1
|
Hermo L, Oliveira R, Dufresne J, Gregory M, Cyr DG. Basal and Immune Cells of the Epididymis: An Electron Microscopy View of Their Association. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1469:67-87. [PMID: 40301253 DOI: 10.1007/978-3-031-82990-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
The epididymis is a highly coiled duct divided into the initial segment, caput, corpus, and cauda regions. It is a pseudostratified epithelium consisting of principal, narrow, apical, basal, and clear cells. Circulating halo cells, identified as nonepithelial cells, monocytes/macrophages (M/M) and T-lymphocytes, in addition to dendritic cells and a resident population of M/M cells, also inhabit the epididymal epithelium. Using electron microscopy (EM), we characterized the ultrastructural features of each of these different cell types. Basal cells with stem cell characteristics suggest a role in sustaining the epithelium following injury and inflammation, as well as maintaining the steady state of the epithelium. Interestingly, a close morphological affiliation was noted between circulating M/M cells with basal cells and an intraepithelial resident M/M population of cells, as well as between T-lymphocytes and dendritic cells. The association of all these cell types with one another suggests complex interactions enabling the coordination of their functions related to maturation, protection, survival of sperm, and renewal of the epithelium.
Collapse
Affiliation(s)
- Louis Hermo
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Regiana Oliveira
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Julie Dufresne
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada
| | - Mary Gregory
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada
| | - Daniel G Cyr
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada.
| |
Collapse
|
2
|
Cyr DG, Gregory M, Hermo L, Dufresne J. Molecular Pathways Implicated in the Differentiation and Function of Epididymal Basal Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1469:89-113. [PMID: 40301254 DOI: 10.1007/978-3-031-82990-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
The postnatal development of the epididymis is a complex and poorly understood process. Our recent studies have shown that undifferentiated primitive small columnar cells are stem cells and can differentiate in vitro into basal and principal cells. This process represents a key aspect of early epididymal development. As such, the genes and signaling pathways implicated in the differentiation of stem cells are critical. In the rat, epididymal development has been subdivided into three phases consisting of an undifferentiated epithelium (birth to day 14), differentiation (days 14 to 44), and expansion (day 45 to adult). During this period, changes in gene expression in the epididymis are the most significant, as almost 1500 genes are differentially expressed between epididymides of 7 and 18 days of age. In the adult rat, basal cells appear to represent a quiescent adult stem cell population that can be cultured under 3D conditions and can differentiate into principal cells. Gene expression in basal cells of adults compared with epididymides from day 7 rats reveals approximately 400 genes that are common to both. Analyses of these genes predict multiple signaling pathways and master regulator genes. Their roles in early epididymal development suggest that the process is complex and involves multiple regulators, cell surface factors, signaling pathways, and hormones that are interconnected and which promote the differentiation of epididymal basal cells into other epididymal cell types.
Collapse
Affiliation(s)
- Daniel G Cyr
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.
- Department of Obstetrics, Gynecology and Reproduction, Université Laval, Québec, QC, Canada.
| | - Mary Gregory
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada
| | - Louis Hermo
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Julie Dufresne
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada
| |
Collapse
|
3
|
Dufresne J, Gregory M, Pinel L, Cyr DG. Three-Dimensional Cell Culture of Epididymal Basal Cells and Organoids: A Novel Tool for Toxicology. Curr Protoc 2024; 4:e975. [PMID: 38284221 DOI: 10.1002/cpz1.975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Spermatozoa are formed in the testis but must transit through the epididymis to acquire motility and the ability to fertilize. The epididymis is a single convoluted tubule comprising several anatomically and physiologically distinct regions. The pseudostratified epithelium consists of multiple cell types, including principal cells, clear cells, narrow cells, and apical cells, that line the lumen of the epididymis. Basal cells are present at the base of the epithelium, and halo cells, which includes macrophages/monocytes, mononuclear phagocytes, and T lymphocytes, are also present in the epithelium. Several aspects of this complex spermatozoan maturation process are well established, but a great deal remains poorly understood. Given that dysfunction of the epididymis has been associated with male infertility, in vitro tools to study epididymal function and epididymal sperm maturation are required. Our lab and others have previously developed human, rat, and mouse epithelial principal cell lines, which have been used to address certain questions, such as about the regulation of junctional proteins in the epididymis, as well as the toxicity of nonylphenols. Given that the epididymal epithelium comprises multiple cell types, however, a 3D in vitro model provides a more comprehensive and realistic tool that can be used to study and elucidate the multiple aspects of epididymal function. The purpose of this article is to provide detailed information regarding the preparation, maintenance, passaging, and immunofluorescent staining of rat epididymal organoids derived from adult basal cells, which we have demonstrated to be a type of adult stem cell in the rat epididymis. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Isolation of epididymal cells Basic Protocol 2: Magnetic activated cell sorting and isolation of basal cells Basic Protocol 3: Preparation and culture of epididymal basal cell organoids Basic Protocol 4: Passage of epididymal basal cell organoids Basic Protocol 5: Freezing and thawing of epididymal basal cell organoids Basic Protocol 6: Immunofluorescent staining of epididymal basal cell organoids.
Collapse
Affiliation(s)
- Julie Dufresne
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, Québec, Canada
| | - Mary Gregory
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, Québec, Canada
| | - Laurie Pinel
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, Québec, Canada
| | - Daniel G Cyr
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, Québec, Canada
| |
Collapse
|
4
|
Effects of Glyceryl Monolaurate on Production Performance, Egg Quality, Oviduct Cytokines and Intestinal Microflora of 66 Weeks Old Laying Hens. Animals (Basel) 2023; 13:ani13020215. [PMID: 36670755 PMCID: PMC9855180 DOI: 10.3390/ani13020215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/08/2022] [Accepted: 12/17/2022] [Indexed: 01/10/2023] Open
Abstract
The principal purpose of this research was to study the effects of glycerol monolaurate (GML) on the production performance; egg quality; health state of the oviduct, ovary and ileum; and gut microbiota of laying hens in the later stage. The laying hens were randomly assigned to two groups: a control group and an experiment group, for which 1000 mg/kg of GML was added to a control diet. The results showed that GML increased the laying rate, average egg weight, albumen height, yolk color and Haugh unit and decreased the feed conversion ratio and defective eggs (p < 0.05). GML increased the intestinal villi height and the ratio of villus height to crypt depth (p < 0.05). Moreover, GML improved the contents of cytokines in the oviduct, ovary and ileum mucosa; ameliorated the expression of TLR2, TLR4, MyD88, IL-4, IL-1β and TNF-α; and increased the expression of Occludin and Muc-2 in the ileal mucosa. The supplementation of GML increased the volatile fatty acids in the cecal contents, such as acetic acid and propionic acid, and up-regulated Bacteroides (p < 0.01) and Alistipes (p < 0.05) richness in the cecal contents. In summary, GML improved production performance, egg quality and immunity; ameliorated the health status of the oviduct, ovary and ileum; enhanced the intestinal barrier function; improved the content of intestinal volatile fatty acids; and regulated the abundance of cecal flora.
Collapse
|
5
|
Zhao XW, Zhu HL, Qi YX, Wu T, Huang DW, Cheng GL, Yang YX, Bu DP, Hu H, Meng LF. Regulatory role of phosphoproteins in the development of bovine small intestine during early life. J Dairy Sci 2022; 105:9240-9252. [PMID: 36175223 DOI: 10.3168/jds.2022-21983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022]
Abstract
The small intestine is the primary site of nutrient digestion and absorption, which plays a key role in the survival of neonatal calves. A comprehensive assessment of the phosphoproteomic changes in the small intestine of neonatal calves is unavailable; therefore, we used phosphopeptide enrichment coupled with liquid chromatography-tandem mass spectrometry to investigate the changes in the phosphoproteome profile in the bovine small intestine during the first 36 h of life. Twelve neonatal male calves were assigned to one of the following groups: (1) calves not fed colostrum and slaughtered approximately 2 h postpartum (n = 3), (2) calves fed colostrum at 1 to 2 h and slaughtered 8 h postpartum (n = 3), (3) calves fed 2 colostrum meals (at 1-2 and 10-12 h) and slaughtered 24 h postpartum (n = 3), (4) calves fed 3 colostrum meals (at 1-2, 10-12, and 22-24 h) and slaughtered 36 h postpartum (n = 3). Mid-duodenal, jejunal, and ileal samples of the calves were collected after slaughter. We identified 1,678 phosphoproteins with approximately 3,080 phosphosites, which were mainly Ser (89.9%), Thr (9.8%), and Tyr (0.3%) residues; they belonged to the prodirected (52.9%), basic (20.4%), acidic (16.6%), and Tyr-directed (1.7%) motif categories. The regional differentially expressed phosphoproteins included zonula occludens 2, sorting nexin 12, and protein kinase C, which are mainly associated with developmental processes, intracellular transport, vesicle-mediated transport, and immune system process. They are enriched in the endocytosis, tight junction, insulin signaling, and focal adhesion pathways. The temporal differentially expressed phosphoproteins included occludin, epsin 1, and bridging integrator 1, which were mainly associated with macromolecule metabolic process, cell adhesion, and growth. They were enriched in the spliceosomes, adherens junctions, and tight junctions. The observed changes in the phosphoproteins in the tissues of small intestine suggest the protein phosphorylation plays an important role in nutrient transport and immune response of calves during early life, which needs to be confirmed in a larger study.
Collapse
Affiliation(s)
- X W Zhao
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - H L Zhu
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Y X Qi
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - T Wu
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - D W Huang
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - G L Cheng
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Y X Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| | - D P Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - H Hu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - L F Meng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| |
Collapse
|
6
|
Schimming BC, Martins LL, de Oliveira FS, Pinheiro PFF, Domeniconi RF. Morphology and immunolocalization of aquaporins 1 and 9 in the agouti ( Dasyprocta azarae) testis excurrent ducts. Anim Reprod 2021; 18:e20210070. [PMID: 34840612 PMCID: PMC8607849 DOI: 10.1590/1984-3143-ar2021-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/05/2021] [Indexed: 11/21/2022] Open
Abstract
This study investigated the morphology and immunoexpression of aquaporins (AQPs) 1 and 9 in the rete testis, efferent ducts, epididymis, and vas deferens in the Azara's agouti (Dasyprocta azarae). For this purpose, ten adult sexually mature animals were used in histologic and immunohistochemical analyses. The Azara's agouti rete testis was labyrinthine and lined with simple cubic epithelium. Ciliated and non-ciliated cells were observed in the epithelium of the efferent ducts. The epididymal cellular population was composed of principal, basal, apical, clear, narrow, and halo cells. The epithelium lining of vas deferens was composed of the principal and basal cells. AQPs 1 and 9 were not expressed in the rete testis. Positive reaction to AQP1 was observed at the luminal border of non-ciliated cells of the efferent ducts, and in the peritubular stroma and blood vessels in the epididymis, and vas deferens. AQP9 was immunolocalized in the epithelial cells in the efferent ducts, epididymis and vas deferens. The morphology of Azara's agouti testis excurrent ducts is similar to that reported for other rodents such as Cuniculus paca. The immunolocalization results of the AQPs suggest that the expression of AQPs is species-specific due to differences in localization and expression when compared to studies in other mammals species. The knowledge about the expression of AQPs in Azara's agouti testis excurrent ducts is essential to support future reproductive studies on this animal, since previous studies show that AQPs may be biomarkers of male fertility and infertility.
Collapse
Affiliation(s)
- Bruno Cesar Schimming
- Departamento de Anatomia, Universidade Estadual Paulista, Botucatu, São Paulo, Brasil
| | - Leandro Luis Martins
- Departamento de Anatomia, Universidade Estadual de Londrina, Londrina, PR, Brasil
| | | | | | | |
Collapse
|
7
|
Castro MM, Kim B, Games PD, Hill E, Neves CA, Serrão JE, Breton S, Machado-Neves M. Distribution pattern of ZO-1 and claudins in the epididymis of vampire bats. Tissue Barriers 2020; 8:1779526. [PMID: 32552339 DOI: 10.1080/21688370.2020.1779526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Epithelial cells connect with each other by tight junctions (TJs) in several tissues. In epididymides, TJs proteins form the blood-epididymis barrier (BEB), which is crucial for male fertility. However, little is known about BEB morphological and physiological aspects in wild animals. This study examines the region-specific distribution pattern of TJs proteins in D. rotundus' epididymis, assessing their regulation in rainy and dry season. The expression of zonula occludens-1 (ZO-1), and claudins (Cldn)-1, -3, and -4 were evaluated by confocal immunofluorescence and ELISA analysis. Herein, ZO-1 was strictly expressed in TJs, whereas Cldns were expressed in TJs and basolateral membranes of epithelial cells. Their co-localization and intensity of expression varied in the epididymal regions examined. The effect of season on protein expression was detected mainly in TJ proteins located in the proximal regions. As such, in the initial segment (IS), Cldn-3 and -4 were detected at low levels in basolateral membranes in the rainy season compared to the dry season. Furthermore, in the distal IS, Cldn-1 expression was lower in TJs of epithelial cells during the rainy season than the dry season. ZO-1 expression was higher in the cauda region than the corpus region by ELISA analysis. Additionally, in the corpus region, ZO-1 expression was higher in TJs during dry season compared to the rainy season. Our study sheds light on the understanding of BEB in D. rotundus, improving the knowledge of their reproductive biology.
Collapse
Affiliation(s)
- Mariana M Castro
- Departmento De Biologia Geral, Universidade Federal De Viçosa , Viçosa, Brasil
| | - Bongki Kim
- Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital/Harvard Medical School , Boston, MA, USA.,Department of Animal Resources Science, Kongju National University , Yesan, Republic of Korea
| | - Patrícia D Games
- Departmento De Biologia Geral, Universidade Federal De Viçosa , Viçosa, Brasil
| | - Eric Hill
- Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital/Harvard Medical School , Boston, MA, USA
| | | | - José Eduardo Serrão
- Departmento De Biologia Geral, Universidade Federal De Viçosa , Viçosa, Brasil
| | - Sylvie Breton
- Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital/Harvard Medical School , Boston, MA, USA
| | | |
Collapse
|
8
|
Zhang S, Zeng T, Hu B, Zhang YH, Feng K, Chen L, Niu Z, Li J, Huang T, Cai YD. Discriminating Origin Tissues of Tumor Cell Lines by Methylation Signatures and Dys-Methylated Rules. Front Bioeng Biotechnol 2020; 8:507. [PMID: 32528944 PMCID: PMC7264161 DOI: 10.3389/fbioe.2020.00507] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/30/2020] [Indexed: 12/18/2022] Open
Abstract
DNA methylation is an essential epigenetic modification for multiple biological processes. DNA methylation in mammals acts as an epigenetic mark of transcriptional repression. Aberrant levels of DNA methylation can be observed in various types of tumor cells. Thus, DNA methylation has attracted considerable attention among researchers to provide new and feasible tumor therapies. Conventional studies considered single-gene methylation or specific loci as biomarkers for tumorigenesis. However, genome-scale methylated modification has not been completely investigated. Thus, we proposed and compared two novel computational approaches based on multiple machine learning algorithms for the qualitative and quantitative analyses of methylation-associated genes and their dys-methylated patterns. This study contributes to the identification of novel effective genes and the establishment of optimal quantitative rules for aberrant methylation distinguishing tumor cells with different origin tissues.
Collapse
Affiliation(s)
- Shiqi Zhang
- School of Life Sciences, Shanghai University, Shanghai, China.,Department of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Tao Zeng
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China
| | - Bin Hu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yu-Hang Zhang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kaiyan Feng
- Department of Computer Science, Guangdong AIB Polytechnic, Guangzhou, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Zhibin Niu
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Jianhao Li
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Tao Huang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
9
|
Cyr DG, Dufresne J, Gregory M. Cellular junctions in the epididymis, a critical parameter for understanding male reproductive toxicology. Reprod Toxicol 2018; 81:207-219. [PMID: 30130578 DOI: 10.1016/j.reprotox.2018.08.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/14/2018] [Accepted: 08/16/2018] [Indexed: 12/28/2022]
Abstract
Epididymal sperm maturation is a critical aspect of male reproduction in which sperm acquire motility and the ability to fertilize an ovum. Sperm maturation is dependent on the creation of a specific environment that changes along the epididymis and which enables the maturation process. The blood-epididymis barrier creates a unique luminal micro-environment, different from blood, by limiting paracellular transport and forcing receptor-mediated transport of macromolecules across the epididymal epithelium. Direct cellular communication between cells allows coordinated function of the epithelium. A limited number of studies have directly examined the effects of toxicants on junctional proteins and barrier function in the epididymis. Effects on the integrity of the blood-epididymis barrier have resulted in decreased fertility and, in some cases, the development of sperm granulomas. Studies have shown that in addition to tight junctions, proteins implicated in the maintenance of adherens junctions and gap junctions alter epididymal functions. This review will provide an overview of the types and roles of cellular junctions in the epididymis, and how these are targeted by different toxicants.
Collapse
Affiliation(s)
- Daniel G Cyr
- Laboratory for Reproductive Toxicology, INRS-Institut Armand-Frappier, Université du Québec, 531 boul. des Prairies, Laval, Québec, H7V 1B7, Canada.
| | - Julie Dufresne
- Laboratory for Reproductive Toxicology, INRS-Institut Armand-Frappier, Université du Québec, 531 boul. des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Mary Gregory
- Laboratory for Reproductive Toxicology, INRS-Institut Armand-Frappier, Université du Québec, 531 boul. des Prairies, Laval, Québec, H7V 1B7, Canada
| |
Collapse
|
10
|
Schimming BC, Baumam CAE, Pinheiro PFF, de Matteis R, Domeniconi RF. Aquaporin 9 is expressed in the epididymis of immature and mature pigs. Reprod Domest Anim 2017; 52:617-624. [DOI: 10.1111/rda.12957] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/09/2017] [Indexed: 01/17/2023]
Affiliation(s)
- BC Schimming
- Department of Anatomy; Institute of Biosciences; São Paulo State University (UNESP); Botucatu SP Brazil
| | - CAE Baumam
- School of Veterinary Medicine and Animal Science; São Paulo State University (UNESP); Botucatu SP Brazil
| | - PFF Pinheiro
- Department of Anatomy; Institute of Biosciences; São Paulo State University (UNESP); Botucatu SP Brazil
| | - R de Matteis
- School of Veterinary Medicine and Animal Science; São Paulo State University (UNESP); Botucatu SP Brazil
| | - RF Domeniconi
- Department of Anatomy; Institute of Biosciences; São Paulo State University (UNESP); Botucatu SP Brazil
| |
Collapse
|
11
|
McCabe MJ, Foo CF, Dinger ME, Smooker PM, Stanton PG. Claudin-11 and occludin are major contributors to Sertoli cell tight junction function, in vitro. Asian J Androl 2017; 18:620-6. [PMID: 26585695 PMCID: PMC4955190 DOI: 10.4103/1008-682x.163189] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Sertoli cell tight junction (TJ) is the key component of the blood-testis barrier, where it sequesters developing germ cells undergoing spermatogenesis within the seminiferous tubules. Hormonally regulated claudin-11 is a critical transmembrane protein involved in barrier function and its murine knockout results in infertility. We aimed to assess quantitatively the significance of the contribution of claudin-11 to TJ function, in vitro, using siRNA-mediated gene silencing. We also conducted an analysis of the contribution of occludin, another intrinsic transmembrane protein of the TJ. Silencing of claudin-11 and/or occludin was conducted using siRNA in an immature rat Sertoli cell culture model. Transepithelial electrical resistance was used to assess quantitatively TJ function throughout the culture. Two days after siRNA treatment, cells were fixed for immunocytochemical localization of junction proteins or lyzed for RT-PCR assessment of mRNA expression. Silencing of claudin-11, occludin, or both resulted in significant decreases in TJ function of 55% (P < 0.01), 51% (P < 0.01), and 62% (P < 0.01), respectively. Data were concomitant with significant decreases in mRNA expression and marked reductions in the localization of targeted proteins to the Sertoli cell TJ. We provide quantitative evidence that claudin-11 contributes significantly (P < 0.01) to Sertoli cell TJ function in vitro. Interestingly, occludin, which is hormonally regulated but not implicated in infertility until late adulthood, is also a significant (P < 0.01) contributor to barrier function. Our data are consistent with in vivo studies that clearly demonstrate a role for these proteins in maintaining normal TJ barrier structure and function.
Collapse
Affiliation(s)
- Mark J McCabe
- Male Fertility Regulation Laboratory, Hudson Institute of Medical Research, Monash Medical Centre, Clayton, Victoria 3168; School of Applied Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria 3088; Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010; St Vincent's Clinical School, UNSW, Sydney, New South Wales 2052, Australia
| | - Caroline Fh Foo
- Male Fertility Regulation Laboratory, Hudson Institute of Medical Research, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | - Marcel E Dinger
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010; St Vincent's Clinical School, UNSW, Sydney, New South Wales 2052, Australia
| | - Peter M Smooker
- School of Applied Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria 3088, Australia
| | - Peter G Stanton
- Male Fertility Regulation Laboratory, Hudson Institute of Medical Research, Monash Medical Centre, Clayton, Victoria 3168, Australia
| |
Collapse
|
12
|
Zhou L, Gong Y, Sunq A, Hou J, Baker LA. Capturing Rare Conductance in Epithelia with Potentiometric-Scanning Ion Conductance Microscopy. Anal Chem 2016; 88:9630-9637. [DOI: 10.1021/acs.analchem.6b02392] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Lushan Zhou
- Department
of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Yongfeng Gong
- Renal
Division, Washington University Medical School, 660 South Euclid
Avenue, St. Louis, Missouri 63110, United States
| | - Abby Sunq
- Renal
Division, Washington University Medical School, 660 South Euclid
Avenue, St. Louis, Missouri 63110, United States
| | - Jianghui Hou
- Renal
Division, Washington University Medical School, 660 South Euclid
Avenue, St. Louis, Missouri 63110, United States
- Center
for Investigation of Membrane Excitability Diseases, Washington University Medical School, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Lane A. Baker
- Department
of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
13
|
Identification of New Epididymal Luminal Fluid Proteins Involved in Sperm Maturation in Infertile Rats Treated by Dutasteride Using iTRAQ. Molecules 2016; 21:molecules21050602. [PMID: 27187330 PMCID: PMC6273551 DOI: 10.3390/molecules21050602] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 01/01/2023] Open
Abstract
Background: Spermatozoa become mature and acquire fertilizing capacity during their passage through the epididymal lumen. In this study, we identified new epididymal luminal fluid proteins involved in sperm maturation in infertile rats by dutasteride, a dual 5α-reductase inhibitor, in order to provide potential epididymal targets for new contraceptives and infertility treatment. Methods: Male rats were treated with dutasteride for 28 consecutive days. We observed the protein expression profiles in the epididymal luminal fluids in infertile and normal rats using isobaric tags for relative and absolute quantitation (iTRAQ) technique. The confidence of proteome data was validated by enzyme-linked immunosorbent assays. Results: 1045 proteins were tested, and 23 of them presented different expression profiling in the infertile and normal rats. The seven proteins were down-regulated, and 16 proteins were up-regulated. Among the seven proteins which were significantly down-regulated by dutasteride in the epididymal luminal fluids, there were three β-defensins (Defb2, Defb18 and Defb39), which maybe the key proteins involved in epididymal sperm maturation and male fertility. Conclusions: We report for the first time that dutasteride influences the protein expression profiling in the epididymal luminal fluids of rats, and this result provides some new epididymal targets for male contraception and infertility therapy.
Collapse
|
14
|
Mandon M, Hermo L, Cyr DG. Isolated Rat Epididymal Basal Cells Share Common Properties with Adult Stem Cells. Biol Reprod 2015; 93:115. [PMID: 26400399 DOI: 10.1095/biolreprod.115.133967] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/15/2015] [Indexed: 01/05/2023] Open
Abstract
There is little information on the function of epididymal basal cells. These cells secrete prostaglandins, can metabolize radical oxygen species, and have apical projections that are components of the blood-epididymis barrier. The objective of this study was to develop a reproducible protocol to isolate rat epididymal basal cells and to characterize their function by gene expression profiling. Integrin-alpha6 was used to isolate a highly purified population of basal cells. Microarray analysis indicated that expression levels of 552 genes were enriched in basal cells relative to other cell types. Among these genes, 45 were expressed at levels of 5-fold or greater. These highly expressed genes coded for proteins implicated in cell adhesion, cytoskeletal function, ion transport, cellular signaling, and epidermal function, and included proteases and antiproteases, signal transduction, and transcription factors. Several highly expressed genes have been reported in adult stem cells, suggesting that basal cells may represent an epididymal stem cell population. A basal cell culture was established that showed that these basal cells can differentiate in vitro from keratin (KRT) 5-positive cells to cells that express KRT8 and connexin 26, a marker of columnar cells. These data provide novel information on epididymal basal cell gene expression and suggest that these cells can act as adult stem cells.
Collapse
Affiliation(s)
- Marion Mandon
- Laboratory for Reproductive Toxicology, Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, Quebec, Canada
| | - Louis Hermo
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Daniel G Cyr
- Laboratory for Reproductive Toxicology, Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, Quebec, Canada Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|