1
|
Bourdais A, Dehapiot B, Halet G. MRCK activates mouse oocyte myosin II for spindle rotation and male pronucleus centration. J Cell Biol 2023; 222:e202211029. [PMID: 37651121 PMCID: PMC10470461 DOI: 10.1083/jcb.202211029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/24/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023] Open
Abstract
Asymmetric meiotic divisions in oocytes rely on spindle positioning in close vicinity to the cortex. In metaphase II mouse oocytes, eccentric spindle positioning triggers cortical polarization, including the build-up of an actin cap surrounded by a ring of activated myosin II. While the role of the actin cap in promoting polar body formation is established, ring myosin II activation mechanisms and functions have remained elusive. Here, we show that ring myosin II activation requires myotonic dystrophy kinase-related Cdc42-binding kinase (MRCK), downstream of polarized Cdc42. MRCK inhibition resulted in spindle rotation defects during anaphase II, precluding polar body extrusion. Remarkably, disengagement of segregated chromatids from the anaphase spindle could rescue rotation. We further show that the MRCK/myosin II pathway is activated in the fertilization cone and is required for male pronucleus migration toward the center of the zygote. These findings provide novel insights into the mechanism of myosin II activation in oocytes and its role in orchestrating asymmetric division and pronucleus centration.
Collapse
Affiliation(s)
- Anne Bourdais
- University of Rennes, CNRS - UMR 6290, Institute of Genetics and Development of Rennes, Rennes, France
| | - Benoit Dehapiot
- University of Rennes, CNRS - UMR 6290, Institute of Genetics and Development of Rennes, Rennes, France
| | - Guillaume Halet
- University of Rennes, CNRS - UMR 6290, Institute of Genetics and Development of Rennes, Rennes, France
| |
Collapse
|
2
|
Gómez E, Carrocera S, Uzbekova S, Martín D, Murillo A, Alonso-Guervós M, Goyache F, Muñoz M. Protein in culture and endogenous lipid interact with embryonic stages in vitro to alter calf birthweight after embryo vitrification and warming. Reprod Fertil Dev 2018; 29:1932-1943. [PMID: 27890045 DOI: 10.1071/rd16213] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 11/01/2016] [Indexed: 12/17/2022] Open
Abstract
Short-term protein removal in vitro improves long-term blastocyst competence to survive vitrification. We investigated the mechanisms and effects underlying protein removal. Day-6 morulae and early blastocysts were cultured individually with and without protein for 24h. Development and lipid content were analysed in expanded blastocysts derived from morulae (M-XB) and from early blastocysts (EB-XB). Expression of genes involved in lipid metabolism, stress responses and apoptosis was analysed in fresh and vitrified-warmed M-XB produced with and without protein. Pregnancy rates, birth rates and birthweight (BW) were recorded after transfer of embryos. Day-7 EB-XB production rates (with, 66.9±6.2 and without, 68.8±6.0 protein) were higher than M-XB rates (with, 21.4±4.6 and without, 9.4±4.6 protein; P<0.005). EB-XB showed fewer lipids than M-XB (P=0.03). In fresh M-XB, expression of sterol regulatory element binding protein (SREBP1) was lower with (4.1±2.2) than without (13.6±2.2) protein, contrary to results obtained for Patatin-like phospholipase domain containing 2, Hormone-sensitive lipase and Bcl-2-associated X protein (P<0.05). Protein did not affect pregnancy rates and birth phenotypes (P>0.05). However, BW was higher (P<0.01) in calves born from vitrified M-XB (48.6±3.4kg) than from EB-XB (39.8±2.9kg). Such effects were more pronounced in females (P<0.001). Calves from fresh embryos did not show BW differences. These results indicate that embryonic kinetics and vitrification impact birth phenotypes, at least in females. Alterations might involve exogenous protein and mobilisation of lipid stocks.
Collapse
Affiliation(s)
- E Gómez
- Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - S Carrocera
- Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - S Uzbekova
- Institut National de la Recherche Agronomique , UMR8 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
| | - D Martín
- Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - A Murillo
- Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - M Alonso-Guervós
- Unidad de Microscopía Fotónica y Proceso de Imágenes, Servicios Científico Técnicos, Universidad de Oviedo, Instituto Universitario de Oncología de Asturias (IUOPA), 33006 Oviedo, Spain
| | - F Goyache
- Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - M Muñoz
- Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| |
Collapse
|
3
|
Lin Y, Sui LC, Wu RH, Ma RJ, Fu HY, Xu JJ, Qiu XH, Chen L. Nrf2 inhibition affects cell cycle progression during early mouse embryo development. J Reprod Dev 2017; 64:49-55. [PMID: 29249781 PMCID: PMC5830358 DOI: 10.1262/jrd.2017-042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Brusatol, a quassinoid isolated from the fruit of Bruceajavanica, has recently been shown to inhibit nuclear factor erythroid 2-related factor 2 (Nrf2) via Keap1-dependent ubiquitination and
proteasomal degradation or protein synthesis. Nrf2 is a transcription factor that regulates the cellular defense response. Most studies have focused on the effects of Nrf2 in tumor development. Here, the critical roles
of Nrf2 in mouse early embryonic development were investigated. We found that brusatol treatment at the zygotic stage prevented the early embryo development. Most embryos stayed at the two-cell stage after 5 days of
culture (P < 0.05). This effect was associated with the cell cycle arrest, as the mRNA level of CDK1 and cyclin B decreased at the two-cell stage after brusatol treatment. The embryo
development potency was partially rescued by the injection of Nrf2 CRISPR activation plasmid. Thus, brusatol inhibited early embryo development by affecting Nrf2-related cell cycle transition from G2 to M
phase that is dependent on cyclin B-CDK1 complex.
Collapse
Affiliation(s)
- Ying Lin
- Reproductive Medical Center, Jinling Hospital, Clinical School of Medical College, Nanjing University, Jiangsu 210002, People's Republic of China.,School of Life Sciences, Nanjing Normal University, Jiangsu, People's Republic of China
| | - Liu-Cai Sui
- Reproductive Medical Center, Jinling Hospital, Clinical School of Medical College, Nanjing University, Jiangsu 210002, People's Republic of China
| | - Rong-Hua Wu
- Reproductive Medical Center, Jinling Hospital, Clinical School of Medical College, Nanjing University, Jiangsu 210002, People's Republic of China
| | - Ru-Jun Ma
- Reproductive Medical Center, Jinling Hospital, Clinical School of Medical College, Nanjing University, Jiangsu 210002, People's Republic of China
| | - Hai-Yan Fu
- Reproductive Medical Center, Jinling Hospital, Clinical School of Medical College, Nanjing University, Jiangsu 210002, People's Republic of China
| | - Juan-Juan Xu
- Reproductive Medical Center, Jinling Hospital, Clinical School of Medical College, Nanjing University, Jiangsu 210002, People's Republic of China
| | - Xu-Hua Qiu
- Reproductive Medical Center, Jinling Hospital, Clinical School of Medical College, Nanjing University, Jiangsu 210002, People's Republic of China
| | - Li Chen
- Reproductive Medical Center, Jinling Hospital, Clinical School of Medical College, Nanjing University, Jiangsu 210002, People's Republic of China
| |
Collapse
|
4
|
Wang HH, Cui Q, Zhang T, Guo L, Dong MZ, Hou Y, Wang ZB, Shen W, Ma JY, Sun QY. Removal of mouse ovary fat pad affects sex hormones, folliculogenesis and fertility. J Endocrinol 2017; 232:155-164. [PMID: 27821469 DOI: 10.1530/joe-16-0174] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 11/07/2016] [Indexed: 12/20/2022]
Abstract
As a fat storage organ, adipose tissue is distributed widely all over the body and is important for energy supply, body temperature maintenance, organ protection, immune regulation and so on. In humans, both underweight and overweight women find it hard to become pregnant, which suggests that appropriate fat storage can guarantee the female reproductive capacity. In fact, a large mass of adipose tissue distributes around the reproductive system both in the male and female. However, the functions of ovary fat pad (the nearest adipose tissue to ovary) are not known. In our study, we found that the ovary fat pad-removed female mice showed decreased fertility and less ovulated mature eggs. We further identified that only a small proportion of follicles developed to antral follicle, and many follicles were blocked at the secondary follicle stage. The overall secretion levels of estrogen and FSH were lower in the whole estrus cycle (especially at proestrus); however, the LH level was higher in ovary fat pad-removed mice than that in control groups. Moreover, the estrus cycle of ovary fat pad-removed mice showed significant disorder. Besides, the expression of FSH receptor decreased, but the LH receptor increased in ovary fat pad-removed mice. These results suggest that ovary fat pad is important for mouse reproduction.
Collapse
Affiliation(s)
- Hong-Hui Wang
- College of Life SciencesQingdao Agricultural University, Qingdao, China
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Reproductive SciencesKey Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Qian Cui
- Institute of Reproductive SciencesKey Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Teng Zhang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Reproductive SciencesKey Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Lei Guo
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ming-Zhe Dong
- College of Life SciencesQingdao Agricultural University, Qingdao, China
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Reproductive SciencesKey Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei Shen
- Institute of Reproductive SciencesKey Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Jun-Yu Ma
- Laboratory for Germ Cell MetabolismCollege of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Qing-Yuan Sun
- College of Life SciencesQingdao Agricultural University, Qingdao, China
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Reproductive SciencesKey Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
5
|
Martin JH, Bromfield EG, Aitken RJ, Nixon B. Biochemical alterations in the oocyte in support of early embryonic development. Cell Mol Life Sci 2017; 74:469-485. [PMID: 27604868 PMCID: PMC11107538 DOI: 10.1007/s00018-016-2356-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/28/2016] [Accepted: 09/01/2016] [Indexed: 01/01/2023]
Abstract
Notwithstanding the enormous reproductive potential encapsulated within a mature mammalian oocyte, these cells present only a limited window for fertilization before defaulting to an apoptotic cascade known as post-ovulatory oocyte aging. The only cell with the capacity to rescue this potential is the fertilizing spermatozoon. Indeed, the union of these cells sets in train a remarkable series of events that endows the oocyte with the capacity to divide and differentiate into the trillions of cells that comprise a new individual. Traditional paradigms hold that, beyond the initial stimulation of fluctuating calcium (Ca2+) required for oocyte activation, the fertilizing spermatozoon plays limited additional roles in the early embryo. While this model has now been drawn into question in view of the recent discovery that spermatozoa deliver developmentally important classes of small noncoding RNAs and other epigenetic modulators to oocytes during fertilization, it is nevertheless apparent that the primary responsibility for oocyte activation rests with a modest store of maternally derived proteins and mRNA accumulated during oogenesis. It is, therefore, not surprising that widespread post-translational modifications, in particular phosphorylation, hold a central role in endowing these proteins with sufficient functional diversity to initiate embryonic development. Indeed, proteins targeted for such modifications have been linked to oocyte activation, recruitment of maternal mRNAs, DNA repair and resumption of the cell cycle. This review, therefore, seeks to explore the intimate relationship between Ca2+ release and the suite of molecular modifications that sweep through the oocyte to ensure the successful union of the parental germlines and ensure embryogenic fidelity.
Collapse
Affiliation(s)
- Jacinta H Martin
- Discipline of Biological Sciences and Priority Research Center for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia.
| | - Elizabeth G Bromfield
- Discipline of Biological Sciences and Priority Research Center for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - R John Aitken
- Discipline of Biological Sciences and Priority Research Center for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Brett Nixon
- Discipline of Biological Sciences and Priority Research Center for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| |
Collapse
|
6
|
Xiao Y, Ma H, Wan P, Qin D, Wang X, Zhang X, Xiang Y, Liu W, Chen J, Yi Z, Li L. Trp-Asp (WD) Repeat Domain 1 Is Essential for Mouse Peri-implantation Development and Regulates Cofilin Phosphorylation. J Biol Chem 2016; 292:1438-1448. [PMID: 27994054 DOI: 10.1074/jbc.m116.759886] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/16/2016] [Indexed: 01/18/2023] Open
Abstract
Trp-Asp (WD) repeat domain 1 (WDR1) is a highly conserved actin-binding protein across all eukaryotes and is involved in numerous actin-based processes by accelerating Cofilin severing actin filament. However, the function and the mechanism of WDR1 in mammalian early development are still largely unclear. We now report that WDR1 is essential for mouse peri-implantation development and regulates Cofilin phosphorylation in mouse cells. The disruption of maternal WDR1 does not obviously affect ovulation and female fertility. However, depletion of zygotic WDR1 results in embryonic lethality at the peri-implantation stage. In WDR1 knock-out cells, we found that WDR1 regulates Cofilin phosphorylation. Interestingly, WDR1 is overdosed to regulate Cofilin phosphorylation in mouse cells. Furthermore, we showed that WDR1 interacts with Lim domain kinase 1 (LIMK1), a well known phosphorylation kinase of Cofilin. Altogether, our results provide new insights into the role and mechanism of WDR1 in physiological conditions.
Collapse
Affiliation(s)
- Yi Xiao
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing.,the Institute of Zoology, University of Chinese Academy of Sciences, Beijing 100049
| | - Haixia Ma
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing.,the Institute of Zoology, University of Chinese Academy of Sciences, Beijing 100049
| | - Ping Wan
- the State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, and
| | - Dandan Qin
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing.,the Institute of Zoology, University of Chinese Academy of Sciences, Beijing 100049
| | - Xiaoxiao Wang
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing.,the Institute of Zoology, University of Chinese Academy of Sciences, Beijing 100049
| | - Xiaoxin Zhang
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing
| | - Yunlong Xiang
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing
| | - Wenbo Liu
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing
| | - Jiong Chen
- the State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, and
| | - Zhaohong Yi
- the Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, College of Biological Science and Engineering, Beijing University of Agriculture, Beijing 102206, China
| | - Lei Li
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, .,the Institute of Zoology, University of Chinese Academy of Sciences, Beijing 100049
| |
Collapse
|
7
|
Duan X, Liu J, Zhu CC, Wang QC, Cui XS, Kim NH, Xiong B, Sun SC. RhoA-mediated MLC2 regulates actin dynamics for cytokinesis in meiosis. Cell Cycle 2015; 15:471-7. [PMID: 26701676 DOI: 10.1080/15384101.2015.1128590] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
During oocyte meiosis, the bipolar spindle forms in the central cytoplasm and then migrates to the cortex. Subsequently, the oocyte extrudes the polar body through two successive asymmetric divisions, which are regulated primarily by actin filaments. Myosin light chain2 (MLC2) phosphorylation plays pivotal roles in smooth muscle contraction, stress fiber formation, cell motility and cytokinesis. However, whether MLC2 phosphorylation participates in the oocyte polarization and asymmetric division has not been clarified. The present study investigated the expression and functions of MLC2 during mouse oocyte meiosis. Our result showed that p-MLC2 was localized in the oocyte cortex, with a thickened cap above the chromosomes. Meanwhile, p-MLC2 was also localized in the poles of spindle. Disruption of MLC2 activity by MLC2 knock down (KD) caused the failure of polar body extrusion. Immunofluorescent staining showed that a large proportion of oocytes arrested in telophase stage and failed to undergo cytokinesis after culturing for 12 hours. In the meantime, actin filament staining at oocyte membrane and cytoplasm were reduced in MLC2 KD oocytes. Finally, we found that the phosphorylation of MLC2 protein levels was decreased after disruption of RhoA activity. Above all, our data indicated that the RhoA-mediated MLC2 regulates the actin organization for cytokinesis during mouse oocyte maturation.
Collapse
Affiliation(s)
- Xing Duan
- a College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Jun Liu
- a College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Cheng-Cheng Zhu
- a College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Qiao-Chu Wang
- a College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Xiang-Shun Cui
- b Department of Animal Sciences , Chungbuk National University , Cheongju , Korea
| | - Nam-Hyung Kim
- b Department of Animal Sciences , Chungbuk National University , Cheongju , Korea
| | - Bo Xiong
- a College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Shao-Chen Sun
- a College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| |
Collapse
|