillon
- INRA, Fish Physiology and Genomics, Bat 16A, Campus de Beaulieu, Rennes, France
| | - Helen R Griffiths
- Faculty of Health and Medical Sciences, University of Surrey, Stag Hill, Guildford, UK
| | - Adam J Watkins
- Division of Child Health, Obstetrics and Gynaecology, Faculty of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
10
|
The prolonged disease state of infertility is associated with embryonic epigenetic dysregulation. Fertil Steril 2021; 116:309-318. [PMID: 33745724 DOI: 10.1016/j.fertnstert.2021.01.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To evaluate the epigenetic consequence of a prolonged disease state of infertility in euploid blastocysts. DESIGN Methylome analysis as well as targeted imprinted methylation and expression analysis on individual human euploid blastocysts examined in association with duration of patient infertility and time to live birth. SETTING Research study. PATIENT(S) One hundred four surplus cryopreserved euploid blastocysts of transferrable-quality were donated with informed patient consent and grouped based on time to pregnancy (TTP). INTERVENTION(S) None MAIN OUTCOME MEASURE(S): The Methyl Maxi-Seq platform (Zymo Research) was used to determine genome-wide methylation, while targeted methylation and expression analyses were performed by pyrosequencing and quantitative real-time polymerase chain reaction, respectively. Statistical analyses used Student's t test, 1-way ANOVA, Fisher's exact test, and pairwise-fixed reallocation randomization test, where appropriate. RESULT(S) The methylome analysis of individual blastocysts revealed significant alterations at 6,609 CpG sites associated with prolonged infertility (≥60 months) compared with those of fertile controls (0 months). Significant CpG alterations were localized to numerous imprinting control regions and imprinted genes, and several signaling pathways were highly represented among genes that were differentially methylated. Targeted imprinting methylation analysis uncovered significant hypomethylation at KvDMR and MEST imprinting control regions, with significant decreases in the gene expression levels upon extended TTP (≥36 months) compared to minimal TTP (≤24 months). CONCLUSION(S) The prolonged disease state of infertility correlates with an altered methylome in euploid blastocysts, with particular emphasis on genomic imprinting regulation, compared with assisted reproductive technologies alone.
Collapse
|
11
|
Sperm Methylome Profiling Can Discern Fertility Levels in the Porcine Biomedical Model. Int J Mol Sci 2021; 22:ijms22052679. [PMID: 33800945 PMCID: PMC7961483 DOI: 10.3390/ijms22052679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022] Open
Abstract
A combined Genotyping By Sequencing (GBS) and methylated DNA immunoprecipitation (MeDIP) protocol was used to identify—in parallel—genetic variation (Genomic-Wide Association Studies (GWAS) and epigenetic differences of Differentially Methylated Regions (DMR) in the genome of spermatozoa from the porcine animal model. Breeding boars with good semen quality (n = 11) and specific and well-documented differences in fertility (farrowing rate, FR) and prolificacy (litter size, LS) (n = 7) in artificial insemination programs, using combined FR and LS, were categorized as High Fertile (HF, n = 4) or Low Fertile (LF, n = 3), and boars with Unknown Fertility (UF, n = 4) were tested for eventual epigenetical similarity with those fertility-proven. We identified 165,944 Single Nucleotide Polymorphisms (SNPs) that explained 14–15% of variance among selection lines. Between HF and LF individuals (n = 7, 4 HF and 3 LF), we identified 169 SNPs with p ≤ 0.00015, which explained 58% of the variance. For the epigenetic analyses, we considered fertility and period of ejaculate collection (late-summer and mid-autumn). Approximately three times more DMRs were observed in HF than in LF boars across these periods. Interestingly, UF boars were clearly clustered with one of the other HF or LF groups. The highest differences in DMRs between HF and LF experimental groups across the pig genome were located in the chr 3, 9, 13, and 16, with most DMRs being hypermethylated in LF boars. In both HF and LF boars, DMRs were mostly hypermethylated in late-summer compared to mid-autumn. Three overlaps were detected between SNPs (p ≤ 0.0005, n = 1318) and CpG sites within DMRs. In conclusion, fertility levels in breeding males including FR and LS can be discerned using methylome analyses. The findings in this biomedical animal model ought to be applied besides sire selection for andrological diagnosis of idiopathic sub/infertility.
Collapse
|
12
|
Morgan HL, Eid N, Khoshkerdar A, Watkins AJ. Defining the male contribution to embryo quality and offspring health in assisted reproduction in farm animals. Anim Reprod 2020; 17:e20200018. [PMID: 33029211 PMCID: PMC7534566 DOI: 10.1590/1984-3143-ar2020-0018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Assisted reproductive technologies such as artificial insemination have delivered significant benefits for farm animal reproduction. However, as with humans, assisted reproduction in livestock requires the manipulation of the gametes and preimplantation embryo. The significance of this ‘periconception’ period is that it represents the transition from parental genome regulation to that of the newly formed embryo. Environmental perturbations during these early developmental stages can result in persistent changes in embryonic gene expression, fetal organ development and ultimately the long-term health of the offspring. While associations between maternal health and offspring wellbeing are well-defined, the significance of paternal health for the quality of his semen and the post-conception development of his offspring have largely been overlooked. Human and animal model studies have identified sperm epigenetic status (DNA methylation levels, histone modifications and RNA profiles) and seminal plasma-mediated maternal uterine immunological, inflammatory and vascular responses as the two central mechanisms capable of linking paternal health and post-fertilisation development. However, there is a significant knowledge gap about the father’s contribution to the long-term health of his offspring, especially with regard to farm animals. Such insights are essential to ensure the safety of widely used assisted reproductive practices and to gain better understanding of the role of paternal health for the well-being of his offspring. In this article, we will outline the impact of male health on semen quality (both sperm and seminal plasma), reproductive fitness and post-fertilisation offspring development and explore the mechanisms underlying the paternal programming of offspring health in farm animals.
Collapse
Affiliation(s)
- Hannah Louise Morgan
- Division of Child Health, Obstetrics and Gynaecology, Queen's Medical Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Nader Eid
- Division of Child Health, Obstetrics and Gynaecology, Queen's Medical Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Afsaneh Khoshkerdar
- Division of Child Health, Obstetrics and Gynaecology, Queen's Medical Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Adam John Watkins
- Division of Child Health, Obstetrics and Gynaecology, Queen's Medical Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
13
|
Khezri A, Narud B, Stenseth EB, Johannisson A, Myromslien FD, Gaustad AH, Wilson RC, Lyle R, Morrell JM, Kommisrud E, Ahmad R. DNA methylation patterns vary in boar sperm cells with different levels of DNA fragmentation. BMC Genomics 2019; 20:897. [PMID: 31775629 PMCID: PMC6880426 DOI: 10.1186/s12864-019-6307-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Sperm DNA integrity is considered essential for successful transmission of the paternal genome, fertilization and normal embryo development. DNA fragmentation index (DFI, %) has become a key parameter in the swine artificial insemination industry to assess sperm DNA integrity. Recently, in some elite Norwegian Landrace boars (boars with excellent field fertility records), a higher level of sperm DFI has been observed. In order to obtain a better understanding of this, and to study the complexity of sperm DNA integrity, liquid preserved semen samples from elite boars with contrasting DFI levels were examined for protamine deficiency, thiol profile and disulphide bonds. Additionally, the DNA methylation profiles of the samples were determined by reduced representation bisulphite sequencing (RRBS). RESULTS In this study, different traits related to sperm DNA integrity were investigated (n = 18 ejaculates). Upon liquid storage, the levels of total thiols and disulphide bonds decreased significantly, while the DFI and protamine deficiency level increased significantly. The RRBS results revealed similar global patterns of low methylation from semen samples with different levels of DFI (low, medium and high). Differential methylation analyses indicated that the number of differentially methylated cytosines (DMCs) increased in the low-high compared to the low-medium and the medium-high DFI groups. Annotating the DMCs with gene and CpG features revealed clear differences between DFI groups. In addition, the number of annotated transcription starting sites (TSS) and associated pathways in the low-high comparison was greater than the other two groups. Pathway analysis showed that genes (based on the closest TSS to DMCs) corresponding to low-high DFI comparison were associated with important processes such as membrane function, metabolic cascade and antioxidant defence system. CONCLUSION To our knowledge, this is the first study evaluating DNA methylation in boar sperm cells with different levels of DFI. The present study shows that sperm cells with varying levels of DNA fragmentation exhibit similar global methylation, but different site-specific DNA methylation signatures. Moreover, with increasing DNA fragmentation in spermatozoa, there is an increase in the number of potentially affected downstream genes and their respective regulatory pathways.
Collapse
Affiliation(s)
- Abdolrahman Khezri
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Birgitte Narud
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Else-Berit Stenseth
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Anders Johannisson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Ann Helen Gaustad
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
- Topigs Norsvin, Hamar, Norway
| | - Robert C Wilson
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Robert Lyle
- Department of Medical Genetics and Norwegian Sequencing Centre, Oslo University Hospital and the University of Oslo, Oslo, Norway
| | - Jane M Morrell
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Elisabeth Kommisrud
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Rafi Ahmad
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway.
| |
Collapse
|
14
|
Zhang X, Nie Y, Cai S, Ding S, Fu B, Wei H, Chen L, Liu X, Liu M, Yuan R, Qiu B, He Z, Cong P, Chen Y, Mo D. Earlier demethylation of myogenic genes contributes to embryonic precocious terminal differentiation of myoblasts in miniature pigs. FASEB J 2019; 33:9638-9655. [PMID: 31145867 DOI: 10.1096/fj.201900388r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Here, we performed whole-genome bisulfite sequencing of longissimus dorsi muscle from Landrace and Wuzhishan (WZS) miniature pigs during 18, 21, and 28 d postcoitum. It was uncovered that in regulatory regions only around transcription start sites (TSSs), gene expression and methylation showed negative correlation, whereas in gene bodies, positive correlation occurred. Furthermore, earlier myogenic gene demethylation around TSSs and earlier hypermethylation of myogenic genes in gene bodies were considered to trigger their earlier expression in miniature pigs. Furthermore, by analyzing the methylation pattern of the myogenic differentiation 1(MyoD) promoter and distal enhancer, we found that earlier demethylation of the MyoD distal enhancer in WZSs contributes to its earlier expression. Moreover, DNA demethylase Tet1 was found to be involved in the demethylation of the myogenin promoter and promoted immortalized mouse myoblast cell line (C2C12) and porcine embryonic myogenic cell differentiation. This study reveals that earlier demethylation of myogenic genes contributes to precocious terminal differentiation of myoblasts in miniature pigs.-Zhang, X., Nie, Y., Cai, S., Ding, S., Fu, B., Wei, H., Chen, L., Liu, X., Liu, M., Yuan, R., Qiu, B., He, Z., Cong, P., Chen, Y., Mo, D. Earlier demethylation of myogenic genes contributes to embryonic precocious terminal differentiation of myoblasts in miniature pigs.
Collapse
Affiliation(s)
- Xumeng Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Shenzhen Kingsino Technology Company Limited, Shenzhen, China
| | - Yaping Nie
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shufang Cai
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Suying Ding
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bingqiang Fu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hong Wei
- Shenzhen Kingsino Technology Company Limited, Shenzhen, China
| | - Luxi Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Minggui Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Renqiang Yuan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Boqin Qiu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peiqing Cong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
15
|
An SM, Kwon S, Hwang JH, Yu GE, Kang DG, Park DH, Kim TW, Park HC, Ha J, Kim CW. Hypomethylation in the promoter region of ZPBP as a potential litter size indicator in Berkshire pigs. Arch Anim Breed 2019; 62:69-76. [PMID: 31807615 PMCID: PMC6852858 DOI: 10.5194/aab-62-69-2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/01/2019] [Indexed: 01/09/2023] Open
Abstract
In pigs, litter size is typically defined as the total number of piglets born (TNB) or the number of piglets born alive (NBA). Increasing pig litter size is of great economic interest as a means to increase productivity. The capacity of the uterus is a critical component of litter size and may play a central role in prolificacy. In this study, we investigated litter-size-related epigenetic markers in uterine tissue from Berkshire pigs with smaller litter size groups (SLGs) and larger litter size groups (LLGs) using genome-wide bisulfite sequencing (GWBS). A total of 3269 differentially methylated regions (DMRs) were identified: 1566 were hypermethylated and 1703 hypomethylated in LLG compared to SLG. The zona pellucida binding protein (ZPBP) gene was significantly hypomethylated in the LLG promoter region, and its expression was significantly upregulated in uterine tissue. Thus, the methylation status of ZPBP gene was identified as a potential indicator of litter size. Furthermore, we verified its negative correlation with litter size traits (TNB and NBA) in whole blood samples from 172 Berkshire sows as a blood-based biomarker by a porcine methylation-specific restriction enzyme polymerase chain reaction (PMP) assay. The results suggest that the methylation status of the ZPBP gene can serve as a valuable epigenetic biomarker for hyperprolific sows.
Collapse
Affiliation(s)
- Sang Mi An
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, 52725, South Korea
| | - Seulgi Kwon
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, 52725, South Korea
| | - Jung Hye Hwang
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, 52725, South Korea
| | - Go Eun Yu
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, 52725, South Korea
| | - Deok Gyeong Kang
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, 52725, South Korea
| | - Da Hye Park
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, 52725, South Korea
| | - Tae Wan Kim
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, 52725, South Korea
| | | | - Jeongim Ha
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, 52725, South Korea
| | - Chul Wook Kim
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, 52725, South Korea
| |
Collapse
|
16
|
Pallotta MM, Barbato V, Pinton A, Acloque H, Gualtieri R, Talevi R, Jammes H, Capriglione T. In vitro exposure to CPF affects bovine sperm epigenetic gene methylation pattern and the ability of sperm to support fertilization and embryo development. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:85-95. [PMID: 30365181 DOI: 10.1002/em.22242] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/02/2018] [Accepted: 08/08/2018] [Indexed: 05/28/2023]
Abstract
Several studies have demonstrated that overexposure to pesticides can reduce mammalian sperm quality, impairing male fertility. Chlorpyrifos (CPF), a widely used organophosphate pesticide, was shown to impair spermatogenesis by inducing the formation of highly reactive toxic intermediates. To gain further insight into the mechanisms underlying the cytotoxicity and genotoxicity of CPF, bovine spermatozoa were exposed in vitro to environmental CPF concentrations and the motility, in vitro fertilization rates, DNA fragmentation, chromatin alterations, and methylation patterns were assessed. Motility and in vitro fertilization rates were significantly reduced in spermatozoa exposed to CPF, while DNA fragmentation and putative chromatin deconstruction appeared to increase at higher pesticide concentrations. In situ hybridization was carried out with X and Y probes on sperm samples exposed to different CPF concentrations, and subsequent analysis highlighted a significant percentage of spermatozoa with a peculiar morphological malformation, in which a narrowing occurred at the level of the hybridization. Analysis of potential abnormalities in the methylation pattern of NESP55-GNAS and XIST promoters displayed no differentially methylated regions in GNAS promoter relative to the control, whereas spermatozoa exposed to 10 μg/mL CPF had increased methylation variance in one region of imprinted XIST promoter. Our results provide support that CPF can induce a genotoxic effect on spermatozoa, impairig their ability to fertilize and support preimplantation embryo development in vitro. These observations are worrying since altered levels of sporadic methylation in genes of male gametes may affect the success of reproduction and contribute to infertility. Environ. Mol. Mutagen. 60:85-95, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Vincenza Barbato
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy
| | - Alain Pinton
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet-Tolosan, France
| | - Hervè Acloque
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet-Tolosan, France
| | - Roberto Gualtieri
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy
| | - Riccardo Talevi
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy
| | - Hèléne Jammes
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
| | - Teresa Capriglione
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy
| |
Collapse
|
17
|
Ahlawat S, Sharma R, Arora R, Kumari N, Mishra AK, Tantia MS. Promoter methylation and expression analysis of Bvh gene in bulls with varying semen motility parameters. Theriogenology 2018; 125:152-156. [PMID: 30447494 DOI: 10.1016/j.theriogenology.2018.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 10/09/2018] [Accepted: 11/04/2018] [Indexed: 12/18/2022]
Abstract
Crossbreds of low-producing indigenous cattle and high-producing exotic dairy bulls (Holstein Friesian and Jersey) have contributed in ensuring that India continues to be the world's top milk-producing country. However, subfertility observed in crossbred male progenies has been a major obstacle in exploitation of heterosis due to crossbreeding. There is sufficient scientific evidence in support of genetic and epigenetic regulation of key physiological processes including spermatogenesis. Bovine Vasa Homology (Bvh) is considered a molecular marker for the study of gametogenesis. Significant negative correlation between DNA methylation and gene expression has been reported in cattle-yaks hybrids and their parents. The present study analyzed promoter methylation status and expression profile of Bvh gene in spermatozoa from exotic Holstein Friesian cattle, indigenous Sahiwal cattle and their crossbreds with varying semen motility parameters. The degree of methylation of the Bvh promoter region was significantly higher in poor motility crossbred bulls (13.3%) as compared to good motility crossbreds (5.3%), Sahiwal (3%) and Holstein Friesian bulls (1%) (P < 0.05). Gene expression analysis revealed significantly higher mRNA abundance of Bvh in purebreds (Holstein Friesian and Sahiwal) as compared to crossbred counterparts (P < 0.001). Inverse correlation observed in this study between promoter methylation and gene expression of Bvh gene in spermatozoa from crossbred bulls with poor motility phenotype as compared to purebred parents provides an important insight into understanding the graded fertility of crossbred bulls.
Collapse
Affiliation(s)
- Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India.
| | - Rekha Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Namita Kumari
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - A K Mishra
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - M S Tantia
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| |
Collapse
|
18
|
Zhang T, Wu J, Liao C, Ni Z, Zheng J, Yu F. System analysis of teratozoospermia mRNA profile based on integrated bioinformatics tools. Mol Med Rep 2018; 18:1297-1304. [PMID: 29901159 PMCID: PMC6072217 DOI: 10.3892/mmr.2018.9112] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/20/2018] [Indexed: 12/13/2022] Open
Abstract
mRNA has an important role in spermatogenesis and the maintenance of fertility, and may act as a potential biomarker for the clinical diagnosis of infertility. In the present study, potential biomarkers associated with teratozoospermia were screened through systemic bioinformatics analysis. Initially, genome-wide expression profiles were downloaded from the Gene Expression Omnibus and primary analysis was conducted using R software, which included preprocessing of raw microarray data, transformation between probe ID and gene symbol and identification of differentially expressed genes. Subsequently, a functional enrichment analysis was conducted using the Database for Annotation, Visualization and Integrated Discovery to investigate the biological processes involved in the development of teratozoospermia. Finally, a protein-protein interaction network of notable differentially expressed genes was constructed and cross-analysis performed for multiple datasets, to obtain a potential biomarker for teratozoospermia. It was observed that G protein subunit β 3, G protein subunit α o1 and G protein subunit g transducin 1 were upregulated and enriched using Kyoto Encyclopedia of Genes and Genomes (KEGG) in the network and in cross analysis. Furthermore, ribosomal protein S3 (RPS3), RPS5, RPS6, RPS16 and RPS23 were downregulated and enriched using KEGG in teratozoospermia. In conclusion, the results of the present study identified several mRNAs involved in sperm morphological development, which may aid in the understanding and treatment of infertility.
Collapse
Affiliation(s)
- Tiancheng Zhang
- Key Lab of Reproduction Regulation of NPFPC, Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Fudan University, Shanghai 300000, P.R. China
| | - Jun Wu
- Key Lab of Reproduction Regulation of NPFPC, Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Fudan University, Shanghai 300000, P.R. China
| | - Caihua Liao
- College of Biotechnology, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541004, P.R. China
| | - Zhong Ni
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jufen Zheng
- Key Lab of Reproduction Regulation of NPFPC, Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Fudan University, Shanghai 300000, P.R. China
| | - Fudong Yu
- Key Lab of Reproduction Regulation of NPFPC, Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Fudan University, Shanghai 300000, P.R. China
| |
Collapse
|
19
|
Jonas E, Rydhmer L. Effect of candidate genes for maternal ability on piglet survival and growth. Livest Sci 2018. [DOI: 10.1016/j.livsci.2017.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Hwang JH, An SM, Kwon S, Park DH, Kim TW, Kang DG, Yu GE, Kim IS, Park HC, Ha J, Kim CW. DNA methylation patterns and gene expression associated with litter size in Berkshire pig placenta. PLoS One 2017; 12:e0184539. [PMID: 28880934 PMCID: PMC5589248 DOI: 10.1371/journal.pone.0184539] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 08/26/2017] [Indexed: 11/18/2022] Open
Abstract
Increasing litter size is of great interest to the pig industry. DNA methylation is an important epigenetic modification that regulates gene expression, resulting in livestock phenotypes such as disease resistance, milk production, and reproduction. We classified Berkshire pigs into two groups according to litter size and estimated breeding value: smaller (SLG) and larger (LLG) litter size groups. Genome-wide DNA methylation and gene expression were analyzed using placenta genomic DNA and RNA to identify differentially methylated regions (DMRs) and differentially expressed genes (DEGs) associated with litter size. The methylation levels of CpG dinucleotides in different genomic regions were noticeably different between the groups, while global methylation pattern was similar, and excluding intergenic regions they were found the most frequently in gene body regions. Next, we analyzed RNA-Seq data to identify DEGs between the SLG and LLG groups. A total of 1591 DEGs were identified: 567 were downregulated and 1024 were upregulated in LLG compared to SLG. To identify genes that simultaneously exhibited changes in DNA methylation and mRNA expression, we integrated and analyzed the data from bisulfite-Seq and RNA-Seq. Nine DEGs positioned in DMRs were found. The expression of only three of these genes (PRKG2, CLCA4, and PCK1) was verified by RT-qPCR. Furthermore, we observed the same methylation patterns in blood samples as in the placental tissues by PCR-based methylation analysis. Together, these results provide useful data regarding potential epigenetic markers for selecting hyperprolific sows.
Collapse
Affiliation(s)
- Jung Hye Hwang
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea
| | - Sang Mi An
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea
| | - Seulgi Kwon
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea
| | - Da Hye Park
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea
| | - Tae Wan Kim
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea
| | - Deok Gyeong Kang
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea
| | - Go Eun Yu
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea
| | - Il-Suk Kim
- Department of Animal Resource Technology, Gyeongnam National University of Science & Technology, Jinju, South Korea
| | | | - Jeongim Ha
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea
- * E-mail: (JH); (CWK)
| | - Chul Wook Kim
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea
- * E-mail: (JH); (CWK)
| |
Collapse
|
21
|
Takeda K, Kobayashi E, Akagi S, Nishino K, Kaneda M, Watanabe S. Differentially methylated CpG sites in bull spermatozoa revealed by human DNA methylation arrays and bisulfite analysis. J Reprod Dev 2017; 63:279-287. [PMID: 28320989 PMCID: PMC5481630 DOI: 10.1262/jrd.2016-160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The methylation status of sperm DNA differs between individual bulls. However, the relationship between methylation status and bull sperm parameters is not well elucidated. The present study investigated genome-wide methylation
profiles at 450,000 CpG sites in bull spermatozoa by using a human DNA methylation microarray. Semen samples from three adult Japanese Black bulls with different in vitro fertilization (IVF) results and from a
young Holstein bull through sexual maturation (at ages 10, 10.5, 15, and 25 months) were used for the analysis. The heatmap displaying the results of microarray analysis shows inter- and intra-individual differences in methylation
profiles. After setting a cut-off of 0.2 for differences between ages (10, 10.5 vs. 15, 25 months) or between IVF results (developed to the blastocyst-stage, > 20% vs. < 10%), different
methylation levels were detected at approximately 100 CpGs. We confirmed the different DNA methylation levels of CpG sites by using combined bisulfite restriction analysis (COBRA); five of the CpG sites reflected methylation
levels similar to those detected by the microarray. One of the CpG sites was thought to reflect an age-related increase in methylation levels, which was confirmed by COBRA and bisulfite sequencing. However, the relationship
between methylation status and IVF results could not be shown here. In conclusion, methylation profiles of individual and age-related alterations in bull spermatozoa can be revealed using a human microarray, and methylation
changes in some CpG sites can be easily visualized using COBRA. Combined analysis of DNA methylation levels and sperm parameters could be considered an effective approach for assessing bull fertility in the future.
Collapse
Affiliation(s)
- Kumiko Takeda
- Animal Breeding and Reproduction Research Division, Institute of Livestock and Grassland Science, NARO, Ibaraki 305-0901, Japan
| | - Eiji Kobayashi
- Animal Breeding and Reproduction Research Division, Institute of Livestock and Grassland Science, NARO, Ibaraki 305-0901, Japan
| | - Satoshi Akagi
- Animal Breeding and Reproduction Research Division, Institute of Livestock and Grassland Science, NARO, Ibaraki 305-0901, Japan
| | - Kagetomo Nishino
- Beef Cattle Institute, Ibaraki Prefectural Livestock Research Center, Ibaraki 319-2224, Japan
| | - Masahiro Kaneda
- Division of Animal Life Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Shinya Watanabe
- Animal Breeding and Reproduction Research Division, Institute of Livestock and Grassland Science, NARO, Ibaraki 305-0901, Japan
| |
Collapse
|
22
|
Jenkins TG, Aston KI, Hotaling JM, Shamsi MB, Simon L, Carrell DT. Teratozoospermia and asthenozoospermia are associated with specific epigenetic signatures. Andrology 2016; 4:843-9. [DOI: 10.1111/andr.12231] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/11/2016] [Accepted: 05/09/2016] [Indexed: 11/28/2022]
Affiliation(s)
- T. G. Jenkins
- Andrology and IVF Laboratories; Department of Surgery; University of Utah School of Medicine; Salt Lake City UT USA
| | - K. I. Aston
- Andrology and IVF Laboratories; Department of Surgery; University of Utah School of Medicine; Salt Lake City UT USA
| | - J. M. Hotaling
- Division of Urology; Department of Surgery; University of Utah School of Medicine; Salt Lake City UT USA
| | - M. B. Shamsi
- Andrology and IVF Laboratories; Department of Surgery; University of Utah School of Medicine; Salt Lake City UT USA
| | - L. Simon
- Andrology and IVF Laboratories; Department of Surgery; University of Utah School of Medicine; Salt Lake City UT USA
| | - D. T. Carrell
- Andrology and IVF Laboratories; Department of Surgery; University of Utah School of Medicine; Salt Lake City UT USA
- Department of Obstetrics and Gynecology; University of Utah School of Medicine; Salt Lake City UT USA
- Department of Human Genetics; University of Utah School of Medicine; Salt Lake City UT USA
| |
Collapse
|
23
|
Barasc H, Congras A, Mary N, Trouilh L, Marquet V, Ferchaud S, Raymond-Letron I, Calgaro A, Loustau-Dudez AM, Mouney-Bonnet N, Acloque H, Ducos A, Pinton A. Meiotic pairing and gene expression disturbance in germ cells from an infertile boar with a balanced reciprocal autosome-autosome translocation. Chromosome Res 2016; 24:511-527. [PMID: 27484982 PMCID: PMC5167775 DOI: 10.1007/s10577-016-9533-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/19/2016] [Accepted: 07/21/2016] [Indexed: 11/07/2022]
Abstract
Individuals carrying balanced constitutional reciprocal translocations generally have a normal phenotype, but often present reproductive disorders. The aim of our research was to analyze the meiotic process in an oligoasthenoteratospermic boar carrying an asymmetric reciprocal translocation involving chromosomes 1 and 14. Different multivalent structures (quadrivalent and trivalent plus univalent) were identified during chromosome pairing analysis. Some of these multivalents were characterized by the presence of unpaired autosomal segments with histone γH2AX accumulation sometimes associated with the XY body. Gene expression in spermatocytes was studied by RNA-DNA-FISH and microarray-based testis transcriptome analysis. Our results revealed a decrease in gene expression for chromosomes 1 and 14 and an up-regulated expression of X-chromosome genes for the translocated boar compared with normal individuals. We hypothesized that the observed meiotic arrest and reproductive failure in this boar might be due to silencing of crucial autosomal genes (MSUC) and disturbance of meiotic sex chromosome inactivation (MSCI). Further analysis revealed abnormal meiotic recombination (frequency and distribution) and the production of a high rate of unbalanced spermatozoa.
Collapse
Affiliation(s)
- Harmonie Barasc
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Toulouse, France.
| | - Annabelle Congras
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Toulouse, France
| | - Nicolas Mary
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Toulouse, France
| | - Lidwine Trouilh
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Valentine Marquet
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Toulouse, France
| | - Stéphane Ferchaud
- GenESI Génétique, Expérimentation et Système Innovants, 17700, Saint-Pierre-d'Amilly, France
| | - Isabelle Raymond-Letron
- STROMALab, Université de Toulouse, CNRS ERL 5311, EFS, ENVT, Inserm U1031, UPS, Toulouse, France
| | - Anne Calgaro
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Toulouse, France
| | | | | | - Hervé Acloque
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Toulouse, France
| | - Alain Ducos
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Toulouse, France
| | - Alain Pinton
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Toulouse, France
| |
Collapse
|
24
|
Non integrative strategy decreases chromosome instability and improves endogenous pluripotency genes reactivation in porcine induced pluripotent-like stem cells. Sci Rep 2016; 6:27059. [PMID: 27245508 PMCID: PMC4887982 DOI: 10.1038/srep27059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 05/05/2016] [Indexed: 02/07/2023] Open
Abstract
The pig is an emerging animal model, complementary to rodents for basic research and for biomedical and agronomical purposes. However despite the progress made on mouse and rat models to produce genuine pluripotent cells, it remains impossible to produce porcine pluripotent cell lines with germline transmission. Reprogramming of pig somatic cells using conventional integrative strategies remains also unsatisfactory. In the present study, we compared the outcome of both integrative and non-integrative reprogramming strategies on pluripotency and chromosome stability during pig somatic cell reprogramming. The porcine cell lines produced with integrative strategies express several pluripotency genes but they do not silence the integrated exogenes and present a high genomic instability upon passaging. In contrast, pig induced pluripotent-like stem cells produced with non-integrative reprogramming system (NI-iPSLCs) exhibit a normal karyotype after more than 12 months in culture and reactivate endogenous pluripotency markers. Despite the persistent expression of exogenous OCT4 and MYC, these cells can differentiate into derivatives expressing markers of the three embryonic germ layers and we propose that these NI-iPSLCs can be used as a model to bring new insights into the molecular factors controlling and maintaining pluripotency in the pig and other non-rodent mammalians.
Collapse
|
25
|
Ventura-Juncá P, Irarrázaval I, Rolle AJ, Gutiérrez JI, Moreno RD, Santos MJ. In vitro fertilization (IVF) in mammals: epigenetic and developmental alterations. Scientific and bioethical implications for IVF in humans. Biol Res 2015; 48:68. [PMID: 26683055 PMCID: PMC4684609 DOI: 10.1186/s40659-015-0059-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/30/2015] [Indexed: 01/06/2023] Open
Abstract
The advent of in vitro fertilization (IVF) in animals and humans implies an extraordinary change in the environment where the beginning of a new organism takes place. In mammals fertilization occurs in the maternal oviduct, where there are unique conditions for guaranteeing the encounter of the gametes and the first stages of development of the embryo and thus its future. During this period a major epigenetic reprogramming takes place that is crucial for the normal fate of the embryo. This epigenetic reprogramming is very vulnerable to changes in environmental conditions such as the ones implied in IVF, including in vitro culture, nutrition, light, temperature, oxygen tension, embryo-maternal signaling, and the general absence of protection against foreign elements that could affect the stability of this process. The objective of this review is to update the impact of the various conditions inherent in the use of IVF on the epigenetic profile and outcomes of mammalian embryos, including superovulation, IVF technique, embryo culture and manipulation and absence of embryo-maternal signaling. It also covers the possible transgenerational inheritance of the epigenetic alterations associated with assisted reproductive technologies (ART), including its phenotypic consequences as is in the case of the large offspring syndrome (LOS). Finally, the important scientific and bioethical implications of the results found in animals are discussed in terms of the ART in humans.
Collapse
Affiliation(s)
- Patricio Ventura-Juncá
- Bioethical Center and Department of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Bioethics Center, Universidad Finis Terrae, Pedro de Valdivia 1509, Providencia, Región Metropolitana, 7501015, Santiago, Chile.
| | - Isabel Irarrázaval
- Bioethical Center and Department of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Augusto J Rolle
- Bioethical Center and Department of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Juan I Gutiérrez
- Bioethical Center and Department of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Ricardo D Moreno
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Manuel J Santos
- Bioethical Center and Department of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|