1
|
Liu Y, Guo X, Fan J, Xie C, Huang T, Fu Y, Zhou R. CREBRF regulates apoptosis and estradiol via ISG15/ISGylation in pig granulosa cells. Free Radic Biol Med 2024; 225:445-455. [PMID: 39419455 DOI: 10.1016/j.freeradbiomed.2024.10.287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/19/2024]
Abstract
Granulosa cells play a crucial role in the reproductive processes of female animals, as their proliferation, apoptosis, and hormonal secretion are vital for follicular development and ovulation. Although the role and mechanisms of CREBRF in the reproductive system have been partly reported, its functions in ovarian granulosa cells have not been fully explored. In this study, the results indicated that the expression of CREBRF in the ovaries at 30 days after birth was significantly higher than that during puberty and sexual maturity. Studies on the function of CREBRF found that CREBRF could enhance the synthesis of estradiol and had no effect on progesterone synthesis in pig granulosa cells. At the same time, CREBRF could suppress apoptosis through the Bax/caspase3/caspase9 pathway and modulation of ISG15/ISGylation in pig granulosa cells. During this process, the expression of many genes changed in granulosa cells. Several genes (CMPK2, MX1, MX2, ZBP1, PML, CHAC1, and BAX) which were promoted apoptosis, were upregulated after CREBRF knockdown with siRNA. ISG15-protein conjugation genes (HERC5, UBA7, UBE2L6, ISG15) were also were upregulated. On the contrary, the expression of anti-apoptotic (RFK, SNAP23) genes decreased. In conclusion, CREBRF could enhance the synthesis of estradiol and acted as anti-apoptosis role in pig granulosa cells. This discovery can provide novel insights for further elucidating the molecular mechanisms of granulosa cells in the ovary and potentially identifies CREBRF as a molecular target for improving fertility.
Collapse
Affiliation(s)
- Ying Liu
- The State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; School of Life Science and Technology, Inner Mongolia University of Science & Technology, Inner Mongolia Baotou, 014010, PR China
| | - Xiaorong Guo
- The State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan, 528231, PR China
| | - Jiazhen Fan
- The State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Chundi Xie
- The State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Tao Huang
- College of Animal Science and Technology, Shihezi University, Shihezi, 832000, PR China
| | - Yaxin Fu
- The State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Capital Medical University School of Basic Medical Sciences, Beijing, 100069, PR China
| | - Rong Zhou
- The State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Liaocheng University, Liaocheng, 252059, PR China.
| |
Collapse
|
2
|
Zhong Y, Liu F, Zhang X, Guo Q, Wang Z, Wang R. Research progress on reproductive system damage caused by high altitude hypoxia. Endocrine 2024; 83:559-570. [PMID: 38170433 DOI: 10.1007/s12020-023-03643-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024]
Abstract
PURPOSE The high altitude area is characterized by low pressure and hypoxia, and rapidly entering the high altitude area will cause a series of damage to the body. Some studies have shown that hypoxia can cause damage to the reproductive system. In recent years, researchers have been paying attention to the effects of hypoxia on hormone level, ovarian reserve, embryonic development, testicular development, sperm motility level, and have begun to explore its injury mechanism, but its mechanism is not clear. In this paper, the mechanism of hypoxia on the reproductive system is reviewed, which is expected to provide a new idea for solving the problem of the low fertility rate of humans and animals at high altitudes. METHODS A comprehensive PubMed search was conducted, selecting all relevant peer-reviewed English papers published before January 2022. Other relevant papers were selected from the list of references. RESULTS Studies have shown that the complete fertility rate of people living at low altitudes is 7.7, and the complete fertility rate of people living at high altitudes is 4.77, and the hypoxic environment at high altitudes reduces fertility. At the same time, high-altitude, low-oxygen environments are associated with increased infant mortality and post-neonatal mortality. To date, most studies seem to point to a correlation between anoxic exposure at high altitudes and low fertility in humans and animals. CONCLUSION Although the molecular mechanisms are not fully understood, the effects of hypoxia at high altitude on hormonal level, ovarian reserve, embryonic development, testicular development, and sperm motility and levels require further research to investigate this complex topic.
Collapse
Affiliation(s)
- Yan Zhong
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, China.
- Pharmacy of the 940th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Lanzhou, China.
| | - Feifei Liu
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Pharmacy of the 940th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Xiaojing Zhang
- Pharmacy of the 940th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Lanzhou, China.
| | - Qianwen Guo
- Pharmacy of the 940th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Zihan Wang
- Pharmacy of the 940th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Rong Wang
- Pharmacy of the 940th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Lanzhou, China.
| |
Collapse
|
3
|
Chen Y, Zhou J, Wu S, Wang L, Chen G, Chen D, Peng X, Miao YL, Mei S, Li F. ISG15 suppresses ovulation and female fertility by ISGylating ADAMTS1. Cell Biosci 2023; 13:84. [PMID: 37170317 PMCID: PMC10176748 DOI: 10.1186/s13578-023-01024-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 03/31/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND ISGylation is a post-translational protein modification that regulates many life activities, including immunomodulation, antiviral responses, and embryo implantation. The exact contribution of ISGylation to folliculogenesis remains largely undefined. RESULTS Here, Isg15 knockout in mice causes hyperfertility along with sensitive ovarian responses to gonadotropin, such as increases in cumulus expansion and ovulation rate. Moreover, ISG15 represses the expression of ovulation-related genes in an ISGylation-dependent manner. Mechanistically, ISG15 binds to ADAMTS1 via the ISG15-conjugating system (UBA7, UBE2L6, and HERC6), ISGylating ADAMTS1 at the binding sites Lys309, Lys593, Lys597, and Lys602, resulting in ADAMTS1 degradation via a 20S proteasome-dependent pathway. CONCLUSION Taken together, the present study demonstrates that covalent ISG15 conjugation produces a novel regulatory axis of ISG15-ADAMTS1 that enhances the degradation of ADAMTS1, thereby compromising ovulation and female fertility.
Collapse
Affiliation(s)
- Yaru Chen
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiawei Zhou
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China.
| | - Shang Wu
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lei Wang
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gaogui Chen
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dake Chen
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianwen Peng
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Yi-Liang Miao
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuqi Mei
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Fenge Li
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| |
Collapse
|
4
|
Interferon-τ -induced ISG15-AS regulates endometrial receptivity during early goat pregnancy. Theriogenology 2023; 199:1-10. [PMID: 36731281 DOI: 10.1016/j.theriogenology.2023.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/08/2022] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
Endometrial receptivity is a critical process for the successful establishment of pregnancy in ruminants. However, the biological role of long non-coding RNAs (lncRNAs) in the development of endometrial receptivity is poorly understood. In this study, we performed RNA-seq analysis of immortalised goat endometrial epithelial cells (gEECs) treated with interferon-τ (IFNT). Transcriptome profiles showed that 8069 high-confidence putative lncRNAs, including 6498 intronic lncRNA transcripts, 1078 lincRNAs and 493 antisense lncRNAs were identified in gEECs with or without IFNT treatment. Functional clustering analysis was performed by using cis and trans lncRNAs prediction. GO and KEGG analyses revealed that differentially expressed lncRNAs may regulate tissue remodelling and immune responses. Subsequently, six of the 21 differentially expressed antisense lncRNAs were validated using qRT-PCR. Through functional screening and co-expression analysis of lncRNAs in gEECs, we identified that ISG15-AS was mainly expressed in the luminal and glandular epithelium on days 5 and 15 and was strongly upregulated on day 18 of pregnancy in vivo. Similarly, ISG15-AS was abundant in the nucleus and cytoplasm, and was significantly upregulated after treatment with IFNT in gEECs. In addition, ISG15 is an IFNT-responsive gene, that displayed an evident increase in vivo and in vitro. Moreover, sense ISG15 was significantly upregulated following ISG15-AS silencing. The key genes related to ISGylation and endometrial receptivity in gEECs dramatically increased after ISG15-AS inhibition. Collectively, our results indicate that a novel antisense lncRNA, ISG15-AS, may be important in regulating endometrial receptivity through ISGylation.
Collapse
|
5
|
Ilic D, Magnussen HM, Tirard M. Stress - Regulation of SUMO conjugation and of other Ubiquitin-Like Modifiers. Semin Cell Dev Biol 2022; 132:38-50. [PMID: 34996712 DOI: 10.1016/j.semcdb.2021.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022]
Abstract
Stress is unavoidable and essential to cellular and organismal evolution and failure to adapt or restore homeostasis can lead to severe diseases or even death. At the cellular level, stress drives a plethora of molecular changes, of which variations in the profile of protein post-translational modifications plays a key role in mediating the adaptative response of the genome and proteome to stress. In this context, post-translational modification of proteins by ubiquitin-like modifiers, (Ubl), notably SUMO, is an essential stress response mechanism. In this review, aiming to draw universal concepts of the Ubls stress response, we will decipher how stress alters the expression level, activity, specificity and/or localization of the proteins involved in the conjugation pathways of the various type-I Ubls, and how this result in the modification of particular Ubl targets that will translate an adaptive physiological stress response and allow cells to restore homeostasis.
Collapse
Affiliation(s)
- Dragana Ilic
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, D-79108 Freiburg; Faculty of Biology, University of Freiburg, D-79104 Freiburg; Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, D-37075 Göttingen
| | - Helge M Magnussen
- MRC Protein Phosphorylation and Ubiquitination Unit, Sir James Black Center, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Marilyn Tirard
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, D-37075 Göttingen.
| |
Collapse
|
6
|
The diverse repertoire of ISG15: more intricate than initially thought. Exp Mol Med 2022; 54:1779-1792. [PMID: 36319753 PMCID: PMC9722776 DOI: 10.1038/s12276-022-00872-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/05/2022] Open
Abstract
ISG15, the product of interferon (IFN)-stimulated gene 15, is the first identified ubiquitin-like protein (UBL), which plays multifaceted roles not only as a free intracellular or extracellular molecule but also as a post-translational modifier in the process of ISG15 conjugation (ISGylation). ISG15 has only been identified in vertebrates, indicating that the functions of ISG15 and its conjugation are restricted to higher eukaryotes and have evolved with IFN signaling. Despite the highlighted complexity of ISG15 and ISGylation, it has been suggested that ISG15 and ISGylation profoundly impact a variety of cellular processes, including protein translation, autophagy, exosome secretion, cytokine secretion, cytoskeleton dynamics, DNA damage response, telomere shortening, and immune modulation, which emphasizes the necessity of reassessing ISG15 and ISGylation. However, the underlying mechanisms and molecular consequences of ISG15 and ISGylation remain poorly defined, largely due to a lack of knowledge on the ISG15 target repertoire. In this review, we provide a comprehensive overview of the mechanistic understanding and molecular consequences of ISG15 and ISGylation. We also highlight new insights into the roles of ISG15 and ISGylation not only in physiology but also in the pathogenesis of various human diseases, especially in cancer, which could contribute to therapeutic intervention in human diseases.
Collapse
|
7
|
Koel M, Krjutškov K, Saare M, Samuel K, Lubenets D, Katayama S, Einarsdottir E, Vargas E, Sola-Leyva A, Lalitkumar PG, Gemzell-Danielsson K, Blesa D, Simon C, Lanner F, Kere J, Salumets A, Altmäe S. Human endometrial cell-type-specific RNA sequencing provides new insights into the embryo-endometrium interplay. Hum Reprod Open 2022; 2022:hoac043. [PMID: 36339249 PMCID: PMC9632455 DOI: 10.1093/hropen/hoac043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 09/21/2022] [Indexed: 08/17/2023] Open
Abstract
STUDY QUESTION Which genes regulate receptivity in the epithelial and stromal cellular compartments of the human endometrium, and which molecules are interacting in the implantation process between the blastocyst and the endometrial cells? SUMMARY ANSWER A set of receptivity-specific genes in the endometrial epithelial and stromal cells was identified, and the role of galectins (LGALS1 and LGALS3), integrin β1 (ITGB1), basigin (BSG) and osteopontin (SPP1) in embryo-endometrium dialogue among many other protein-protein interactions were highlighted. WHAT IS KNOWN ALREADY The molecular dialogue taking place between the human embryo and the endometrium is poorly understood due to ethical and technical reasons, leaving human embryo implantation mostly uncharted. STUDY DESIGN SIZE DURATION Paired pre-receptive and receptive phase endometrial tissue samples from 16 healthy women were used for RNA sequencing. Trophectoderm RNA sequences were from blastocysts. PARTICIPANTS/MATERIALS SETTING METHODS Cell-type-specific RNA-seq analysis of freshly isolated endometrial epithelial and stromal cells using fluorescence-activated cell sorting (FACS) from 16 paired pre-receptive and receptive tissue samples was performed. Endometrial transcriptome data were further combined in silico with trophectodermal gene expression data from 466 single cells originating from 17 blastocysts to characterize the first steps of embryo implantation. We constructed a protein-protein interaction network between endometrial epithelial and embryonal trophectodermal cells, and between endometrial stromal and trophectodermal cells, thereby focusing on the very first phases of embryo implantation, and highlighting the molecules likely to be involved in the embryo apposition, attachment and invasion. MAIN RESULTS AND THE ROLE OF CHANCE In total, 499 epithelial and 581 stromal genes were up-regulated in the receptive phase endometria when compared to pre-receptive samples. The constructed protein-protein interactions identified a complex network of 558 prioritized protein-protein interactions between trophectodermal, epithelial and stromal cells, which were grouped into clusters based on the function of the involved molecules. The role of galectins (LGALS1 and LGALS3), integrin β1 (ITGB1), basigin (BSG) and osteopontin (SPP1) in the embryo implantation process were highlighted. LARGE SCALE DATA RNA-seq data are available at www.ncbi.nlm.nih.gov/geo under accession number GSE97929. LIMITATIONS REASONS FOR CAUTION Providing a static snap-shot of a dynamic process and the nature of prediction analysis is limited to the known interactions available in databases. Furthermore, the cell sorting technique used separated enriched epithelial cells and stromal cells but did not separate luminal from glandular epithelium. Also, the use of biopsies taken from non-pregnant women and using spare IVF embryos (due to ethical considerations) might miss some of the critical interactions characteristic of natural conception only. WIDER IMPLICATIONS OF THE FINDINGS The findings of our study provide new insights into the molecular embryo-endometrium interplay in the first steps of implantation process in humans. Knowledge about the endometrial cell-type-specific molecules that coordinate successful implantation is vital for understanding human reproduction and the underlying causes of implantation failure and infertility. Our study results provide a useful resource for future reproductive research, allowing the exploration of unknown mechanisms of implantation. We envision that those studies will help to improve the understanding of the complex embryo implantation process, and hopefully generate new prognostic and diagnostic biomarkers and therapeutic approaches to target both infertility and fertility, in the form of new contraceptives. STUDY FUNDING/COMPETING INTERESTS This research was funded by the Estonian Research Council (grant PRG1076); Horizon 2020 innovation grant (ERIN, grant no. EU952516); Enterprise Estonia (grant EU48695); the EU-FP7 Marie Curie Industry-Academia Partnerships and Pathways (IAPP, grant SARM, EU324509); Spanish Ministry of Economy, Industry and Competitiveness (MINECO) and European Regional Development Fund (FEDER) (grants RYC-2016-21199, ENDORE SAF2017-87526-R, and Endo-Map PID2021-127280OB-100); Programa Operativo FEDER Andalucía (B-CTS-500-UGR18; A-CTS-614-UGR20), Junta de Andalucía (PAIDI P20_00158); Margarita Salas program for the Requalification of the Spanish University system (UJAR01MS); the Knut and Alice Wallenberg Foundation (KAW 2015.0096); Swedish Research Council (2012-2844); and Sigrid Jusélius Foundation; Academy of Finland. A.S.-L. is funded by the Spanish Ministry of Science, Innovation and Universities (PRE2018-085440). K.G.-D. has received consulting fees and/or honoraria from RemovAid AS, Norway Bayer, MSD, Gedeon Richter, Mithra, Exeltis, MedinCell, Natural cycles, Exelgyn, Vifor, Organon, Campus Pharma and HRA-Pharma and NIH support to the institution; D.B. is an employee of IGENOMIX. The rest of the authors declare no conflict of interest.
Collapse
Affiliation(s)
- Mariann Koel
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Kaarel Krjutškov
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Merli Saare
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Külli Samuel
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Dmitri Lubenets
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Shintaro Katayama
- Stem Cells and Metabolism Research Program, Research Programs Unit, University of Helsinki, and Folkhälsan Research Center, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Elisabet Einarsdottir
- Stem Cells and Metabolism Research Program, Research Programs Unit, University of Helsinki, and Folkhälsan Research Center, Helsinki, Finland
- Science for Life Laboratory, Department of Gene Technology, KTH-Royal Institute of Technology, Solna, Sweden
| | - Eva Vargas
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Systems Biology Unit, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| | - Alberto Sola-Leyva
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Parameswaran Grace Lalitkumar
- Department of Women’s and Children’s Health, Division of Obstetrics and Gynecology, Karolinska Institutet, and Karolinska Univeristy Hospital, Stockholm,Sweden
| | - Kristina Gemzell-Danielsson
- Department of Women’s and Children’s Health, Division of Obstetrics and Gynecology, Karolinska Institutet, and Karolinska Univeristy Hospital, Stockholm,Sweden
| | - David Blesa
- Department of Product Development, IGENOMIX, Valencia, Spain
| | - Carlos Simon
- Department of Obstetrics and Gynecology, Valencia University and INCLIVA in Valencia, Valencia, Spain
- Department of Obstetrics and Gynecology, BIDMC, Harvard University, Boston, MA, USA
| | - Fredrik Lanner
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Institutet, Stockholm,Sweden
- Ming Wai Lau Center for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Juha Kere
- Stem Cells and Metabolism Research Program, Research Programs Unit, University of Helsinki, and Folkhälsan Research Center, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Institutet, Stockholm,Sweden
| | - Signe Altmäe
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Institutet, Stockholm,Sweden
| |
Collapse
|
8
|
Ozmen A, Guzeloglu-Kayisli O, Tabak S, Guo X, Semerci N, Nwabuobi C, Larsen K, Wells A, Uyar A, Arlier S, Wickramage I, Alhasan H, Totary-Jain H, Schatz F, Odibo AO, Lockwood CJ, Kayisli UA. Preeclampsia is Associated With Reduced ISG15 Levels Impairing Extravillous Trophoblast Invasion. Front Cell Dev Biol 2022; 10:898088. [PMID: 35837332 PMCID: PMC9274133 DOI: 10.3389/fcell.2022.898088] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/06/2022] [Indexed: 01/29/2023] Open
Abstract
Among several interleukin (IL)-6 family members, only IL-6 and IL-11 require a gp130 protein homodimer for intracellular signaling due to lack of intracellular signaling domain in the IL-6 receptor (IL-6R) and IL-11R. We previously reported enhanced decidual IL-6 and IL-11 levels at the maternal-fetal interface with significantly higher peri-membranous IL-6 immunostaining in adjacent interstitial trophoblasts in preeclampsia (PE) vs. gestational age (GA)-matched controls. This led us to hypothesize that competitive binding of these cytokines to the gp130 impairs extravillous trophoblast (EVT) differentiation, proliferation and/or invasion. Using global microarray analysis, the current study identified inhibition of interferon-stimulated gene 15 (ISG15) as the only gene affected by both IL-6 plus IL-11 vs. control or IL-6 or IL-11 treatment of primary human cytotrophoblast cultures. ISG15 immunostaining was specific to EVTs among other trophoblast types in the first and third trimester placental specimens, and significantly lower ISG15 levels were observed in EVT from PE vs. GA-matched control placentae (p = 0.006). Induction of primary trophoblastic stem cell cultures toward EVT linage increased ISG15 mRNA levels by 7.8-fold (p = 0.004). ISG15 silencing in HTR8/SVneo cultures, a first trimester EVT cell line, inhibited invasion, proliferation, expression of ITGB1 (a cell migration receptor) and filamentous actin while increasing expression of ITGB4 (a receptor for hemi-desmosomal adhesion). Moreover, ISG15 silencing further enhanced levels of IL-1β-induced pro-inflammatory cytokines (CXCL8, IL-6 and CCL2) in HTR8/SVneo cells. Collectively, these results indicate that ISG15 acts as a critical regulator of EVT morphology and function and that diminished ISG15 expression is associated with PE, potentially mediating reduced interstitial trophoblast invasion and enhancing local inflammation at the maternal-fetal interface. Thus, agents inducing ISG15 expression may provide a novel therapeutic approach in PE.
Collapse
Affiliation(s)
- Asli Ozmen
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Ozlem Guzeloglu-Kayisli
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Selcuk Tabak
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Xiaofang Guo
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Nihan Semerci
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Chinedu Nwabuobi
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Kellie Larsen
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Ali Wells
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Asli Uyar
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, United States
| | - Sefa Arlier
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Ishani Wickramage
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Hasan Alhasan
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Hana Totary-Jain
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Frederick Schatz
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Anthony O. Odibo
- Divisions of Maternal-Fetal Medicine and Ultrasound, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, United States
| | - Charles J. Lockwood
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Umit A. Kayisli
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States,*Correspondence: Umit A. Kayisli,
| |
Collapse
|
9
|
Rocha CC, da Silveira JC, Forde N, Binelli M, Pugliesi G. Conceptus-modulated innate immune function during early pregnancy in ruminants: a review. Anim Reprod 2021; 18:e20200048. [PMID: 34122650 PMCID: PMC8189353 DOI: 10.1590/1984-3143-ar2020-0048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/16/2021] [Indexed: 11/22/2022] Open
Abstract
This review focuses on the innate immune events modulated by conceptus signaling during early pregnancy in ruminants. Interferon-tau (IFN-τ) plays a role in the recognition of pregnancy in ruminants, which involves more than the inhibition of luteolytic pulses of PGF2α to maintain corpus luteum function. For successful pregnancy establishment, the allogenic conceptus needs to prevent rejection by the female. Therefore, IFN-τ exerts paracrine and endocrine actions to regulate the innate immune system and prevent conceptus rejection. Additionally, other immune regulators work in parallel with IFN-τ, such as the pattern recognition receptors (PRR). These receptors are activated during viral and bacterial infections and in early pregnancy, but it remains unknown whether PPR expression and function are controlled by IFN-τ. Therefore, this review focuses on the main components of the innate immune response that are involved with early pregnancy and their importance to avoid conceptus rejection.
Collapse
Affiliation(s)
- Cecilia Constantino Rocha
- Departamento de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Juliano Coelho da Silveira
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Niamh Forde
- Discovery and Translational Sciences Department, School of Medicine, University of Leeds, Leeds, Yorkshire, United Kingdom
| | - Mario Binelli
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - Guilherme Pugliesi
- Departamento de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Pirassununga, SP, Brasil
| |
Collapse
|
10
|
Wang K, Thomas C, Zhang S, Wathes DC, Cheng Z. Comparison of the Ability of High and Low Virulence Strains of Non-cytopathic Bovine Viral Diarrhea Virus-1 to Modulate Expression of Interferon Tau Stimulated Genes in Bovine Endometrium. Front Vet Sci 2021; 8:659330. [PMID: 33898551 PMCID: PMC8062762 DOI: 10.3389/fvets.2021.659330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/15/2021] [Indexed: 12/20/2022] Open
Abstract
Bovine Viral Diarrhea virus (BVDV) is a pestivirus with a single-stranded, positive sense RNA genome. It is endemic in many cattle populations, causing major economic losses in part due to reduced fertility. BVDV exhibits great genetic diversity and is classified as type 1 or 2 (BVDV-1, BVDV-2) with either non-cytopathogenic (ncp) or cytopathogenic (cp) biotypes. Differing strains of ncpBVDV differ in virulence, affecting clinical outcome. BVDV replicates in the reproductive tract, affecting host immunity and embryo survival. This study used an in vitro model of primary bovine endometrial cell cultures to compare the effects of two BVDV ncp type 1a strains of differing virulence (termed HO and KY) on endometrial transcription of candidate interferon stimulated genes (ISG) using qPCR. Half the cultures were stimulated with interferon tau (IFNT, the conceptus produced pregnancy recognition factor) in the presence or absence of viral infection. Cultures were replicated on cells from 10 BVDV-free cows. IFNT treatment stimulated transcription of 10 candidate ISGs, whereas both ncpBVDV-1 strains alone inhibited transcription of 8/10 ISGs. In combined BVDV-1+IFNT cultures, the stimulatory effect of IFNT on expression of GBP4, ISG15, HERC5, RSAD2, IFIH1, IFIT3, and MX1 was significantly inhibited by HO, but only ISG15, RSAD2, IFI27, and IFIT3 were decreased by KY. Inhibition by HO was generally greater. The IFNT-induced expression of TRIM56 was, however, increased by HO. These data show that HO, the more virulent ncpBVDV-1 strain, has a greater capacity to inhibit key antiviral pathways. These differences need confirmation at the protein level but may influence immune tolerance of the host. They could also reduce fertility by increasing uterine susceptibility to bacterial infection and disrupting IFNT-mediated pregnancy recognition.
Collapse
Affiliation(s)
- Kai Wang
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom.,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Carole Thomas
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Shujun Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - D Claire Wathes
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Zhangrui Cheng
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| |
Collapse
|
11
|
Integrated Analysis of miRNA-mRNA Network Reveals Different Regulatory Patterns in the Endometrium of Meishan and Duroc Sows during Mid-Late Gestation. Animals (Basel) 2020; 10:ani10030420. [PMID: 32138165 PMCID: PMC7143271 DOI: 10.3390/ani10030420] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 02/29/2020] [Accepted: 03/01/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Meishan pigs have a lower fetal loss rate during mid-late gestation compared to Duroc pigs. Differentially expressed mRNAs and miRNAs detected in endometrial tissue from Meishan and Duroc sows at mid-late gestation are involved in regulating hormone and oxygen levels, blood vessel development, and developmental processes affecting reproduction. In addition, ssc-miR-503 and ssc-miR-671-5p were shown to target the EGF and ESR1 genes, respectively. These findings provided an important resource for studying embryonic mortality during mid-late gestation in pigs. Abstract Embryo loss is a major factor affecting profitability in the pig industry. Embryonic mortality occurs during peri-implantation and mid-late gestation in pigs. Previous investigations have shown that the embryo loss rate in Meishan pigs is significantly lower than in commercial breeds. Most studies have focused on embryonic mortality during early gestation, but little is known about losses during mid-late gestation. In this study, we performed a transcriptome analysis of endometrial tissue in mid-late gestation sows (gestation days 49 and 72) sampled from two breeds (Meishan (MS) and Duroc (DU)) that have different embryo loss rates. We identified 411, 1113, 697, and 327 differentially expressed genes, and 14, 36, 57, and 43 differentially expressed miRNAs in four comparisons (DU49 vs. DU72, DU49 vs. MS49, DU72 vs. MS72, and MS49 vs. MS72), respectively. Subsequently; seven differentially expressed mRNAs and miRNAs were validated using qPCR. Functional analysis suggested the differentially expressed genes and miRNAs target genes mainly involved in regulation of hormone levels, blood vessel development, developmental process involved in reproduction, embryonic placenta development, and the immune system. A network analysis of potential miRNA-gene interactions revealed that differentially expressed miRNAs in Meishan pigs are involved in the response to estradiol and oxygen levels, and affect angiogenesis and blood vessel development. The binding site on ssc-miR-503 for epidermal growth factor (EGF) and the binding site on ssc-miR-671-5p for estrogen receptor α (ESR1) were identified using a dual luciferase assay. The results of this study will enable further exploration of miRNA-mRNA interactions important in pig pregnancy and will help to uncover molecular mechanisms affecting embryonic mortality in pigs during mid-late gestation.
Collapse
|
12
|
Soares MJ, Iqbal K, Kozai K. Hypoxia and Placental Development. Birth Defects Res 2018; 109:1309-1329. [PMID: 29105383 DOI: 10.1002/bdr2.1135] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 12/17/2022]
Abstract
Hemochorial placentation is orchestrated through highly regulated temporal and spatial decisions governing the fate of trophoblast stem/progenitor cells. Trophoblast cell acquisition of specializations facilitating invasion and uterine spiral artery remodeling is a labile process, sensitive to the environment, and represents a process that is vulnerable to dysmorphogenesis in pathologic states. Hypoxia is a signal guiding placental development, and molecular mechanisms directing cellular adaptations to low oxygen tension are integral to trophoblast cell differentiation and placentation. Hypoxia can also be used as an experimental tool to investigate regulatory processes controlling hemochorial placentation. These developmental processes are conserved in mouse, rat, and human placentation. Consequently, elements of these developmental events can be modeled and hypotheses tested in trophoblast stem cells and in genetically manipulated rodents. Hypoxia is also a consequence of a failed placenta, yielding pathologies that can adversely affect maternal adjustments to pregnancy, fetal health, and susceptibility to adult disease. The capacity of the placenta for adaptation to environmental challenges highlights the importance of its plasticity in safeguarding a healthy pregnancy. Birth Defects Research 109:1309-1329, 2017.© 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michael J Soares
- Institute for Reproduction and Perinatal Research, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas.,Department of Pediatrics, University of Kansas Medical Center, Kansas City, Kansas.,Fetal Health Research, Children's Research Institute, Children's Mercy, Kansas City, Missouri
| | - Khursheed Iqbal
- Institute for Reproduction and Perinatal Research, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Keisuke Kozai
- Institute for Reproduction and Perinatal Research, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
13
|
Abbott PW, Gumusoglu SB, Bittle J, Beversdorf DQ, Stevens HE. Prenatal stress and genetic risk: How prenatal stress interacts with genetics to alter risk for psychiatric illness. Psychoneuroendocrinology 2018; 90:9-21. [PMID: 29407514 DOI: 10.1016/j.psyneuen.2018.01.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/20/2018] [Accepted: 01/21/2018] [Indexed: 02/07/2023]
Abstract
Risk for neuropsychiatric disorders is complex and includes an individual's internal genetic endowment and their environmental experiences and exposures. Embryonic development captures a particularly complex period, in which genetic and environmental factors can interact to contribute to risk. These environmental factors are incorporated differently into the embryonic brain than postnatal one. Here, we comprehensively review the human and animal model literature for studies that assess the interaction between genetic risks and one particular environmental exposure with strong and complex associations with neuropsychiatric outcomes-prenatal maternal stress. Gene-environment interaction has been demonstrated for stress occurring during childhood, adolescence, and adulthood. Additional work demonstrates that prenatal stress risk may be similarly complex. Animal model studies have begun to address some underlying mechanisms, including particular maternal or fetal genetic susceptibilities that interact with stress exposure and those that do not. More specifically, the genetic underpinnings of serotonin and dopamine signaling and stress physiology mechanisms have been shown to be particularly relevant to social, attentional, and internalizing behavioral changes, while other genetic factors have not, including some growth factor and hormone-related genes. Interactions have reflected both the diathesis-stress and differential susceptibility models. Maternal genetic factors have received less attention than those in offspring, but strongly modulate impacts of prenatal stress. Priorities for future research are investigating maternal response to distinct forms of stress and developing whole-genome methods to examine the contributions of genetic variants of both mothers and offspring, particularly including genes involved in neurodevelopment. This is a burgeoning field of research that will ultimately contribute not only to a broad understanding of psychiatric pathophysiology but also to efforts for personalized medicine.
Collapse
Affiliation(s)
- Parker W Abbott
- Department of Psychiatry, University of Iowa Carver College of Medicine, 1310 PBDB, 169 Newton Rd., Iowa City, IA, 52246, USA.
| | - Serena B Gumusoglu
- Department of Psychiatry, University of Iowa Carver College of Medicine, 1310 PBDB, 169 Newton Rd., Iowa City, IA, 52246, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, 356 Medical Research Center, Iowa City, IA, 52242, USA.
| | - Jada Bittle
- Department of Psychiatry, University of Iowa Carver College of Medicine, 1310 PBDB, 169 Newton Rd., Iowa City, IA, 52246, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, 356 Medical Research Center, Iowa City, IA, 52242, USA.
| | - David Q Beversdorf
- Interdisciplinary Neuroscience Program, Interdisciplinary Intercampus Research Program, Thompson Center for Autism and Neurodevelopment Disorders, Departments of Radiology, Neurology and Psychological Sciences, University of Missouri, Columbia, MO, USA.
| | - Hanna E Stevens
- Department of Psychiatry, University of Iowa Carver College of Medicine, 1310 PBDB, 169 Newton Rd., Iowa City, IA, 52246, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, 356 Medical Research Center, Iowa City, IA, 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, 2312 PBDB, 169 Newton Rd., Iowa City, IA, 52246, USA.
| |
Collapse
|
14
|
Dos Santos PF, Van Weyenbergh J, Delgobo M, Oliveira Patricio DD, Ferguson BJ, Guabiraba R, Dierckx T, Menezes SM, Báfica A, Mansur DS. ISG15-Induced IL-10 Is a Novel Anti-Inflammatory Myeloid Axis Disrupted during Active Tuberculosis. THE JOURNAL OF IMMUNOLOGY 2018; 200:1434-1442. [PMID: 29311364 DOI: 10.4049/jimmunol.1701120] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/11/2017] [Indexed: 12/26/2022]
Abstract
IFN-stimulated gene 15 (ISG15) deficiency in humans leads to severe IFNopathies and mycobacterial disease, the latter being previously attributed to its extracellular cytokine-like activity. In this study, we demonstrate a novel role for secreted ISG15 as an IL-10 inducer, unique to primary human monocytes. A balanced ISG15-induced monocyte/IL-10 versus lymphoid/IFN-γ expression, correlating with p38 MAPK and PI3K signaling, was found using targeted in vitro and ex vivo systems analysis of human transcriptomic datasets. The specificity and MAPK/PI3K-dependence of ISG15-induced monocyte IL-10 production was confirmed in vitro using CRISPR/Cas9 knockout and pharmacological inhibitors. Moreover, this ISG15/IL-10 axis was amplified in leprosy but disrupted in human active tuberculosis (TB) patients. Importantly, ISG15 strongly correlated with inflammation and disease severity during active TB, suggesting its potential use as a biomarker, awaiting clinical validation. In conclusion, this study identifies a novel anti-inflammatory ISG15/IL-10 myeloid axis that is disrupted in active TB.
Collapse
Affiliation(s)
- Paula Fernandes Dos Santos
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Santa Catarina CEP 88040-900, Brazil
| | - Johan Van Weyenbergh
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory for Clinical and Epidemiological Virology, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| | - Murilo Delgobo
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Santa Catarina CEP 88040-900, Brazil
| | - Daniel de Oliveira Patricio
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Santa Catarina CEP 88040-900, Brazil
| | - Brian J Ferguson
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom; and
| | - Rodrigo Guabiraba
- Infectiologie et Santé Publique, Institut National de la Recherche Agronomique, Université François Rabelais de Tours, 37380 Nouzilly, France
| | - Tim Dierckx
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory for Clinical and Epidemiological Virology, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| | - Soraya Maria Menezes
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory for Clinical and Epidemiological Virology, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| | - André Báfica
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Santa Catarina CEP 88040-900, Brazil;
| | - Daniel Santos Mansur
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Santa Catarina CEP 88040-900, Brazil;
| |
Collapse
|
15
|
Kose M, Kaya M, Aydilek N, Kucukaslan I, Bayril T, Bademkiran S, Kiyma Z, Ozyurtlu N, Kayis S, Guzeloglu A, Atli M. Expression profile of interferon tau–stimulated genes in ovine peripheral blood leukocytes during embryonic death. Theriogenology 2016; 85:1161-6. [DOI: 10.1016/j.theriogenology.2015.11.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/25/2015] [Accepted: 11/30/2015] [Indexed: 12/25/2022]
|