1
|
Tafazoli P, Rad HM, Mashayekhi M, Siadat SF, Fathi R. miRNAs in ovarian disorders: Small but strong cast. Pathol Res Pract 2024; 264:155709. [PMID: 39522318 DOI: 10.1016/j.prp.2024.155709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE This research aimed to analyze alterations in microRNA expression in the diseases POF (Premature Ovarian Failure), PCOS (Polycystic Ovarian Syndrome), and ovarian cancer in order to understand the molecular changes associated with these conditions. The findings could potentially be utilized for diagnostic, therapeutic, predictive, and preventive purposes. Furthermore, the impact and role of microRNAs in each ailment, along with their functional pathways, were elucidated and examined. METHODS In this study, the genes involved in the disease were studied, and then the miRNAs that targeted these genes were evaluated, and finally the signaling and functional pathways of each of the miRNAs were assessed. In this process, genetic databases and previous studies were carefully assessed. RESULTS miRNAs are short nucleotide sequences that belong to the category of non-coding RNAs. They play a crucial role in various physiological activities, including cell division, growth, differentiation, and cell death (necrosis and apoptosis), miRNAs are involved in various physiological processes Such alterations are common in various diseases, including cancer. miRNAs are involved in various physiological processes, such as folliculogenesis and steroidogenesis, as well as in pathological conditions such as POF, PCOS, and ovarian cancer. They have powerful regulatory effects and controlling the most activities of normal and pathological cells. While microRNAs (miRNAs) play a significant role in normal ovarian functions, there are reports of their expression changes in PCOS, ovarian cancer, and POF. CONCLUSIONS miRNAs have been found to exert significant influence on both physiological and pathological cellular processes. Understanding the dynamic patterns of miRNA alterations can provide valuable insights for researchers and therapists, enabling them to utilize these biomarkers effectively in diagnostic, therapeutic, and preventive applications.
Collapse
Affiliation(s)
- Parsa Tafazoli
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Hanieh Motahari Rad
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mehri Mashayekhi
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | | | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
2
|
Goetten ALF, Barreta MH, Pinto da Silva Y, Bertolin K, Koch J, Rocha CC, Dias Gonçalves PB, Price CA, Antoniazzi AQ, Portela VM. FGF18 impairs blastocyst viability, DNA double-strand breaks and maternal recognition of pregnancy genes. Theriogenology 2024; 225:81-88. [PMID: 38796960 DOI: 10.1016/j.theriogenology.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Embryonic mortality in cattle is high, reaching 10-40 % in vivo and 60-70 % in vitro. Death of embryos involves reduced expression of genes related to embryonic viability, inhibition of DNA repair and increased DNA damage. In follicular granulosa cells, FGF18 from the theca layer increases apoptosis and DNA damage, so we hypothesized that FGF18 may also affect the oocyte and contribute to early embryonic death. The aims of this study were to identify the effects of FGF18 on cumulus expansion, oocyte maturation and embryo development from cleavage to blastocyst stage using a conventional bovine in vitro embryo production system using ovaries of abattoir origin. Addition of FGF18 during in-vitro maturation did not affect FSH-induced cumulus expansion or rates of nuclear maturation. When FGF18 was present in the culture system, rates of cleavage were not affected however, blastocyst and expanded blastocyst development was substantially inhibited (P < 0.05), indicating a delay of blastulation. The number of phosphorylated histone H2AFX foci per nucleus, a marker of DNA damage, was higher in cleavage-stage embryos cultured with FGF18 than in those from control group (P < 0.05). Furthermore, FGF18 decreased accumulation of PTGS2 and IFNT2 mRNA in blastocysts. In conclusion, these novel findings suggest that FGF18 plays a role in the regulation of embryonic death during the early stages of development by impairing DNA double-strand break repair and expression of genes associated with embryo viability and maternal recognition of pregnancy during the progression from oocyte to expanded blastocysts.
Collapse
Affiliation(s)
- André Lucio Fontana Goetten
- Laboratory of Animal Reproduction Physiology, LAFRA, Federal University of Santa Catarina, Curitibanos, SC, Brazil
| | - Marcos Henrique Barreta
- Laboratory of Animal Reproduction Physiology, LAFRA, Federal University of Santa Catarina, Curitibanos, SC, Brazil
| | - Yago Pinto da Silva
- Laboratory of Animal Reproduction Physiology, LAFRA, Federal University of Santa Catarina, Curitibanos, SC, Brazil
| | - Kalyne Bertolin
- Biotechnology and Animal Reproduction Laboratory, BioRep, Federal University of Santa Maria, RS, Brazil
| | - Júlia Koch
- Biotechnology and Animal Reproduction Laboratory, BioRep, Federal University of Santa Maria, RS, Brazil
| | - Cecilia Constantino Rocha
- Laboratory of Animal Reproduction Physiology, LAFRA, Federal University of Santa Catarina, Curitibanos, SC, Brazil
| | - Paulo Bayard Dias Gonçalves
- Biotechnology and Animal Reproduction Laboratory, BioRep, Federal University of Santa Maria, RS, Brazil; Molecular and Integrative Physiology of Reproduction Laboratory, MINT, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Christopher Alan Price
- Centre de Recherche en Reproduction et Fertilité, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC, Canada
| | - Alfredo Quites Antoniazzi
- Biotechnology and Animal Reproduction Laboratory, BioRep, Federal University of Santa Maria, RS, Brazil
| | - Valerio Marques Portela
- Biotechnology and Animal Reproduction Laboratory, BioRep, Federal University of Santa Maria, RS, Brazil.
| |
Collapse
|
3
|
Sharma P, Senapati S, Goyal LD, Kaur B, Kamra P, Khetarpal P. Genome-wide association study (GWAS) identified PCOS susceptibility variants and replicates reported risk variants. Arch Gynecol Obstet 2024; 309:2009-2019. [PMID: 38421422 DOI: 10.1007/s00404-024-07400-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/25/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Genetic predisposition and environmental factors are considered risk factors for polycystic ovary syndrome (PCOS). Genome-wide association studies (GWAS) have been reported from various subpopulations to evaluate SNPs associated with PCOS risk. No PCOS-associated GWAS study has been reported from India so far. PURPOSE The current study was conducted to identify the PCOS-susceptible loci among the North Indian population and to validate the significant loci reported by previous GWAS studies. METHODS A total of 272 participants with 134 PCOS patients and 138 age-matched healthy controls were recruited. Genomic DNA was isolated and genotyped by using Infinium Global Screening Array v3.0 microchip considering HWE 10e-5 statistically significant. RESULTS A total of fifteen markers have been identified as candidate PCOS risk factors. Only two SNPs, namely rs17186366 and rs11171739 have been identified through replication analysis while comparing the previously reported PCOS GWAS data. In-silico analysis was performed to study the functional impact of identified significant genes for gene ontology, pathways related to gene set, and cluster analysis to determine protein-protein interaction among genes or gene products. CONCLUSION The study suggests that multiple variants play an important role in PCOS pathogenesis and emphasizes the importance of further genetic studies among Indian subpopulations. The study also validates two previously reported SNPs in the Indian population. What this study adds to clinical work Study summarizes the importance of candidate gene markers validated by replication and in-silico functional study, significantly involved in PCOS pathogenesis in the studied population. These markers can be used in the future as diagnostic markers for clinical phenotype identification.
Collapse
Affiliation(s)
- Priya Sharma
- Laboratory for Reproductive and Developmental Disorders, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Sabyasachi Senapati
- Laboratory of Immunogenomics, Department of Human Genetics and Molecular Medicine, School of Health Science, Central University of Punjab, Bathinda, 151401, India
| | - Lajya Devi Goyal
- Department of Obstetrics and Gynaecology, AIIMS, Bathinda, 151001, India
| | - Balpreet Kaur
- Department of Obstetrics and Gynaecology, AIIMS, Bathinda, 151001, India
| | - Pooja Kamra
- Department of Obstetrics and Gynaecology, Kamra Hospital, Malout, 152107, India
| | - Preeti Khetarpal
- Laboratory for Reproductive and Developmental Disorders, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India.
| |
Collapse
|
4
|
Yang W, Yu S, Peng J, Chang P, Chen X. FGF12 regulates cell cycle gene expression and promotes follicular granulosa cell proliferation through ERK phosphorylation in geese. Poult Sci 2023; 102:102937. [PMID: 37494810 PMCID: PMC10394013 DOI: 10.1016/j.psj.2023.102937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/10/2023] [Accepted: 07/15/2023] [Indexed: 07/28/2023] Open
Abstract
The granulosa cells play an important role in the fate of follicular development or atresia in poultry. Fibroblast growth factor 12 (FGF12) is downregulated in atretic follicles and may be involved in regulating granulosa cell survival in previous studies, but its molecular mechanism remains unclear. In this study, FGF12 overexpression and knockdown models of goose granulosa cells were constructed to investigate its function. The downstream expression of the cell cycle pathway was analyzed by qPCR. Granulosa cell proliferative activity and apoptosis were detected by CCK8 and TUNEL. Protein phosphorylation levels of ERK and AKT were measured using Western blotting to analyze the key pathway of FGF12 regulation of granulosa cell proliferation. ERK protein phosphorylation inhibitor was added for further verification. After overexpression of FGF12, cell proliferation activity was increased, the expressions of cell cycle pathway genes CCND1, CCNA2, MAD2, and CHK1 were upregulated, the apoptosis of granulosa cell was decreased, and Caspase 3 gene and protein expression were downregulated. After the knockdown of FGF12, cell proliferation activity decreased, the expression of downstream genes in the cell cycle pathway was downregulated, the apoptosis of granulosa cells was increased, and the Bcl-2 gene and protein were downregulated. Overexpression of FGF12 promoted the synthesis of P4 and upregulates the expression of the STAR gene. Overexpression of FGF12 promoted ERK protein phosphorylation but did not affect AKT phosphorylation. The addition of ERK phosphorylation inhibitors resulted in the elimination of the increase in cell proliferative activity caused by FGF12 overexpression. In conclusion, FGF12 could promote proliferation and inhibit apoptosis of goose granulosa cells by increasing ERK phosphorylation.
Collapse
Affiliation(s)
- Wanli Yang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shiqi Yu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jinzhou Peng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Penghui Chang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xingyong Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
5
|
Du S, Wang Y, Yang X, Liu X, Deng K, Chen M, Yan X, Lu F, Shi D. Beneficial effects of fibroblast growth factor 10 supplementation during in vitro maturation of buffalo cumulus-oocyte complexes. Theriogenology 2023; 201:126-137. [PMID: 36893617 DOI: 10.1016/j.theriogenology.2023.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
Fibroblast growth factor 10 (FGF10) is an important regulator of the mammalian cumulus-oocyte complex that plays a crucial role in oocyte maturation. In this study, we investigated the effects of FGF10 supplementation on the in vitro maturation (IVM) of buffalo oocytes and its related mechanisms. During IVM, the maturation medium was supplemented with a range of concentrations of FGF10 (0, 0.5, 5, and 50 ng/mL) and the resulting effects were corroborated using aceto-orcein staining, TUNEL apoptosis assay, detection of Cdc2/Cdk1 kinase in oocytes, and real-time quantitative PCR. In matured oocytes, the 5 ng/mL-FGF10 treatment resulted in a significantly increased nuclear maturation rate, which increased the activity of maturation-promoting factor (MPF) and enhanced buffalo oocyte maturation. Furthermore, it treatment significantly inhibited the apoptosis of cumulus cells, while simultaneously promoting its proliferation and expansion. This treatment also increased the absorption of glucose in cumulus cells. Thus, our results indicate that adding an appropriate concentration of FGF10 to a maturation medium during IVM can be beneficial to the maturation of buffalo oocytes and improve the potential of embryo development.
Collapse
Affiliation(s)
- Shanshan Du
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China; Department of Reproductive Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanxin Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Xiaofen Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Xiaohua Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Kai Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Mengjia Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Xi Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Fenghua Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China.
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China.
| |
Collapse
|
6
|
Yang W, Chen X, Liu Z, Zhao Y, Chen Y, Geng Z. Integrated transcriptome and proteome revealed that the declined expression of cell cycle-related genes associated with follicular atresia in geese. BMC Genomics 2023; 24:24. [PMID: 36647001 PMCID: PMC9843891 DOI: 10.1186/s12864-022-09088-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 12/16/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Geese exhibit relatively low reproductive performance, and follicular atresia is an important factor that restricts the egg production of geese. Systematic analysis of the regulation of follicle atresia in geese through transcriptome and proteome levels could provide meaningful information on clarifying the mechanism of follicle atresia in poultry. RESULT The granulosa cell layer was loose, disintegrated and showed apoptosis in atretic follicles and remained intact in normal follicles. The hormone levels of FSH and LH were significantly decreased in the atresia follicles compared to the normal follicles (P < 0.05). A total of 954 differentially expressed genes (DEGs, 315 increased and 639 decreased) and 161 differentially expressed proteins (DEPs, 61 increased and 100 decreased) were obtained in atresia follicles compared to normal follicles, of which, 15 genes were differentially expressed in both transcriptome and proteome. The DEGs were mainly enriched in sodium transmembrane transport, plasma membrane, and transmembrane transporter activity based on the GO enrichment analysis and in the cell cycle pathway based on the KEGG enrichment analysis. The DEPs were mainly enriched in localization, lysosome, and phospholipid-binding based on the GO enrichment analysis. Candidate genes Smad2/3, Smad4, Annexin A1 (ANXA1), Stromelysin-1 (MMP3), Serine/threonine-protein kinase (CHK1), DNA replication licensing factor (MCM3), Cyclin-A2 (CCNA2), mitotic spindle assembly checkpoint protein (MAD2), Cyclin-dependent kinase 1 (CDK1), fibroblast growth factor 12 (FGF12), and G1/S-specific cyclin-D1 (CCND1) were possibly responsible for the regulation of atresia. CONCLUSION The cell cycle is an important pathway for the regulation of follicular atresia. Sodium outflow and high expression of MMP3 and MMP9 could be responsible for structural destruction and apoptosis of follicular cells.
Collapse
Affiliation(s)
- Wanli Yang
- grid.411389.60000 0004 1760 4804College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036 China
| | - Xingyong Chen
- grid.411389.60000 0004 1760 4804College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036 China ,grid.411389.60000 0004 1760 4804Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, NO. 130 Changjiang West Rd, Hefei, 230036 China
| | - Zhengquan Liu
- grid.411389.60000 0004 1760 4804College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036 China
| | - Yutong Zhao
- grid.411389.60000 0004 1760 4804College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036 China
| | - Yufei Chen
- grid.411389.60000 0004 1760 4804College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036 China
| | - Zhaoyu Geng
- grid.411389.60000 0004 1760 4804College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036 China ,grid.411389.60000 0004 1760 4804Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, NO. 130 Changjiang West Rd, Hefei, 230036 China
| |
Collapse
|
7
|
Nouri N, Shareghi-Oskoue O, Aghebati-Maleki L, Danaii S, Ahmadian Heris J, Soltani-Zangbar MS, Kamrani A, Yousefi M. Role of miRNAs interference on ovarian functions and premature ovarian failure. Cell Commun Signal 2022; 20:198. [PMID: 36564840 PMCID: PMC9783981 DOI: 10.1186/s12964-022-00992-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/22/2022] [Indexed: 12/24/2022] Open
Abstract
Premature ovarian failure is a to some extent unknown and intricate problem with diverse causes and clinical manifestations. The lack of ovarian sex hormones presumably is effective in the occurrence of ovarian failure. Our progress in this field has been very little despite undertaken scientific research endeavors; scholars still are trying to understand the explanation of this dilemmatic medical condition. In contrast, the practice of clinical medicine has made meaningful strides in providing assurance to the women with premature ovarian insufficiency that their quality of life as well as long-term health can be optimized through timely intervention. Very recently Scientists have investigated the regulating effects of small RNA molecules on steroidogenesis apoptosis, ovulation, gonadal, and corpus luteum development of ovaries. In this literature review, we tried to talk over the mechanisms of miRNAs in regulating gene expression after transcription in the ovary. Video abstract.
Collapse
Affiliation(s)
- Narjes Nouri
- grid.412888.f0000 0001 2174 8913Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, PO Box: 516-6615573, Tabriz, Iran
| | - Olduz Shareghi-Oskoue
- grid.412888.f0000 0001 2174 8913Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, PO Box: 516-6615573, Tabriz, Iran
| | - Leili Aghebati-Maleki
- grid.412888.f0000 0001 2174 8913Immunology Research Center, Tabriz University of Medical Sciences, PO Box: 516-6615573, Tabriz, Iran
| | - Shahla Danaii
- Gynecology Department, Eastern Azerbaijan ACECR ART Center, Eastern Azerbaijan Branch of ACECR, Tabriz, Iran
| | - Javad Ahmadian Heris
- grid.412888.f0000 0001 2174 8913Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Sadegh Soltani-Zangbar
- grid.412888.f0000 0001 2174 8913Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, PO Box: 516-6615573, Tabriz, Iran
| | - Amin Kamrani
- grid.412888.f0000 0001 2174 8913Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, PO Box: 516-6615573, Tabriz, Iran
| | - Mehdi Yousefi
- grid.412888.f0000 0001 2174 8913Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, PO Box: 516-6615573, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
FSH Regulates YAP-TEAD Transcriptional Activity in Bovine Granulosa Cells to Allow the Future Dominant Follicle to Exert Its Augmented Estrogenic Capacity. Int J Mol Sci 2022; 23:ijms232214160. [PMID: 36430640 PMCID: PMC9693326 DOI: 10.3390/ijms232214160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
The molecular mechanisms that drive the granulosa cells' (GC) differentiation into a more estrogenic phenotype during follicular divergence and establishment of follicle dominance have not been completely elucidated. The main Hippo signaling effector, YAP, has, however, emerged as a potential key player to explain such complex processes. Studies using rat and bovine GC demonstrate that, in conditions where the expression of the classic YAP-TEAD target gene tissue growth factor (CTGF) is augmented, CYP19A1 expression and activity and, consequently, estradiol (E2) secretion are reduced. These findings led us to hypothesize that, during ovarian follicular divergence in cattle, FSH downregulates YAP-TEAD-dependent transcriptional activity in GC to allow the future dominant follicle to exert its augmented estrogenic capacity. To address this, we performed a series of experiments employing distinct bovine models. Our in vitro and ex vivo experiments indicated that indeed FSH downregulates, in a concentration-dependent manner, mRNA levels not only for CTGF but also for the other classic YAP-TEAD transcriptional target genes ANKRD1 and CYR61 by a mechanism that involves increased YAP phosphorylation. To better elucidate the functional importance of such FSH-induced YAP activity regulation, we then cultured GC in the presence of verteporfin (VP) or peptide 17 (P17), two pharmacological inhibitors known to interfere with YAP binding to TEADs. The results showed that both VP and P17 increased CYP19A1 basal mRNA levels in a concentration-dependent manner. Most interestingly, by using GC samples obtained in vivo from dominant vs. subordinate follicles, we found that mRNA levels for CTGF, CYR61, and ANKRD1 are higher in subordinate follicles following the follicular divergence. Taken together, our novel results demonstrate that YAP transcriptional activity is regulated in bovine granulosa cells to allow the increased estrogenic capacity of the selected dominant follicle.
Collapse
|
9
|
Baddela VS, Michaelis M, Sharma A, Plinski C, Viergutz T, Vanselow J. Estradiol production of granulosa cells is unaffected by the physiological mix of non-esterified fatty acids in follicular fluid. J Biol Chem 2022; 298:102477. [PMID: 36096202 PMCID: PMC9576879 DOI: 10.1016/j.jbc.2022.102477] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
Ovarian cycle is controlled by circulating levels of the steroid hormone 17-β-estradiol, which is predominantly synthesized by the granulosa cells (GCs) of ovarian follicles. Our earlier studies showed that unsaturated fatty acids (USFs) downregulate and saturated fatty acids (SFAs) upregulate estradiol production in GCs. However, it was unclear whether pituitary gonadotropins induce accumulation of free fatty acids (FFAs) in the follicular fluid since follicle-stimulating hormone induces and luteinizing hormone inhibits estradiol production in the mammalian ovary. Interestingly, we show here the gas chromatography analysis of follicular fluid revealed no differential accumulation of FFAs between pre- and post-luteinizing hormone surge follicles. We therefore wondered how estradiol production is regulated in the physiological context, as USFs and SFAs are mutually present in the follicular fluid. We thus performed in vitro primary GC cultures with palmitate, palmitoleate, stearate, oleate, linoleate, and alpha-linolenate, representing >80% of the FFA fraction in the follicular fluid, and analyzed 62 different cell culture conditions to understand the regulation of estradiol biosynthesis under diverse FFA combinations. Our analyses showed co-supplementation of SFAs with USFs rescued estradiol production by restoring gonadotropin receptors and aromatase, antagonizing the inhibitory effects of USFs. Furthermore, transcriptome data of oleic acid–treated GCs indicated USFs induce the ERK and Akt signaling pathways. We show SFAs inhibit USF-induced ERK1/2 and Akt activation, wherein ERK1/2 acts as a negative regulator of estradiol synthesis. We propose SFAs are vital components of the follicular fluid, without which gonadotropin signaling and the ovarian cycle would probably be shattered by USFs.
Collapse
Affiliation(s)
- Vijay Simha Baddela
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm Stahl Allee 2, 18196 Dummerstorf, Germany.
| | - Marten Michaelis
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm Stahl Allee 2, 18196 Dummerstorf, Germany
| | - Arpna Sharma
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm Stahl Allee 2, 18196 Dummerstorf, Germany
| | - Christian Plinski
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm Stahl Allee 2, 18196 Dummerstorf, Germany
| | - Torsten Viergutz
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm Stahl Allee 2, 18196 Dummerstorf, Germany
| | - Jens Vanselow
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm Stahl Allee 2, 18196 Dummerstorf, Germany
| |
Collapse
|
10
|
Dehghanian Reyhan V, Sadeghi M, Miraei-Ashtiani SR, Ghafouri F, Kastelic JP, Barkema HW. Integrated transcriptome and regulatory network analyses identify candidate genes and pathways modulating ewe fertility. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
11
|
Kanke T, Fujii W, Naito K, Sugiura K. Effect of fibroblast growth factor signaling on cumulus expansion in mice in vitro. Mol Reprod Dev 2022; 89:281-289. [PMID: 35678749 DOI: 10.1002/mrd.23616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/23/2022] [Accepted: 05/25/2022] [Indexed: 11/07/2022]
Abstract
The expansion of cumulus cells associated with oocytes is an essential phenomenon in normal mammalian ovulation. Indeed, attenuated expression of cumulus expansion-related genes, including Has2, Ptgs2, Ptx3, and Tnfaip6, results in ovulation failure, leading to female subfertility or infertility. Moreover, emerging evidence suggests that proteins of the fibroblast growth factor (FGF) family, produced within ovarian follicles, regulate the development and function of cumulus cells; however, the effects of FGF signaling on cumulus expansion have not been investigated extensively. Herein, we investigate the effects of FGF signaling, particularly those of FGF8 secreted by oocytes, on epidermal growth factor-induced cumulus expansion in mice. The phosphorylation level of MAPK3/1, an intracellular mediator of FGF signaling, was significantly decreased in cumulus-oocyte complexes (COCs) following treatment with NVP-BGJ398, an FGF receptor inhibitor. Moreover, even though NVP-BGJ398 treatment did not affect cumulus cell expansion, it significantly upregulated the expression of Ptgs2 and Ptx3. In contrast, treatment with recombinant FGF8 did not affect the degree of cumulus expansion or the expression of expansion-related genes in COCs or oocytectomized cumulus cell complexes. Collectively, these results suggest that FGFs, other than FGF8, exert suppressive effects on the cumulus expansion process in mice.
Collapse
Affiliation(s)
- Takuya Kanke
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Wataru Fujii
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kunihiko Naito
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Koji Sugiura
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Schütz LF, Hemple AM, Morrell BC, Schreiber NB, Gilliam JN, Cortinovis C, Totty ML, Caloni F, Aad PY, Spicer LJ. Changes in fibroblast growth factor receptors-1c, -2c, -3c, and -4 mRNA in granulosa and theca cells during ovarian follicular growth in dairy cattle. Domest Anim Endocrinol 2022; 80:106712. [PMID: 35276581 PMCID: PMC9124679 DOI: 10.1016/j.domaniend.2022.106712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/26/2022] [Accepted: 02/07/2022] [Indexed: 11/22/2022]
Abstract
The various fibroblast growth factors (FGF) regulate their function via binding to 4 main FGF receptor (FGFR) subtypes and their splice variants, FGFR1b, FGF1c, FGFR2b, FGFR2c and FGFR3c and FGFR4, but which of these FGFR are expressed in the granulosa (GC) and theca cells (TC), the 2 main cell layers of ovarian follicles, or change during follicular development is unknown. We hypothesized that FGFR1c, FGFR2c and FGFR3c (but not FGFR4) gene expression in GC (but not TC) would change with follicular development. Hence, the objective of this study was to determine if abundance of FGFR1c, FGFR2c, FGFR3c, and FGFR4 mRNA change according to follicular size, steroidogenic status, and days post-ovulation during growth of first-wave dominant follicles in Holstein cattle exhibiting regular estrous cycles. Estrous cycles of non-lactating dairy cattle were synchronized, and ovaries were collected on either d 3 to 4 (n = 8) or d 5 to 6 (n = 8) post-ovulation for GC and TC RNA extraction from small (1-5 mm), medium (5.1 to 8 mm) or large (8.1-18 mm) follicles for real-time PCR analysis. In GC, FGFR1c and FGFR2c mRNA relative abundance was greater in estrogen (E2)-inactive (ie, concentrations of E2 < progesterone, P4) follicles of all sizes than in GC from large E2-active follicles (ie, E2 > P4), whereas FGFR3c and FGFR4 mRNA abundance did not significantly differ among follicle types or days post-estrus. In TC, medium E2-inactive follicles had greater FGFR1c and FGFR4 mRNA abundance than large E2-active and E2-inactive follicles on d 5 to 6 post-ovulation whereas FGFR2c and FGFR3c mRNA abundance did not significantly differ among follicle types or day post-estrus. In vitro experiments revealed that androstenedione increased abundance of FGFR1c, FGFR2c and FGFR4 mRNA in GC whereas estradiol decreased FGFR2c mRNA abundance. Neither androstenedione nor estradiol affected abundance of the various FGFR mRNAs in cultured TC. Taken together, the findings that FGFR1c and FGFR2c mRNA abundance was less in GC of E2-active follicles and FGFR1c and FGFR4 mRNA was greater in TC of medium inactive follicles at late than at early growing phase of the first dominant follicle support an anti-differentiation role for FGF and their FGFR as well as support the idea that steroid-induced changes in FGF and their receptors may regulate selection of dominant follicles in cattle.
Collapse
Affiliation(s)
- L F Schütz
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, USA
| | - A M Hemple
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, USA
| | - B C Morrell
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, USA
| | - N B Schreiber
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, USA
| | - J N Gilliam
- Department of Veterinary Clinical Sciences, Oklahoma State University, Stillwater, OK, USA
| | - C Cortinovis
- University of Milan, Department of Environmental Science and Policy, Milan, Italy
| | - M L Totty
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, USA
| | - F Caloni
- University of Milan, Department of Environmental Science and Policy, Milan, Italy
| | - P Y Aad
- Department of Natural and Applied Sciences, Notre Dame University - Louaizeh, Zouk Mosbeh, Lebanon
| | - L J Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
13
|
Estienne A, Relav L, Benkoura M, Monniaux D, Morin F, Fabre S, Price CA. Endothelial cell-derived fibroblast growth factor-18 regulates ovarian function in sheep. J Cell Physiol 2022; 237:2528-2538. [PMID: 35315069 DOI: 10.1002/jcp.30718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/08/2022] [Accepted: 02/28/2022] [Indexed: 11/08/2022]
Abstract
Increasing the efficiency of farm animal reproduction is necessary to reduce the environmental impact of food production systems. One approach is to increase the number of healthy eggs (oocytes) produced per female for fertilization, thus it is important to understand factors that decrease oocyte health. One paracrine factor that decreases ovarian follicle growth is fibroblast growth factor 18 (FGF18) secreted by cells in the theca layer of the ovarian follicle, however the factors that regulate FGF18 secretion are unknown. In this study we hypothesized that FGF18 secretion is controled by intrafollicular factors and is linked to fertility, which we tested by using cell culture and sheep genetic models in vivo. Separation of theca cell populations revealed that FGF18 messenger RNA (mRNA) is located mainly in thecal endothelial rather than endocrine cells, and immunohistochemistry localized FGF18 protein to microvessels in the theca layer in situ. Culture of ovine theca-derived endothelial cells was used to demonstrate stimulation of FGF18 mRNA and protein abundance by bone morphogenetic protein 4 (BMP4), a growth factor derived from theca endocrine cells. Taking advantage of a sheep genetic model, we demonstrate reduced ovarian and peripheral FGF18 concentrations in the hyperprolific Booroola ewe harboring the FecBB mutation in BMPR1B. These data suggest a novel control of fertility by follicular endothelial cells, in which theca endocrine cells secrete BMP4 that stimulates the secretion of FGF18 from thecal endothelial cells, which in turn diffuses into the granulosa cell layer and promotes apoptosis.
Collapse
Affiliation(s)
- Anthony Estienne
- Département de biomédecine vétérinaire, Centre de recherche en reproduction et fertilité (CRRF), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Quebec, Canada.,Physiologie Animale et Système d'Elevage, UMR Physiologie de la Reproduction et des Comportements, INRAE Tours, Nouzilly, France
| | - Lauriane Relav
- Département de biomédecine vétérinaire, Centre de recherche en reproduction et fertilité (CRRF), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Morad Benkoura
- Département de biomédecine vétérinaire, Centre de recherche en reproduction et fertilité (CRRF), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Danielle Monniaux
- Physiologie Animale et Système d'Elevage, UMR Physiologie de la Reproduction et des Comportements, INRAE Tours, Nouzilly, France
| | - Fanny Morin
- Département de biomédecine vétérinaire, Centre de recherche en reproduction et fertilité (CRRF), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Stéphane Fabre
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Christopher A Price
- Département de biomédecine vétérinaire, Centre de recherche en reproduction et fertilité (CRRF), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Quebec, Canada
| |
Collapse
|
14
|
Yao W, Pan Z, Du X, Zhang J, Liu H, Li Q. NORHA, a novel follicular atresia-related lncRNA, promotes porcine granulosa cell apoptosis via the miR-183-96-182 cluster and FoxO1 axis. J Anim Sci Biotechnol 2021; 12:103. [PMID: 34615552 PMCID: PMC8495971 DOI: 10.1186/s40104-021-00626-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Follicular atresia has been shown to be strongly associated with a low follicle utilization rate and female infertility, which are regulated by many factors such as microRNAs (miRNAs), which constitute a class of noncoding RNAs (ncRNAs). However, little is known about long noncoding RNAs (lncRNAs), which constitute another ncRNA family that regulate follicular atresia. RESULTS A total of 77 differentially expressed lncRNAs, including 67 upregulated and 10 downregulated lncRNAs, were identified in early atretic follicles compared to healthy follicles by RNA-Sequencing. We characterized a noncoding RNA that was highly expressed in atretic follicles (NORHA). As an intergenic lncRNA, NORHA was one of the upregulated lncRNAs identified in the atretic follicles. To determine NORHA function, RT-PCR, flow cytometry and western blotting were performed, and the results showed that NORHA was involved in follicular atresia by influencing GC apoptosis with or without oxidative stress. To determine the mechanism of action, bioinformatics analysis, luciferase reporter assay and RNA immunoprecipitation assay were performed, and the results showed that NORHA acted as a 'sponge', that directly bound to the miR-183-96-182 cluster, and thus prevented its targeted inhibition of FoxO1, a major sensor and effector of oxidative stress. CONCLUSIONS We provide a comprehensive perspective of lncRNA regulation of follicular atresia, and demonstrate that NORHA, a novel lncRNA related to follicular atresia, induces GC apoptosis by influencing the activities of the miR-183-96-182 cluster and FoxO1 axis.
Collapse
Affiliation(s)
- Wang Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zengxiang Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xing Du
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinbi Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
15
|
Li Z, He X, Zhang X, Zhang J, Guo X, Sun W, Chu M. Analysis of Expression Profiles of CircRNA and MiRNA in Oviduct during the Follicular and Luteal Phases of Sheep with Two Fecundity ( FecB Gene) Genotypes. Animals (Basel) 2021; 11:ani11102826. [PMID: 34679847 PMCID: PMC8532869 DOI: 10.3390/ani11102826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/09/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022] Open
Abstract
CircRNA and miRNA, as classes of non-coding RNA, have been found to play pivotal roles in sheep reproduction. There are many reports of circRNA and miRNA in the ovary and uterus, but few in the oviduct. In this study, RNA-Seq was performed to analyze the expression profile of circRNA and miRNA in the oviduct during the follicular phase and luteal phase of sheep with FecBBB and FecB++ genotypes. The results showed that a total of 3223 circRNAs and 148 miRNAs were identified. A total of 15 DE circRNAs and 40 DE miRNAs were found in the comparison between the follicular phase and luteal phase, and 1 DE circRNA and 18 DE miRNAs were found in the comparison between the FecBBB genotype and FecB++ genotype. GO and KEGG analyses showed that the host genes of DE circRNAs were mainly enriched in the Rap1 signaling pathway, PI3K-Akt signaling pathway and neuroactive ligand-receptor interactions. Novel_circ_0004065, novel_circ_0005109, novel_circ_0012086, novel_circ_0014274 and novel_circ_0001794 were found to be possibly involved in the oviductal reproduction process. GO and KEGG analyses showed that the target genes of DE miRNAs were mainly enriched in insulin secretion, the cAMP signaling pathway, the cGMP-PKG signaling pathway, the Rap1 signaling pathway and the TGF-β signaling pathway, and the target genes LPAR1, LPAR2, FGF18, TACR3, BMP6, SMAD4, INHBB, SKP1 and TGFBR2 were found to be associated with the reproductive process. Miranda software was used to identify 27 miRNAs that may bind to 13 DE circRNAs, including miR-22-3p (target to novel_circ_0004065), miR-127, miR-136 (target to novel_circ_0000417), miR-27a (target to novel_circ_0014274) and oar-miR-181a (target to novel_circ_ 0017815). The results of this study will help to elucidate the regulatory mechanisms of circRNAs and miRNAs in sheep reproduction. Our study, although not establishing direct causal relationships of the circRNA and miRNA changes, enriches the sheep circRNA and miRNA database and provides a basis for further studies on sheep reproduction.
Collapse
Affiliation(s)
- Zhifeng Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.L.); (X.H.)
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.L.); (X.H.)
| | - Xiaosheng Zhang
- Tianjin Institute of Animal Sciences, Tianjin 300381, China; (X.Z.); (J.Z.); (X.G.)
| | - Jinlong Zhang
- Tianjin Institute of Animal Sciences, Tianjin 300381, China; (X.Z.); (J.Z.); (X.G.)
| | - Xiaofei Guo
- Tianjin Institute of Animal Sciences, Tianjin 300381, China; (X.Z.); (J.Z.); (X.G.)
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Correspondence: (W.S.); (M.C.); Tel.: +86-0514-8797-9213 (W.S.); +86-010-6281-9850 (M.C.)
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.L.); (X.H.)
- Correspondence: (W.S.); (M.C.); Tel.: +86-0514-8797-9213 (W.S.); +86-010-6281-9850 (M.C.)
| |
Collapse
|
16
|
Juengel JL, Cushman RA, Dupont J, Fabre S, Lea RG, Martin GB, Mossa F, Pitman JL, Price CA, Smith P. The ovarian follicle of ruminants: the path from conceptus to adult. Reprod Fertil Dev 2021; 33:621-642. [PMID: 34210385 DOI: 10.1071/rd21086] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/06/2021] [Indexed: 11/23/2022] Open
Abstract
This review resulted from an international workshop and presents a consensus view of critical advances over the past decade in our understanding of follicle function in ruminants. The major concepts covered include: (1) the value of major genes; (2) the dynamics of fetal ovarian development and its sensitivity to nutritional and environmental influences; (3) the concept of an ovarian follicle reserve, aligned with the rise of anti-Müllerian hormone as a controller of ovarian processes; (4) renewed recognition of the diverse and important roles of theca cells; (5) the importance of follicular fluid as a microenvironment that determines oocyte quality; (6) the 'adipokinome' as a key concept linking metabolic inputs with follicle development; and (7) the contribution of follicle development to the success of conception. These concepts are important because, in sheep and cattle, ovulation rate is tightly regulated and, as the primary determinant of litter size, it is a major component of reproductive efficiency and therefore productivity. Nowadays, reproductive efficiency is also a target for improving the 'methane efficiency' of livestock enterprises, increasing the need to understand the processes of ovarian development and folliculogenesis, while avoiding detrimental trade-offs as greater performance is sought.
Collapse
Affiliation(s)
- Jennifer L Juengel
- AgResearch Ltd, Invermay Agricultural Centre, Mosgiel, New Zealand; and Corresponding author
| | - Robert A Cushman
- Livestock Biosystems Research Unit, US Department of Agriculture, Agricultural Research Service, US Meat Animal Research Center, Clay Center, NE, USA
| | - Joëlle Dupont
- INRAE Institute UMR85 Physiologie de la Reproduction et des Comportements, Tours University, France
| | - Stéphane Fabre
- GenPhySE, Université de Toulouse, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, Institut national polytechnique de Toulouse, Ecole nationale vétérinaire de Toulouse, Castanet Tolosan, France
| | - Richard G Lea
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | - Graeme B Martin
- UWA Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Francesca Mossa
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, Italy
| | - Janet L Pitman
- School of Biological Sciences, Victoria University of Wellington, New Zealand
| | - Christopher A Price
- Faculty of Veterinary Medicine, Université de Montréal, Montréal, QC, Canada
| | - Peter Smith
- AgResearch Ltd, Invermay Agricultural Centre, Mosgiel, New Zealand
| |
Collapse
|
17
|
Relav L, Estienne A, Price CA. Dual-specificity phosphatase 6 (DUSP6) mRNA and protein abundance is regulated by fibroblast growth factor 2 in sheep granulosa cells and inhibits c-Jun N-terminal kinase (MAPK8) phosphorylation. Mol Cell Endocrinol 2021; 531:111297. [PMID: 33964319 DOI: 10.1016/j.mce.2021.111297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 11/20/2022]
Abstract
Growth factors regulate ovarian follicle development and they signal through intracellular pathways including mitogen-activated protein kinase (MAPK) phosphorylation, which is negatively regulated by a subfamily of 23 dual-specificity phosphatases (DUSP). Using sheep granulosa cells as a model, we detected mRNA encoding 16 DUSPs in vivo and in vitro. Stimulation of cells in vitro with FGF2 increased (p < 0.05) abundance of DUSP1, DUSP2, DUSP5 and DUSP6 mRNA, and abundance of DUSP1 and DUSP6 proteins (p < 0.05). In contrast, neither FGF8b nor FGF18 had any major effect on DUSP mRNA abundance. Inhibition of DUSP6 action with the inhibitor BCI significantly increased (p < 0.05) MAPK8 (JNK) phosphorylation but not phosphoMAPK14 (p38) or MAPK3/1 (ERK1/2) abundance. This study suggests that FGFs stimulate DUSP protein abundance, that DUSP6 regulates MAPK8 phosphorylation in granulosa cells, and DUSPs are involved in the differential MAPK signaling of individual FGF ligands.
Collapse
Affiliation(s)
- Lauriane Relav
- Centre de recherche en reproduction animale, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, J2S 7C6, QC, Canada
| | - Anthony Estienne
- Centre de recherche en reproduction animale, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, J2S 7C6, QC, Canada
| | - Christopher A Price
- Centre de recherche en reproduction animale, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, J2S 7C6, QC, Canada.
| |
Collapse
|
18
|
Li M. The role of P53 up-regulated modulator of apoptosis (PUMA) in ovarian development, cardiovascular and neurodegenerative diseases. Apoptosis 2021; 26:235-247. [PMID: 33783663 PMCID: PMC8197724 DOI: 10.1007/s10495-021-01667-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2021] [Indexed: 12/14/2022]
Abstract
P53 up-regulated modulator of apoptosis (PUMA), a pro-apoptotic BCL-2 homology 3 (BH3)-only member of the BCL-2 family, is a direct transcriptional target of P53 that elicits mitochondrial apoptosis under treatment with radiation and chemotherapy. It also induces excessive apoptosis in cardiovascular and/or neurodegenerative diseases. PUMA has been found to play a critical role in ovarian apoptosis. In the present paper, we review the progress of the study in PUMA over the past two decades in terms of its inducement and/or amplification of programmed cell death and describe recent updates to the understanding of both P53-dependent and P53-independent PUMA-mediated apoptotic pathways that are implicated in physiology and pathology, including the development of the ovary and cardiovascular and neurodegenerative diseases. We propose that PUMA may be a key regulator during ovary development, provide a model for PUMA-mediated apoptotic pathways, including intrinsic and extrinsic apoptotic pathways.
Collapse
Affiliation(s)
- Mei Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
| |
Collapse
|
19
|
Bao X, Song Y, Li T, Zhang S, Huang L, Zhang S, Cao J, Liu X, Zhang J. Comparative Transcriptome Profiling of Ovary Tissue between Black Muscovy Duck and White Muscovy Duck with High- and Low-Egg Production. Genes (Basel) 2020; 12:57. [PMID: 33396489 PMCID: PMC7824526 DOI: 10.3390/genes12010057] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/19/2022] Open
Abstract
The egg-laying rate is an important indicator for evaluating fertility of poultry. In order to better understand the laying mechanism of Muscovy ducks, gene expression profiles and pathways of ovarian tissues in high- and low-laying black (BH and BL) and white Muscovy ducks (WH and WL) during the peak production period were performed by using RNA-seq. The total number of reads produced for each ovarian sample ranged from 44,344,070 to 47,963,328. A total of 113, 619 and 87 differentially expressed genes (DEGs) were identified in BH-vs-WH, BL-vs-BH and BL-vs-WL, respectively. Among them, 54, 356 and 49 genes were up regulated and 59, 263 and 38 genes were down regulated. In addition, there were only 10 up-regulated genes in WL-vs-WH. In the comparison of DEGs in black and white Muscovy ducks, two co-expressed DEG genes were detected between BH-vs-WH and BL-vs-WL and seven DEGs were co-expressed between BL-vs-BH and WL-vs-WH. The RNA-Seq data were confirmed to be reliable by qPCR. Numerous DEGs known to be involved in ovarian development were identified, including TGFβ2, NGFR, CEBPD, CPEB2, POSTN, SMOC1, FGF18, EFNA5 and SDC4. Gene Ontology (GO) annotations indicated that DEGs related to ovarian development were mainly enriched in biological processes of "circadian sleep/wake cycle process," "negative regulation of transforming growth factor-β secretion," "positive regulation of calcium ion transport" in BH-vs-WH and "cell surface receptor signaling pathway," "Notch signaling pathway" and "calcium ion transport" in BL-vs-BH. Besides, "steroid biosynthetic process," "granulosa cell development" and "egg coat formation" were mainly enriched in BL-vs-WL and "reproduction," "MAPK cascade" and "mitotic cell cycle" were mainly enriched in WL-vs-WH. KEGG pathway analysis showed that the PI3K-Akt signaling pathway and ovarian steroidogenesis were the most enriched in Muscovy duck ovary transcriptome data. This work highlights potential genes and pathways that may affect ovarian development in Muscovy duck.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jianqin Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (X.B.); (Y.S.); (T.L.); (S.Z.); (L.H.); (S.Z.); (J.C.); (X.L.)
| |
Collapse
|
20
|
Ovarian Circular RNAs Associated with High and Low Fertility in Large White Sows during the Follicular and Luteal Phases of the Estrous Cycle. Animals (Basel) 2020. [PMCID: PMC7222767 DOI: 10.3390/ani10040696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In this study, the ovarian tissues of Large White pigs were mined for novel circular RNAs (circRNAs), following which, their molecular characteristics and potential mechanisms for fertility regulation were examined. RNA sequencing was used for transcriptome analysis of ovarian follicles and corpora lutea in Large White sows with high (H) and low (L) fertility during the follicular (F) and luteal (L) phases of the estrous cycle. In total, 21,386 circRNA derived from 4535 host genes were identified. Differentially expressed circRNAs were detected in the LH vs. LL (1079) and in the FH vs. FL (1077) comparisons, and their host genes were enriched in steroid biosynthesis and forkhead box O (FOXO), thyroid hormone, cell cycle, and tumor growth factor (TGF)-beta signaling pathways. Protein–protein interaction networks were constructed on the basis of the host genes that were significantly enriched in pathways related to reproductive processes, with AKT3 and PP2CB serving as the hub genes in the networks of the LH vs. LL and FH vs. FL comparisons, respectively. The microRNA (miRNA) binding sites of the differentially expressed circRNAs were predicted, and 128 (LH vs. LL) and 113 (FH vs. FL) circRNA–miRNA pairs were identified. Finally, circRNA–miRNA negative regulatory networks were established on the basis of the gene expression profiles and bioinformatic analyses. In the current study, differentially expressed circRNAs were observed in ovarian tissues between the H and L fertility groups in both F and L phases of the estrous cycle, which suggested roles in pig fertility regulation. These findings provide new clues for elucidating fertility differences in pigs.
Collapse
|
21
|
Martins KR, Haas CS, Ferst JG, Rovani MT, Goetten AL, Duggavathi R, Bordignon V, Portela VV, Ferreira R, Gonçalves PB, Gasperin BG, Lucia T. Oncostatin M and its receptors mRNA regulation in bovine granulosa and luteal cells. Theriogenology 2019; 125:324-330. [DOI: 10.1016/j.theriogenology.2018.11.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 11/01/2018] [Accepted: 11/20/2018] [Indexed: 01/13/2023]
|
22
|
Bovine in vitro embryo production: the effects of fibroblast growth factor 10 (FGF10). J Assist Reprod Genet 2016; 34:383-390. [PMID: 28000057 DOI: 10.1007/s10815-016-0852-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 11/25/2016] [Indexed: 01/18/2023] Open
Abstract
PURPOSE In an attempt to improve in vitro embryo production, we investigated the effect of fibroblast growth factor 10 (FGF10) during in vitro maturation on the developmental capacity of bovine oocytes. MATERIAL AND METHODS Cumulus-oocyte complexes (COCs) were aspirated from follicles of 3-8 mm diameter. After selection, the COCs were matured in medium with or without 0.5 ng/mL of FGF10. The effect of FGF10 during in vitro maturation (IVM) on nuclear maturation kinetics and expansion of the cumulus cells was investigated. Oocyte competence was assessed by the production and development speed of embryos and the relative expression of genes associated with embryo quality. RESULTS FGF10 delayed the resumption of meiosis from 8 h onwards, but did not affect the percentage of oocytes reaching metaphase II, nor did it increase cumulus expansion at 22 h of maturation. We found no difference between treatments regarding embryo production, developmental speed, and gene expression. CONCLUSION In conclusion, the presence of FGF10 during IVM had no effect on embryo production, developmental speed, and gene expression.
Collapse
|
23
|
Abstract
Fibroblast growth factors (FGFs) have been shown to alter growth and differentiation of reproductive tissues in a variety of species. Within the female reproductive tract, the effects of FGFs have been focused on the ovary, and the most studied one is FGF2, which stimulates granulosa cell proliferation and decreases differentiation (decreased steroidogenesis). Other FGFs have also been implicated in ovarian function, and this review summarizes the effects of members of two subfamilies on ovarian function; the FGF7 subfamily that also contains FGF10, and the FGF8 subfamily that also contains FGF18. There are data to suggest that FGF8 and FGF18 have distinct actions on granulosa cells, despite their apparent similar receptor binding properties. Studies of non-reproductive developmental biology also indicate that FGF8 is distinct from FGF18, and that FGF7 is also distinct from FGF10 despite similar receptor binding properties. In this review, the potential mechanisms of differential action of FGF7/FGF10 and FGF8/FGF18 during organogenesis will be reviewed and placed in the context of follicle development. A model is proposed in which FGF8 and FGF18 differentially activate receptors depending on the properties of the extracellular matrix in the follicle.
Collapse
Affiliation(s)
- Christopher A Price
- Faculty of Veterinary MedicineCentre de recherche en reproduction animale, University of Montreal, 3200 rue Sicotte, St-Hyacinthe, Quebec, Canada J2S 7C6
| |
Collapse
|
24
|
Li Y, Fang Y, Liu Y, Yang X. MicroRNAs in ovarian function and disorders. J Ovarian Res 2015; 8:51. [PMID: 26232057 PMCID: PMC4522283 DOI: 10.1186/s13048-015-0162-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 05/23/2015] [Indexed: 01/10/2023] Open
Abstract
MicroRNAs (miRNAs) are endogenous, small, noncoding single-stranded RNA molecules approximately 22 nucleotides in length. miRNAs are involved in the post-transcriptional regulation of various important cellular physiological and pathological processes, including cell proliferation, differentiation, apoptosis, and hormone biosynthesis and secretion. Ovarian follicles are the key functional units of female reproduction, and the development of these follicles is a complex and precise process accompanied by oocyte maturation as well as surrounding granulosa cell proliferation and differentiation. Numerous miRNAs expressed in the ovary regulate ovarian follicle growth, atresia, ovulation and steroidogenesis and play an important role in ovarian disorders. This review considers recent advances in the identification of miRNAs involved in the regulation of ovarian function as well as the possible influence of miRNAs on ovarian-derived disorders, such as ovarian cancer, polycystic ovarian syndrome and premature ovarian failure. An improved understanding of the regulation of ovarian function by miRNAs may shed light on new strategies for ovarian biology and ovarian disorders.
Collapse
Affiliation(s)
- Ying Li
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China.,Department of Reproduction Regulation, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Ying Fang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Ying Liu
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Xiaokui Yang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China.
| |
Collapse
|
25
|
Guerrero-Netro HM, Chorfi Y, Price CA. Effects of the mycotoxin deoxynivalenol on steroidogenesis and apoptosis in granulosa cells. Reproduction 2015; 149:555-61. [DOI: 10.1530/rep-15-0018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/02/2015] [Indexed: 01/26/2023]
Abstract
Mycotoxins can reduce fertility and development in livestock, notably in pigs and poultry, although the effect of most mycotoxins on reproductive function in cattle has not been established. One major mycotoxin, deoxynivalenol (DON), not only targets immune cells and activates the ribotoxic stress response (RSR) involving MAPK activation, but also inhibits oocyte maturation in pigs. In this study, we determined the effect of DON on bovine granulosa cell function using a serum-free culture system. Addition of DON inhibited estradiol and progesterone secretion, and reduced levels of mRNA encoding estrogenic (CYP19A1) but not progestogenic (CYP11A1 and STAR) proteins. Cell apoptosis was increased by DON, which also increased FASLG mRNA levels. The mechanism of action of DON was assessed by western blotting and PCR experiments. Addition of DON rapidly and transiently increased phosphorylation of MAPK3/1, and resulted in a more prolonged phosphorylation of MAPK14 (p38) and MAPK8 (JNK). Activation of these pathways by DON resulted in time- and dose-dependent increases in abundance of mRNA encoding the transcription factors FOS, FOSL1, EGR1, and EGR3. We conclude that DON is deleterious to granulosa cell function and acts through a RSR pathway.
Collapse
|