1
|
Speckhart SL, Oliver MA, Keane JA, Dias NW, Mercadante VRG, Biase FH, Ealy AD. Interleukin-6 supplementation improves bovine conceptus elongation and transcriptomic indicators of developmental competence†. Biol Reprod 2024; 111:43-53. [PMID: 38519105 PMCID: PMC11247277 DOI: 10.1093/biolre/ioae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/15/2023] [Accepted: 03/15/2024] [Indexed: 03/24/2024] Open
Abstract
A high incidence of pregnancy failures occurs in cattle during the second week of pregnancy as blastocysts transition into an elongated conceptus. This work explored whether interleukin-6 supplementation during in vitro embryo production would improve subsequent conceptus development. Bovine embryos were treated with 0 or 100 ng/mL recombinant bovine interleukin-6 beginning on day 5 post-fertilization. At day 7.5 post-fertilization, blastocysts were transferred into estrus synchronized beef cows (n = 5 recipients/treatment, 10 embryos/recipient). Seven days after transfer (day 14.5), cows were euthanized to harvest reproductive tracts and collect conceptuses. Individual conceptus lengths and stages were recorded before processing for RNA sequencing. Increases in conceptus recovery, length, and the proportion of tubular and filamentous conceptuses were detected in conceptuses derived from interleukin-6-treated embryos. The interleukin-6 treatment generated 591 differentially expressed genes in conceptuses (n = 9-10/treatment). Gene ontology enrichment analyses revealed changes in transcriptional regulation, DNA-binding, and antiviral actions. Only a few differentially expressed genes were associated with extraembryonic development, but several differentially expressed genes were associated with embryonic regulation of transcription, mesoderm and ectoderm development, organogenesis, limb formation, and somatogenesis. To conclude, this work provides evidence that interleukin-6 treatment before embryo transfer promotes pre-implantation conceptus development and gene expression in ways that resemble the generation of a robust conceptus containing favorable abilities to survive this critical period of pregnancy.
Collapse
Affiliation(s)
- Savannah L Speckhart
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Mary A Oliver
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Jessica A Keane
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Nicholas W Dias
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Vitor R G Mercadante
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Fernando H Biase
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Alan D Ealy
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
2
|
Ortega MS, Lockhart KN, Spencer TE. Impact of Sire on Embryo Development and Pregnancy. Vet Clin North Am Food Anim Pract 2024; 40:131-140. [PMID: 37704462 DOI: 10.1016/j.cvfa.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
The use of in vitro embryo production (IVP) has increased globally, particularly in the United States. Although maternal factors influencing embryo development have been extensively studied, the influence of the sire is not well understood. Sperm plays a crucial role in embryo development providing DNA, triggering oocyte maturation, and aiding in mitosis. Current sire fertility measurements do not consistently align with embryo production outcomes. Low-fertility sires may perform well in IVP systems but produce fewer pregnancies. Testing sires in vitro could identify characteristics affecting embryo development and pregnancy loss risk in IVP and embryo transfer programs.
Collapse
Affiliation(s)
- M Sofia Ortega
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1675 Observatory Drive.
| | - Kelsey N Lockhart
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
3
|
Jia Y, Wang W, Jiang J, Zhang X, Li H, Gong S, Li Z, Liu H, Shang C, Wang A, Jin Y, Lin P. LncRNA STAT3-AS regulates endometrial receptivity via the STAT3 signaling pathway. Theriogenology 2024; 216:118-126. [PMID: 38171198 DOI: 10.1016/j.theriogenology.2023.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024]
Abstract
Endometrial receptivity is critical for the successful establishment of pregnancy in ruminants. Interferon tau (IFNT) plays a key role in promoting embryo attachment by activating the Janus kinase/signal transducer and activator of transcription pathway, which induces the expression of a series of interferon-stimulated genes (ISGs). In our previous study, sequencing analysis of goat endometrial epithelial cells (gEECs) treated with 20 ng/mL IFNT revealed a differentially expressed long non-coding RNA located on the STAT3 antisense chain, which we designated STAT3-AS. The aim of this study was to investigate the role and mechanism of STAT3-AS in establishing endometrial receptivity in goats. The results showed that STAT3-AS was expressed in both the nucleus and cytoplasm of gEECs, and its expression increased significantly in the uterus on day 15 of pregnancy. STAT3-AS expression was upregulated in gEECs treated with IFNT alone or in combination with progesterone and estradiol. Knockdown of STAT3-AS using specific short interfering RNA significantly inhibited the expression of classical ISGs such as interferon-stimulated gene 15 and 2',5'-oligodenylate synthetase 2, as well as uterine endometrial receptivity-related genes including homeobox gene A11, integrin beta 3, and vascular endothelial growth factor. Moreover, gEEC proliferation and the STAT3 pathway were suppressed in the absence of STAT3-AS. However, pretreatment with the STAT3 activator RO8191 restored the effect of silencing STAT3-AS on endometrial receptivity. Overall, these results suggest that STAT3-AS is an important regulator of endometrial receptivity in goats and that it regulates endometrial receptivity through the STAT3 pathway.
Collapse
Affiliation(s)
- Yanni Jia
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Wei Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiaqi Jiang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinyan Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Haijing Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Suhua Gong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Zuhui Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Haokun Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Chunmei Shang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China.
| | - Pengfei Lin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
4
|
Bu LG, Wang B, Li TY, Sun Y, Kong LL, Zhao ZA, Li SJ, Ding NZ, Ni H. An IFNT/FOXO1/PTGS2 axis regulates prostaglandin F 2α synthesis in goat uterus during early pregnancy. J Dairy Sci 2023; 106:8060-8071. [PMID: 37268579 DOI: 10.3168/jds.2022-23153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/25/2023] [Indexed: 06/04/2023]
Abstract
In ruminants, IFN-tau (IFNT) regulates the production of prostaglandins (PG) in the endometrium, which is crucial for conceptus adhesion. However, the related molecular regulatory mechanisms remain unclear. Forkhead box O1 (FOXO1), a member of the FOXO subfamily of transcription factors, is known to be important for mouse implantation and decidualization. In this study, we determined the spatiotemporal expression profile of FOXO1 in goat endometrium during early pregnancy. FOXO1 was highly expressed in the glandular epithelium since the onset of conceptus adhesion (d 16 of pregnancy). Then, we validated that FOXO1 could bind to the promoter of prostaglandin-endoperoxide synthase 2 (PTGS2) and increase its transcription. And the expression profile of PTGS2 was similar to that of FOXO1 in the peri-implantation uterus. Moreover, IFNT could upregulate the levels of FOXO1 and PTGS2 in goat uterus and primary endometrial epithelium cells (EEC). In EEC, the intracellular content of PGF2α was positively correlated with the levels of IFNT and FOXO1. Altogether, we found an IFNT/FOXO1/PTGS2 axis that controls the synthesis of PGF2α but not prostaglandin E2 in goat uterine glands. These findings contribute to better understanding the function of FOXO1 in the reproductive physiology of goats and provide more insights into the implantation of small ruminants.
Collapse
Affiliation(s)
- Li-Ge Bu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Bo Wang
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Ting-Yue Li
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Ya Sun
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Li-Li Kong
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhen-Ao Zhao
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Shi-Jie Li
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Nai-Zheng Ding
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Hua Ni
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
5
|
Jia GX, Ma WJ, Wu ZB, Li S, Zhang XQ, He Z, Wu SX, Tao HP, Fang Y, Song YW, Xu SR, Wang XQ, Yang QE. Single-cell transcriptomic characterization of sheep conceptus elongation and implantation. Cell Rep 2023; 42:112860. [PMID: 37494181 DOI: 10.1016/j.celrep.2023.112860] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/19/2023] [Accepted: 07/10/2023] [Indexed: 07/28/2023] Open
Abstract
Bidirectional communication between the developing conceptus and endometrium is essential for pregnancy recognition and establishment in ruminants. We dissect the transcriptomic dynamics of sheep conceptus and corresponding endometrium at pre- and peri-implantation stages using single-cell RNA sequencing. Spherical blastocysts contain five cell types, with 68.62% trophectoderm cells. Strikingly, elongated conceptuses differentiate into 17 cell types, indicating dramatic cell fate specifications. Cell-type-specific gene expression delineates the features of distinctive trophectoderm lineages and indicates that the transition from polar trophectoderm to trophoblast increases interferon-tau expression and likely drives elongation initiation. We identify 13 endometrium-derived cell types and elucidate their molecular responses to conceptus development. Integrated analyses uncover multiple paired transcripts mediating the dialogues between extraembryonic membrane and endometrium, including IGF2-IGF1R, FGF19-FGFR1, NPY-NPY1R, PROS1-AXL, and ADGRE5-CD55. These data provide insight into the molecular regulation of conceptus elongation and represent a valuable resource for functional investigations of pre- and peri-implantation ruminant development.
Collapse
Affiliation(s)
- Gong-Xue Jia
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Wen-Ji Ma
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhao-Bo Wu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuang Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Xiao-Qian Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Zhen He
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shi-Xin Wu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai-Ping Tao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Fang
- University of Chinese Academy of Sciences, Beijing 100049, China; Jilin Provincial Key Laboratory of Grassland Farming, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yong-Wu Song
- Animal Husbandry and Veterinary Station of Gangcha, Haibei 812300, China
| | - Shang-Rong Xu
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China
| | - Xiao-Qun Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qi-En Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China.
| |
Collapse
|
6
|
Pinzón-Arteaga CA, Wang Y, Wei Y, Ribeiro Orsi AE, Li L, Scatolin G, Liu L, Sakurai M, Ye J, Hao Ming, Yu L, Li B, Jiang Z, Wu J. Bovine blastocyst-like structures derived from stem cell cultures. Cell Stem Cell 2023; 30:611-616.e7. [PMID: 37146582 PMCID: PMC10230549 DOI: 10.1016/j.stem.2023.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/23/2023] [Accepted: 04/05/2023] [Indexed: 05/07/2023]
Abstract
Understanding the mechanisms of blastocyst formation and implantation is critical for improving farm animal reproduction but is hampered by a limited supply of embryos. Here, we developed an efficient method to generate bovine blastocyst-like structures (termed blastoids) via assembling bovine trophoblast stem cells and expanded potential stem cells. Bovine blastoids resemble blastocysts in morphology, cell composition, single-cell transcriptomes, in vitro growth, and the ability to elicit maternal recognition of pregnancy following transfer to recipient cows. Bovine blastoids represent an accessible in vitro model for studying embryogenesis and improving reproductive efficiency in livestock species.
Collapse
Affiliation(s)
- Carlos A Pinzón-Arteaga
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yinjuan Wang
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA 70810, USA
| | - Yulei Wei
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China, Agricultural University, Beijing 100193, China
| | - Ana E Ribeiro Orsi
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Leijie Li
- SJTU-Yale Joint Center for Biostatistics and Data Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Giovanna Scatolin
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA 70810, USA; Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Lizhong Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Masahiro Sakurai
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jianfeng Ye
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hao Ming
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA 70810, USA
| | - Leqian Yu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Li
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zongliang Jiang
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA 70810, USA; Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA.
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
7
|
Davenport KM, Ortega MS, Johnson GA, Seo H, Spencer TE. Review: Implantation and placentation in ruminants. Animal 2023; 17 Suppl 1:100796. [PMID: 37567669 DOI: 10.1016/j.animal.2023.100796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 08/13/2023] Open
Abstract
Ruminants have a unique placenta in comparison to other mammalian species. Initially, they possess a non-invasive epitheliochorial type of placenta during conceptus elongation. As the conceptus trophectoderm begins to attach to the luminal epithelium (LE) of the endometrium, binucleate cells (BNCs) develop within the trophoblast of the chorion. The BNCs migrate and fuse with the uterine LE to form multinucleate syncytial plaques in sheep and hybrid trinucleate cells in cattle. This area of the ruminant placenta is semi-invasive synepitheliochorial. The BNCs form the foundation of the placental cotyledons and express unique placenta-specific genes including pregnancy-associated glycoproteins and chorionic somatomammotropin hormone 2 or placental lactogen. Attachment and interdigitation of cotyledons into endometrial caruncles form placentomes that are subsequently vascularized to provide essential nutrients for growth of the fetus. This chapter review will discuss historical and current aspects of conceptus implantation and placenta development in ruminant ungulates with a focus on cattle and sheep. Single-cell analysis promises to provide a much more detailed understanding of the different cell populations and insights into pathways mediating trophoblast and placenta. This fundamental is required to understand pregnancy loss and develop strategies to improve pregnancy outcomes in ruminants.
Collapse
Affiliation(s)
- K M Davenport
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - M S Ortega
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - G A Johnson
- Department of Veterinary Integrative Biosciences and Department of Animal Science, Texas A&M University, College Station, TX 7784, USA
| | - H Seo
- Department of Veterinary Integrative Biosciences and Department of Animal Science, Texas A&M University, College Station, TX 7784, USA
| | - T E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA; Division of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
8
|
Liu J, Qiu R, Liu R, Song P, Lin P, Chen H, Zhou D, Wang A, Jin Y. YPEL3 Negatively Regulates Endometrial Function via the Wnt/β-Catenin Pathways during Early Pregnancy in Goats. Animals (Basel) 2022; 12:2973. [PMID: 36359097 PMCID: PMC9656084 DOI: 10.3390/ani12212973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2023] Open
Abstract
In ruminants, the establishment of pregnancy requires a series of structural and functional changes in the endometrium under the action of hormones, thereby providing an optimal environment for the implantation of the embryo. In this study, we explored the molecular mechanism by which YPEL3 regulates endometrial function during gestation in goats. We found YPEL3 expression was significantly downregulated during early gestation and that YPEL3 overexpression inhibited the expression of ISG15, but had no significant effects on the expression of RSAD2 and CXCL10 in goat endometrial epithelial cells (gEECs). In addition, YPEL3 silencing significantly inhibited PGF2α secretion and the expression of the prostaglandin synthesis-related rate-limiting enzyme-encoding genes PGFS and PTGES, with no significant effect on the expression of PTGS1 and PTGS2. Moreover, YPEL3 inhibited the expression of vimentin and β-catenin and pretreatment of gEECs with the β-catenin activator CHIR99021 prevented a YPEL3-induced decrease in vimentin expression. Collectively, our findings confirm that, as a hormone-regulated factor, YPEL3 regulates endometrial function by inhibiting the Wnt/β-catenin signaling pathway and provide new insights for further clarification of the mechanism by which YPEL3 functions during early pregnancy in ruminants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yaping Jin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
9
|
Davies CJ, Fan Z, Morgado KP, Liu Y, Regouski M, Meng Q, Thomas AJ, Yun SI, Song BH, Frank JC, Perisse IV, Van Wettere A, Lee YM, Polejaeva IA. Development and characterization of type I interferon receptor knockout sheep: A model for viral immunology and reproductive signaling. Front Genet 2022; 13:986316. [PMID: 36246651 PMCID: PMC9556006 DOI: 10.3389/fgene.2022.986316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022] Open
Abstract
Type I interferons (IFNs) initiate immune responses to viral infections. Their effects are mediated by the type I IFN receptor, IFNAR, comprised of two subunits: IFNAR1 and IFNAR2. One or both chains of the sheep IFNAR were disrupted in fetal fibroblast lines using CRISPR/Cas9 and 12 lambs were produced by somatic cell nuclear transfer (SCNT). Quantitative reverse transcription-polymerase chain reaction for IFN-stimulated gene expression showed that IFNAR deficient sheep fail to respond to IFN-alpha. Furthermore, fibroblast cells from an IFNAR2−/− fetus supported significantly higher levels of Zika virus (ZIKV) replication than wild-type fetal fibroblast cells. Although many lambs have died from SCNT related problems or infections, one fertile IFNAR2−/− ram lived to over 4 years of age, remained healthy, and produced more than 80 offspring. Interestingly, ZIKV infection studies failed to demonstrate a high level of susceptibility. Presumably, these sheep compensated for a lack of type I IFN signaling using the type II, IFN-gamma and type III, IFN-lambda pathways. These sheep constitute a unique model for studying the pathogenesis of viral infection. Historical data supports the concept that ruminants utilize a novel type I IFN, IFN-tau, for pregnancy recognition. Consequently, IFNAR deficient ewes are likely to be infertile, making IFNAR knockout sheep a valuable model for studying pregnancy recognition. A breeding herd of 32 IFNAR2+/− ewes, which are fertile, has been developed for production of IFNAR2−/− sheep for both infection and reproduction studies.
Collapse
Affiliation(s)
- Christopher J. Davies
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
- Center for Integrated BioSystems, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
- *Correspondence: Christopher J. Davies, ; Irina A. Polejaeva,
| | - Zhiqiang Fan
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| | - Kira P. Morgado
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
- Center for Integrated BioSystems, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| | - Ying Liu
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| | - Misha Regouski
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| | - Qinggang Meng
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| | - Aaron J. Thomas
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
- Center for Integrated BioSystems, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| | - Sang-Im Yun
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| | - Byung-Hak Song
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| | - Jordan C. Frank
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| | - Iuri V. Perisse
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| | - Arnaud Van Wettere
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| | - Young-Min Lee
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| | - Irina A. Polejaeva
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
- *Correspondence: Christopher J. Davies, ; Irina A. Polejaeva,
| |
Collapse
|
10
|
Wang X, Chen C, Wang L, Su Y, Li B, Xiao L, Lin Z, Sheng X, Qi X, Ni H, Guo Y. Specific activation of embryonic IFNAR1 and endometrial IFNAR2 induced by embryonic IFNτ directs normal uterine fate for bovine early implantation. J Reprod Immunol 2022; 153:103677. [PMID: 35907379 DOI: 10.1016/j.jri.2022.103677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 11/18/2022]
Abstract
Interferon-tau (IFNτ), as an antiluteolytic factor secreted by trophoderm during the pregnancy of ruminants, actually functions by activating the IFNτ receptor 1 (IFNAR1) and IFNτ receptor 2 (IFNAR2). However, it has not been clearly understood how IFNτ-IFNAR cascade regulation processes between the embryo and uterine epithelial cells in ruminants. In this study, we found the expression and location of IFNτ in the bovine blastocysts from different production sources. IFNτ, IFNAR1 and IFNAR2 were all located in the trophoblast cells of the blastocyst. However, the fluorescence intensity of IFNAR1 was consistent with that of IFNτ. Antagonizing the expressions of IFNAR1 and IFNAR2 in embryos and co-culture with endometrial epithelium cells (EECs) reduced the expressions of Integrin αv β3, WNT7A, and ISG15 in EECs. Knocking out IFNAR1 and IFNAR2 reduce the expressions of Integrin αv β3 and WNT7A in EECs, the deletion of IFNAR2 gene has a greater impact than that of IFNAR1 gene. IFNAR1-/IFNAR2+ and IFNAR1+/IFNAR2- EECs were co-cultured with IVF embryos, the expression of Integrin αv β3 was inhibited, and the inhibition of IFNAR1+/IFNAR2- was much stronger, and the expression of WNT7A was not inhibited. The expressions of Integrin αv β3 and WNT7A did not change significantly after IFNAR1-/IFNAR2+ and IFNAR1+/IFNAR2- co-culture with PA embryos. All of these results strongly suggest that specific activation of embryonic IFNAR1 and endometrial IFNAR2 induced by embryonic IFNτ directs normal uterine preparation for bovine early implantation.
Collapse
Affiliation(s)
- Xiangguo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Chaolei Chen
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Lijuan Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yunze Su
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Boyu Li
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Longfei Xiao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Zili Lin
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xihui Sheng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xiaolong Qi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Hemin Ni
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yong Guo
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|
11
|
Tanner AR, Kennedy VC, Lynch CS, Hord TK, Winger QA, Rozance PJ, Anthony RV. In vivo investigation of ruminant placenta function and physiology-a review. J Anim Sci 2022; 100:skac045. [PMID: 35648127 PMCID: PMC9159061 DOI: 10.1093/jas/skac045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/10/2022] [Indexed: 12/16/2022] Open
Abstract
The placenta facilitates the transport of nutrients to the fetus, removal of waste products from the fetus, immune protection of the fetus and functions as an endocrine organ, thereby determining the environment for fetal growth and development. Additionally, the placenta is a highly metabolic organ in itself, utilizing a majority of the oxygen and glucose derived from maternal circulation. Consequently, optimal placental function is required for the offspring to reach its genetic potential in utero. Among ruminants, pregnant sheep have been used extensively for investigating pregnancy physiology, in part due to the ability to place indwelling catheters within both maternal and fetal vessels, allowing for steady-state investigation of blood flow, nutrient uptakes and utilization, and hormone secretion, under non-stressed and non-anesthetized conditions. This methodology has been applied to both normal and compromised pregnancies. As such, our understanding of the in vivo physiology of pregnancy in sheep is unrivalled by any other species. However, until recently, a significant deficit existed in determining the specific function or significance of individual genes expressed by the placenta in ruminants. To that end, we developed and have been using in vivo RNA interference (RNAi) within the sheep placenta to examine the function and relative importance of genes involved in conceptus development (PRR15 and LIN28), placental nutrient transport (SLC2A1 and SLC2A3), and placenta-derived hormones (CSH). A lentiviral vector is used to generate virus that is stably integrated into the infected cell's genome, thereby expressing a short-hairpin RNA (shRNA), that when processed within the cell, combines with the RNA Induced Silencing Complex (RISC) resulting in specific mRNA degradation or translational blockage. To accomplish in vivo RNAi, day 9 hatched and fully expanded blastocysts are infected with the lentivirus for 4 to 5 h, and then surgically transferred to synchronized recipient uteri. Only the trophectoderm cells are infected by the replication deficient virus, leaving the inner cell mass unaltered, and we often obtain ~70% pregnancy rates following transfer of a single blastocyst. In vivo RNAi coupled with steady-state study of blood flow and nutrient uptake, transfer and utilization can now provide new insight into the physiological consequences of modifying the translation of specific genes expressed within the ruminant placenta.
Collapse
Affiliation(s)
- Amelia R Tanner
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Victoria C Kennedy
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Cameron S Lynch
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Taylor K Hord
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Quinton A Winger
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Paul J Rozance
- Department of Pediatrics, Division of Neonatology, College of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Russell V Anthony
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
12
|
Establishment and characterization of a sheep endometrial epithelial cell line. Biochem Biophys Res Commun 2022; 603:63-68. [DOI: 10.1016/j.bbrc.2022.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 11/17/2022]
|
13
|
Bu LG, Sun Y, Li TY, Kong LL, Yu HN, Li SJ, Ding NZ, Ni H. Peri-implantation expression and regulation of ITGB8 in goat uterus. Theriogenology 2021; 180:130-136. [PMID: 34973644 DOI: 10.1016/j.theriogenology.2021.12.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/05/2021] [Accepted: 12/16/2021] [Indexed: 02/01/2023]
Abstract
Ruminants have a superficial implantation pattern. The extended conceptus attaches to the receptive endometrium to form the cotyledonary placenta. During the attachment, a large number of events occur at the maternal-fetal interface. However, the related molecular mechanisms have not been fully understood. Integrin beta8 (ITGB8) is a subunit of integrin beta involved in embryo implantation. In this study, we determined peri-implantation expression and regulation of ITGB8 in goat uterus. The mRNA and protein levels of ITGB8 were both high in goat endometrial luminal epithelium (LE) and superficial glandular epithelium (sGE) during the adhesion period (Days 16-19 of pregnancy). Such expression profile was opposite to that of microRNA-187 (miR-187). Then, we validated that miR-187 targeted the 3' untranslated region (UTR) of ITGB8 in primary goat endometrial epithelial cells (EECs). In EECs, inhibition of miR-187 resulted in not only up-regulated ITGB8 level but also reduced cell proliferation and focal adhesion kinase (FAK) activity. Moreover, ITGB8 and miR-187 were regulated by interferon tau (IFNT). Altogether, in goat, the miR-187/ITGB8 axis may be involved in conceptus attachment and is downstream of IFNT. Our results will help us better understand the mechanisms of ruminant implantation and may provide a useful tool to improve the reproduction ratio for ruminants.
Collapse
Affiliation(s)
- Li-Ge Bu
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, 150030, China
| | - Ya Sun
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, 150030, China
| | - Ting-Yue Li
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, 150030, China
| | - Li-Li Kong
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, 150030, China
| | - Hao-Nan Yu
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, 150030, China
| | - Shi-Jie Li
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, 150030, China
| | - Nai-Zheng Ding
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Hua Ni
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
14
|
Fiorenza MF, Amaral CDS, da Anunciação ARDA, Portela VVM, Marey MA, Miyamoto A, Antoniazzi AQ. Possible impact of neutrophils on immune responses during early pregnancy in ruminants. Anim Reprod 2021; 18:e20210048. [PMID: 34745357 PMCID: PMC8562715 DOI: 10.1590/1984-3143-ar2021-0048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/24/2021] [Indexed: 12/17/2022] Open
Abstract
The interaction between early embryo and maternal immune system for the establishment of pregnancy is the focus of several studies; however, it remains unclear. The maternal immune response needs to keep a balance between avoiding any damage to the conceptus and maintaining its function in combating microbes as well. When conceptus-maternal crosstalk cannot achieve this balance, pregnancy losses might occur. Intercommunication between mother and conceptus is fundamental during early pregnancy to dictate the outcome of pregnancy. In ruminants, the embryo reacts with the maternal system mainly via interferon tau (IFNT) release. IFNT can act locally on the embryo and endometrial cells and systemically in several tissues and cells to regulate their response via the expression of interferon-stimulated genes (ISGs). Also, IFNT can induce the expression of inflammatory-related genes in immune cells. Day 7 embryo induces a shift in the maternal immune response towards anti-inflammatory (Th2) immune responses. During maternal recognition of pregnancy, peripheral mononuclear cells (PBMCs) and polymorphonuclear cells (PMNs) express markers that configure an anti-inflammatory response. However, PMNs response is more sensitive to the effects of IFNT. PMNs are more likely to express interferon-stimulated genes (ISGs), transforming growth factor-beta (TGFB), interleukin 10 (IL10), and arginase-1 (ARG1), configuring one of the most rapid immune responses to early pregnancy. This review focus on the local and peripheral immune responses during early pregnancy in ruminants, mainly the PMNs function in the immune system.
Collapse
Affiliation(s)
- Mariani Farias Fiorenza
- Programa de Pós-graduação em Medicina Veterinária, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - Carolina Dos Santos Amaral
- Programa de Pós-graduação em Medicina Veterinária, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | | | | | - Mohammed Ali Marey
- Global Agromedicine Research Center, Obihiro University of Agricultural and Veterinary Medicine, Obihiro, Japan.,Department of Theriogenology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Akio Miyamoto
- Global Agromedicine Research Center, Obihiro University of Agricultural and Veterinary Medicine, Obihiro, Japan
| | - Alfredo Quites Antoniazzi
- Programa de Pós-graduação em Medicina Veterinária, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| |
Collapse
|
15
|
O'Neil EV, Burns GW, Ferreira CR, Spencer TE. Characterization and regulation of extracellular vesicles in the lumen of the ovine uterus†. Biol Reprod 2021; 102:1020-1032. [PMID: 32055841 DOI: 10.1093/biolre/ioaa019] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/14/2020] [Accepted: 02/07/2020] [Indexed: 12/29/2022] Open
Abstract
Secretions of the endometrium are vital for peri-implantation growth and development of the sheep conceptus. Extracellular vesicles (EVs) are present in the uterine lumen, emanate from both the endometrial epithelia of the uterus and trophectoderm of the conceptus, and hypothesized to mediate communication between those cell types during pregnancy establishment in sheep. Size-exclusion chromatography and nanoparticle tracking analysis determined that total EV number in the uterine lumen increased from days 10 to 14 of the cycle but was lower on days 12 and 14 of pregnancy in sheep. Intrauterine infusions of interferon tau (IFNT) did not affect total EV number in the uterine lumen. Quantitative mass spectrometric analyses defined proteins and lipids in EVs isolated from the uterine lumen of day 14 cyclic and pregnant sheep. In vitro analyses found that EVs decreased ovine trophectoderm cell proliferation and increased IFNT production without effects on gene expression as determined by RNA-seq. Collective results support the idea EVs impact conceptus growth during pregnancy establishment via effects on trophectoderm cell growth.
Collapse
Affiliation(s)
- Eleanore V O'Neil
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Gregory W Burns
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Christina R Ferreira
- Bindley Bioscience Center and Center for Analytical Instrumentation Development, Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
16
|
Rocha CC, da Silveira JC, Forde N, Binelli M, Pugliesi G. Conceptus-modulated innate immune function during early pregnancy in ruminants: a review. Anim Reprod 2021; 18:e20200048. [PMID: 34122650 PMCID: PMC8189353 DOI: 10.1590/1984-3143-ar2020-0048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/16/2021] [Indexed: 11/22/2022] Open
Abstract
This review focuses on the innate immune events modulated by conceptus signaling during early pregnancy in ruminants. Interferon-tau (IFN-τ) plays a role in the recognition of pregnancy in ruminants, which involves more than the inhibition of luteolytic pulses of PGF2α to maintain corpus luteum function. For successful pregnancy establishment, the allogenic conceptus needs to prevent rejection by the female. Therefore, IFN-τ exerts paracrine and endocrine actions to regulate the innate immune system and prevent conceptus rejection. Additionally, other immune regulators work in parallel with IFN-τ, such as the pattern recognition receptors (PRR). These receptors are activated during viral and bacterial infections and in early pregnancy, but it remains unknown whether PPR expression and function are controlled by IFN-τ. Therefore, this review focuses on the main components of the innate immune response that are involved with early pregnancy and their importance to avoid conceptus rejection.
Collapse
Affiliation(s)
- Cecilia Constantino Rocha
- Departamento de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Juliano Coelho da Silveira
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Niamh Forde
- Discovery and Translational Sciences Department, School of Medicine, University of Leeds, Leeds, Yorkshire, United Kingdom
| | - Mario Binelli
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - Guilherme Pugliesi
- Departamento de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Pirassununga, SP, Brasil
| |
Collapse
|
17
|
Heat stress influences the attenuation of prostaglandin synthesis by interferon tau in bovine endometrial cells. Theriogenology 2021; 165:52-58. [PMID: 33631711 DOI: 10.1016/j.theriogenology.2021.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/13/2022]
Abstract
Heat stress (HS) reduces reproductive performance of cattle, possibly by disrupting endocrine regulation such as prostaglandin (PG) production from uterus and estradiol 17β production from the dominant follicle. Prostaglandin F2α (PGF2α) secretion from endometrium surges during the luteal phase due to tumor necrosis factor (TNF) α stimulation and a positive-feedback loop with oxytocin (OT) from the corpus luteum, ultimately triggering luteolysis, while interferon τ (IFNT) inhibits upregulation of PGF2α production by TNFα and OT, thereby preventing luteolysis and triggering recognition of pregnancy. In the present study, we investigated the effect of OT, TNFα, and IFNT on PGF2α production in both types of endometrial cells under HS conditions. Stimulation of PGF2α production in endometrial epithelial cells by OT was unaffected by HS, while stimulation of PGF2α production in endometrial stromal cells by TNFα was enhanced by HS, and this increased PGF2α production was not significantly suppressed by IFNT. These results suggest that HS disrupted the regulation of PGF2α production by TNFα and IFNT in bovine endometrial stromal cells and it might be one of causes for low conception rate of cattle in summer.
Collapse
|
18
|
Husnurrizal H, Siregar TN, Gholib G, Panjaitan B, Armansyah T, Wahyuni S. Profiles of progesterone and bovine interferon-τ in repeat breeding and non-repeat breeding Aceh cows. Vet World 2021; 14:230-236. [PMID: 33642808 PMCID: PMC7896903 DOI: 10.14202/vetworld.2021.230-236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/14/2020] [Indexed: 11/25/2022] Open
Abstract
AIM This study aimed at determining the profiles of progesterone and bovine interferon-τ (bIFN-τ) and the correlation between the two in repeat breeding (RB) Aceh cattle and non-RB Aceh cattle. MATERIALS AND METHODS The study was performed on five RB and five non-RB Aceh cows. These cows were subjected to estrous synchronization using the prostaglandin F2 alpha hormone, which was followed by artificial insemination (AI). Serum samples were collected on days 5, 6, 7, 15, 16, and 17 after AI to measure the concentration of progesterone at the beginning and end of the luteal phase and from days 14 to 18 after AI to measure the concentration of bIFN-τ. The concentrations of progesterone and bIFN-τ were determined using enzyme-linked immunosorbent assay. Pregnancy examinations were performed by ultrasonography on days 25, 35, 45, and 55 after AI. Data for progesterone and bIFN-τ concentrations were analyzed using the Mann-Whitney and t-tests, and the correlation between progesterone and bIFN-τ was analyzed using the Spearman correlation test. RESULTS The average concentration of progesterone in RB Aceh cows tended to be lower than non-RB Aceh cows, but it was not significantly different (p>0.05). Similar results also found in the concentration of bIFN-τ which RB Aceh cows tended to have lower bIFN-τ concentrations compared to non-RB Aceh cows, but it was also not significantly different (p>0.05). Moreover, the concentrations of progesterone and bIFN-τ in RB and non-RB Aceh cows did not show a significant correlation (p>0.05). These results of the ultrasonography showed that non-RB Aceh cows were pregnant from day 25 to day 55 after AI, whereas RB Aceh cows were not pregnant and had early embryonic death. CONCLUSION The concentrations of progesterone and bIFN-τ in non-RB Aceh cows tended to be higher than those in RB Aceh cows, although, it was not significantly different. Non-RB Aceh cows were able to maintain pregnancy until day 55, whereas RB Aceh cows were diagnosed with early embryonic death before day 25 after AI.
Collapse
Affiliation(s)
- Husnurrizal Husnurrizal
- Laboratory of Reproduction, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Tongku Nizwan Siregar
- Laboratory of Reproduction, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Gholib Gholib
- Laboratory of Physiology, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Budianto Panjaitan
- Laboratory of Clinic, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Teuku Armansyah
- Laboratory of Pharmacology, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Sri Wahyuni
- Laboratory of Anatomy, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| |
Collapse
|
19
|
van der Weijden VA, Puntar B, Rudolf Vegas A, Milojevic V, Schanzenbach CI, Kowalewski MP, Drews B, Ulbrich SE. Endometrial luminal epithelial cells sense embryo elongation in the roe deer independent of interferon-tau†. Biol Reprod 2020; 101:882-892. [PMID: 31317179 DOI: 10.1093/biolre/ioz129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/08/2019] [Accepted: 05/15/2019] [Indexed: 12/13/2022] Open
Abstract
Numerous intrauterine changes take place across species during embryo development. Following fertilization in July/August, the European roe deer (Capreolus capreolus) embryo undergoes diapause until embryonic elongation in December/January. Embryonic elongation prior to implantation is a common feature among ungulates. Unlike many other ruminants, the roe deer embryo does not secrete interferon-tau (IFNτ). This provides the unique opportunity to unravel IFNτ-independent signaling pathways associated with maternal recognition of pregnancy (MRP). This study aimed at identifying the cell-type-specific endometrial gene expression changes associated with the MRP at the time of embryo elongation that are independent of IFNτ in roe deer. The messenger RNA (mRNA) expression of genes known to be involved in embryo-maternal communication in cattle, pig, sheep, and mice was analyzed in laser capture microdissected (LMD) endometrial luminal, glandular epithelial, as well as stromal cells. The mRNA transcript abundances of the estrogen (ESR1), progesterone receptor (PGR), and IFNτ-stimulated genes were lower in the luminal epithelium in the presence of an elongated embryo compared to diapause. Retinol Binding Protein-4 (RBP4), a key factor involved in placentation, was more abundant in the luminal epithelium in the presence of an elongated embryo. The progesterone receptor localization was visualized by immunohistochemistry, showing an absence in the luminal epithelium and an overall lower abundance with time and thus prolonged progesterone exposure. Our data show a developmental stage-specific mRNA expression pattern in the luminal epithelium, indicating that these cells sense the presence of an elongated embryo in an IFNτ-independent manner.
Collapse
Affiliation(s)
| | - Brina Puntar
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| | - Alba Rudolf Vegas
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| | - Vladimir Milojevic
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| | - Corina I Schanzenbach
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| | - Mariusz P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Barbara Drews
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| | - Susanne E Ulbrich
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| |
Collapse
|
20
|
Zhang L, Cao L, Yang F, Han X, Wang Y, Cao N, Yang L. Relative abundance of interferon-stimulated genes STAT1, OAS1, CXCL10 and MX1 in ovine lymph nodes during early pregnancy. Anim Reprod Sci 2020; 214:106285. [DOI: 10.1016/j.anireprosci.2020.106285] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 01/07/2020] [Accepted: 01/16/2020] [Indexed: 01/09/2023]
|
21
|
Initiation of Conceptus Elongation Coincides with an Endometrium Basic Fibroblast Growth Factor (FGF2) Protein Increase in Heifers. Int J Mol Sci 2020; 21:ijms21051584. [PMID: 32111034 PMCID: PMC7084457 DOI: 10.3390/ijms21051584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 02/07/2023] Open
Abstract
Fibroblast growth factors (FGF) play an important role during embryo development. To date, the role of FGF and the respective receptors (FGFR) during the preimplantation phase in cattle are not fully characterized. We examined FGF1, FGF2, FGFR1, FGFR2, and FGFR3 in cyclic and early pregnant heifers at Days 12, 15, and 18 after insemination (Day 0). Endometrial FGF1 mRNA transcript abundance in heifers varied significantly with respect to the day after insemination, the pregnancy status, and their interaction. The expression was higher in nonpregnant than in pregnant heifers at Day 18. The conceptus transcripts abundance of FGFR2 and FGFR3 were significantly lower at Day 15 than 18. In the endometrium, FGF1 protein abundance significantly decreased from Day 12 onwards and FGF2 protein abundance showed a minor, but a significant increase at Day 15 in comparison to Days 12 and 18. We concluded that the decrease in FGF1 mRNA expression in pregnant heifers at Day 18 points towards a potential contribution of FGF1 in the preimplantation process. Additionally, successful embryo elongation might require a spatiotemporal FGF2 protein increase in the endometrium.
Collapse
|
22
|
O'Neil EV, Brooks K, Burns GW, Ortega MS, Denicol AC, Aguiar LH, Pedroza GH, Benne J, Spencer TE. Prostaglandin-endoperoxide synthase 2 is not required for preimplantation ovine conceptus development in sheep. Mol Reprod Dev 2019; 87:142-151. [PMID: 31746519 DOI: 10.1002/mrd.23300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/28/2019] [Indexed: 01/05/2023]
Abstract
Conceptus development and elongation is required for successful pregnancy establishment in ruminants and is coincident with the production of interferon τ (IFNT) and prostaglandins (PGs). In both the conceptus trophectoderm and endometrium, PGs are primarily synthesized through a prostaglandin-endoperoxide synthase 2 (PTGS2) pathway and modify endometrial gene expression and thus histotroph composition in the uterine lumen to promote conceptus growth and survival. Chemical inhibition of PG production by both the endometrium and the conceptus prevented elongation in sheep. However, the contributions of conceptus-derived PGs to preimplantation conceptus development remain unclear. In this study, CRISPR-Cas9 genome editing was used to inactivate PTGS2 in ovine embryos to determine the role of PTGS2-derived PGs in conceptus development and elongation. PTGS2 edited conceptuses produced fewer PGs, but secreted similar amounts of IFNT to their Cas9 control counterparts and elongated normally. Expression of PTGS1 was lower in PTGS2 edited conceptuses, but PPARG expression and IFNT secretion were unaffected. Content of PGs in the uterine lumen was similar as was gene expression in the endometrium of ewes who received either Cas9 control or PTGS2 edited conceptuses. These results support the idea that intrinsic PTGS2-derived PGs are not required for preimplantation embryo or conceptus survival and development in sheep.
Collapse
Affiliation(s)
- Eleanore V O'Neil
- Division of Animal Sciences, University of Missouri, Columbia, Missouri
| | - Kelsey Brooks
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Portland, Oregon
| | - Gregory W Burns
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, Michigan
| | - Martha S Ortega
- Division of Animal Sciences, University of Missouri, Columbia, Missouri
| | - Anna C Denicol
- Department of Animal Sciences, University of California Davis, Davis, California
| | - Luis H Aguiar
- Department of Animal Sciences, University of California Davis, Davis, California
| | - Gabriela H Pedroza
- Department of Animal Sciences, University of California Davis, Davis, California
| | - Joshua Benne
- Division of Animal Sciences, University of Missouri, Columbia, Missouri
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri
| |
Collapse
|
23
|
Ortega MS, Moraes JGN, Patterson DJ, Smith MF, Behura SK, Poock S, Spencer TE. Influences of sire conception rate on pregnancy establishment in dairy cattle. Biol Reprod 2019; 99:1244-1254. [PMID: 29931362 DOI: 10.1093/biolre/ioy141] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/15/2018] [Indexed: 12/15/2022] Open
Abstract
Establishment of pregnancy in cattle is complex and encompasses ovulation, fertilization, blastocyst formation and growth into an elongated conceptus, pregnancy recognition signaling, and development of the embryo and placenta. The objective here was to investigate sire influences on pregnancy establishment in cattle. First, 10 Holstein bulls were classified as high or low fertility based on their sire conception rate (SCR) value. In a field trial, pregnancy at first timed insemination was not different between high and low SCR bulls. Next, 5 of the 10 sires were phenotyped using in vitro and in vivo embryo production. There was no effect of SCR classification on in vitro embryo cleavage rate, but low SCR sires produced fewer day 8 blastocysts. In superovulated heifers, high SCR bulls produced a lower percentage of unfertilized oocytes and fewer degenerated embryos compared to low SCR bulls. Recipient heifers received three to five in vivo produced embryos from either high or low SCR sires on day 7 postestrus. Day 16 conceptus recovery and length were not different between SCR groups, and the conceptus transcriptome was not appreciably different between high and low SCR sires. The reduced ability of embryos from low SCR bulls to establish pregnancy is multifactorial and encompasses sperm fertilizing ability, preimplantation embryonic development, and development of the embryo and placenta after conceptus elongation and pregnancy recognition. These studies highlight the importance of understanding genetic contributions of the sire to pregnancy establishment that is crucial to increase reproductive efficiency in dairy cattle.
Collapse
Affiliation(s)
- M Sofia Ortega
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - João G N Moraes
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - David J Patterson
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Michael F Smith
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Scott Poock
- College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
24
|
Giller K, Drews B, Berard J, Kienberger H, Schmicke M, Frank J, Spanier B, Daniel H, Geisslinger G, Ulbrich SE. Bovine embryo elongation is altered due to maternal fatty acid supplementation. Biol Reprod 2019; 99:600-610. [PMID: 29668864 DOI: 10.1093/biolre/ioy084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/11/2018] [Indexed: 12/16/2022] Open
Abstract
The pre-implantation period is prone to embryonic losses in bovine. Embryo-maternal communication is crucial to support embryo development. Thereby, factors of the uterine fluid (UF) are of specific importance. The maternal diet can affect the UF composition. Since omega 3 fatty acids (omega 3 FA) are considered to be beneficial for reproduction, we investigated if dietary omega 3 FA affected factors in the UF related to embryo elongation. Angus heifers (n = 37) were supplemented with either 450 g of rumen-protected fish oil (omega 3 FA) or sunflower oil (omega 6 FA) for a period of 8 weeks. Following cycle synchronization and artificial insemination, the uteri were flushed post mortem to recover the embryos on day 15 of pregnancy. The UF and tissue samples of endometrium and corpus luteum (CL) were collected. Strikingly, the embryo elongation in the omega 3 group was enhanced compared to the omega 6 group. No differences were observed in uterine prostaglandins, even though the endometrial concentration of their precursor arachidonic acid was reduced in omega 3 compared to omega 6 heifers. The dietary FA neither led to differential expression of target genes in endometrium nor CL nor to a differential abundance of low-density lipoprotein cholesterol, cortisol or amino acids in the UF. Interestingly, the omega 3 group displayed a higher plasma progesterone concentration during luteal growth than the omega 6 group, possibly promoting embryo elongation. Further research should include an ovarian perspective to understand the functional link between dietary omega 3 FA and reproductive outcome.
Collapse
Affiliation(s)
- Katrin Giller
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| | - Barbara Drews
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| | - Joel Berard
- ETH Zurich, Animal Nutrition, Institute of Agricultural Sciences, Zurich, Switzerland
| | - Hermine Kienberger
- Bavarian Center for Biomolecular Mass Spectrometry, Technische Universität München, Freising, Germany
| | - Marion Schmicke
- University of Veterinary Medicine, Clinic for Cattle, Endocrinology, Hannover, Germany
| | - Jan Frank
- Institute of Biological Chemistry and Nutrition, University of Hohenheim, Stuttgart, Germany
| | - Britta Spanier
- Nutritional Physiology, Technische Universität München, Freising, Germany
| | - Hannelore Daniel
- Nutritional Physiology, Technische Universität München, Freising, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt, Germany
| | - Susanne E Ulbrich
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| |
Collapse
|
25
|
Yaginuma H, Funeshima N, Tanikawa N, Miyamura M, Tsuchiya H, Noguchi T, Iwata H, Kuwayama T, Shirasuna K, Hamano S. Improvement of fertility in repeat breeder dairy cattle by embryo transfer following artificial insemination: possibility of interferon tau replenishment effect. J Reprod Dev 2019; 65:223-229. [PMID: 30745523 PMCID: PMC6584180 DOI: 10.1262/jrd.2018-121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Repeat breeder cattle do not become pregnant until after three or more breeding attempts; this represents a critical reproductive disorder. Embryo transfer (ET) following artificial
insemination (AI) in repeat breeder cattle reportedly improves pregnancy rate, leading to speculation that interferon tau (IFNT) is associated with this phenomenon. However, the reason why
the conception rate improves remains unknown. We investigated the effect of ET following AI on repeat breeder cattle in field tests, and determined whether adding an embryo affects the
maternal immune cells detected by interferon-stimulated genes (ISGs), marker genes of IFN response. In total, 1122 repeat breeder cattle were implanted with in vitro
fertilization (IVF) embryos after previous AI. ET following AI resulted in pregnancy rates of 46.9% in repeat breeder dairy cattle. In basic in vivo tests, to investigate
the effect of adding embryos, ISGs mRNA expression levels were significantly higher in the AI + ET group than in the AI + sham group (transfer of only embryonic cryopreservation solution).
Then, we examined the effect of cultured conditioned media (CM) of IVF embryos on splenic immune cells and Madin-Darby bovine kidney (MDBK) cells with stably introduced ISG15
promoter-reporter constructs. These cells exhibited a specific increase in ISG15 mRNA expression and promoter activity when treated with the CM of IVF embryos, suggesting that IVF embryos
have the potential to produce and release IFNT. In conclusion, ET following AI is beneficial for improving conception in repeat breeder cattle. Added embryos may produce and secrete IFNT,
resulting in the increased expression of ISGs.
Collapse
Affiliation(s)
- Hikari Yaginuma
- Animal Bio-Technology Center, Livestock Improvement Association of Japan Inc., Tokyo 135-0041, Japan
| | - Natsumi Funeshima
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Nao Tanikawa
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Motoharu Miyamura
- Animal Bio-Technology Center, Livestock Improvement Association of Japan Inc., Tokyo 135-0041, Japan
| | - Hideki Tsuchiya
- Animal Bio-Technology Center, Livestock Improvement Association of Japan Inc., Tokyo 135-0041, Japan
| | - Tatsuo Noguchi
- University Farm, Tokyo University of Agriculture, Shizuoka 418-0109, Japan
| | - Hisataka Iwata
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Takehito Kuwayama
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Koumei Shirasuna
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Seizo Hamano
- Animal Bio-Technology Center, Livestock Improvement Association of Japan Inc., Tokyo 135-0041, Japan.,Maebashi Institute of Animal Science, Livestock Improvement Association of Japan Inc., Gunma 371-0121, Japan
| |
Collapse
|
26
|
Bazer FW, Burghardt RC, Johnson GA, Spencer TE, Wu G. Mechanisms for the establishment and maintenance of pregnancy: synergies from scientific collaborations. Biol Reprod 2018; 99:225-241. [PMID: 29462279 PMCID: PMC6044348 DOI: 10.1093/biolre/ioy047] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 11/14/2022] Open
Abstract
Research on the functions of interferon tau (IFNT) led to the theory of pregnancy recognition signaling in ruminant species. But IFNT does much more as it induces expression of interferon regulatory factor 2 (IRF2) in uterine luminal (LE), superficial glandular (sGE), but not glandular (GE) epithelia. First, IRF2 silences transcription of the estrogen receptor alpha gene and, indirectly, transcription of the oxytocin receptor gene to abrogate development of the luteolytic mechanism to prevent regression of the corpus luteum and its production of progesterone for establishing and maintaining pregnancy. Second, IRF2 silences expression of classical interferon-stimulated genes in uterine LE and sGE; however, uterine LE and sGE respond to progesterone (P4) and IFNT to increase expression of genes for transport of nutrients into the uterine lumen such as amino acids and glucose. Other genes expressed by uterine LE and sGE encode for adhesion molecules such as galectin 15, cathepsins, and cystatins for tissue remodeling, and hypoxia-inducible factor relevant to angiogenesis and survival of blastocysts in a hypoxic environment. IFNT is also key to a servomechanism that allows uterine epithelia, particularly GE, to proliferate and to express genes in response to placental lactogen and placental growth hormone in sheep. The roles of secreted phosphoprotein 1 are also discussed regarding its role in implantation in sheep and pigs, as well as its stimulation of expression of mechanistic target of rapamycin mRNA and protein which is central to proliferation, migration, and gene expression in the trophectoderm cells.
Collapse
Affiliation(s)
- Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Robert C Burghardt
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Gregory A Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Thomas E Spencer
- Division of Animal Science, University of Missouri, Columbia, Missouri, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
27
|
The newly established bovine endometrial gland cell line (BEGC) forms gland acini in vitro and is only IFNτ-responsive (MAPK42/44 activation) after E 2 and P 4-pre-incubation. Placenta 2018; 67:61-69. [PMID: 29941175 DOI: 10.1016/j.placenta.2018.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/15/2018] [Accepted: 05/21/2018] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Uterine glands (UG) are crucial for the establishment of ruminant pregnancy and influenced (orchestrated manner) by estrogen (E2), progesterone (P4) and interferon tau (IFNτ). In the study we established a bovine endometrial glandular cell line (BGEC) and tested its functional reactivity (signaling) to IFNτ. METHODS BGEC was characterized by light microscopy (LM), epithelial markers (ezrin, CK18) [immunofluorescence (IF)/immunohistochemistry (IHC)] and ultrastructure (TEM/SEM) (apical microvilli). In vitro formation of gland acini and transepithelial-electric-resistance (TEER) measurements (EVOM) were done. The expression of mRNA-transcripts (RT-PCR) of steroid receptors (PR, PGRMC1/2, ESR1/2) and the IFNτ-system (IFNAR1/2, IRF1, 2, 9) was checked. BEGC was stimulated with IFNτ (10 ng/ml;1000 ng/ml) (15 min) after steroid pre-treatment [10 pg/ml E2 (two days)/20 ng/ml P4 (two days)]. Activation of MAPK42/44;STAT1 was evaluated (densitometrical Western Blot). RESULTS BGEC cells expressed epithelial markers and possessed apical microvilli. High TEER-values could be measured (2320-2620 ohm/cm2). The assembled BEGC acini (25 days) were similar to UG in vivo (markers/ultrastructure). All transcripts (steroid receptors/IFNτ-system) could be detected in BEGC (mRNA). MAPK42/44 were significantly activated after E2/P4 pre-treatment and IFNτ stimulation (10 ng/ml) (p < 0.05), whilst 1000 ng/ml IFNτ did not activate MAPK42/44. Neither a STAT1 (by IFNτ) nor an activation (MAPK42/44;STAT1) by IFNτ-only was observed. DISCUSSION BGEC retains its epithelial phenotype in culture and forms gland acini in vitro thereby confirming its glandular character. Cells were only reactive to (low) IFNτ concentrations when pre-treated with steroids thereby closely resembling implantation physiology in vivo. BEGC can be used as a bovine implantation model to study embryo-maternal communication during early pregnancy in cattle.
Collapse
|
28
|
Loch C, Haeger JD, Pfarrer C. IFNτ mediates chemotaxis, motility, metabolism and CK18 downregulation in bovine trophoblast cells in vitro via STAT1 and MAPK42/44 signaling. Placenta 2018; 64:17-26. [DOI: 10.1016/j.placenta.2018.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/19/2018] [Accepted: 02/19/2018] [Indexed: 10/18/2022]
|
29
|
Sheikh AA, Hooda OK, Dang AK. Interferon tau stimulated gene expression and proinflammatory cytokine profile relative to insemination in dairy cows. BIOL RHYTHM RES 2018. [DOI: 10.1080/09291016.2018.1440777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Aasif Ahmad Sheikh
- Lactation and Immuno-Physiology Laboratory, Animal Physiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Om Kanwar Hooda
- Lactation and Immuno-Physiology Laboratory, Animal Physiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Ajay Kumar Dang
- Lactation and Immuno-Physiology Laboratory, Animal Physiology Division, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
30
|
Tanikawa N, Seno K, Kawahara-Miki R, Kimura K, Matsuyama S, Iwata H, Kuwayama T, Shirasuna K. Interferon Tau Regulates Cytokine Production and Cellular Function in Human Trophoblast Cell Line. J Interferon Cytokine Res 2017; 37:456-466. [DOI: 10.1089/jir.2017.0057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Nao Tanikawa
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Atsugi, Japan
| | - Kotomi Seno
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Atsugi, Japan
| | | | - Koji Kimura
- Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Shuichi Matsuyama
- Animal Feeding and Management Research Division, National Institute of Livestock and Grassland Science, Nasushiobara, Japan
| | - Hisataka Iwata
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Atsugi, Japan
| | - Takehito Kuwayama
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Atsugi, Japan
| | - Koumei Shirasuna
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Atsugi, Japan
| |
Collapse
|
31
|
Interferon-τ increases BoLA-I for implantation during early pregnancy in dairy cows. Oncotarget 2017; 8:95095-95107. [PMID: 29221114 PMCID: PMC5707008 DOI: 10.18632/oncotarget.19282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/09/2017] [Indexed: 12/21/2022] Open
Abstract
Interferon-τ (IFN-τ) signals pregnancy recognition in ruminants. We investigated the effects of IFN-τ produced by embryo trophoblastic cells (ETCs) on expression of bovine leukocyte antigen-I (BoLA-I), a bovine analogue of human MHC-I, in endometrial luminal epithelial cells (EECs) during early pregnancy in dairy cows. Expression of IFN-τ and BoLA-I was increased in endometrial tissues during early pregnancy. Expression of the anti-inflammatory cytokine IL-10 was increased in endometrial tissues, while expression of the pro-inflammatory cytokine IL-6 was decreased, indicating immunosuppression. Progesterone increased IFN-τ expression in EECs. IFN-τ increased p-STAT1 and p-STAT3 levels in EECs, but reduced TRAF3 levels. In addition, IFN-τ increased expression of BoLA-I and IL-10, but decreased expression of IL-6 in EECs. These results indicate that IFN-τ enables stable implantation in dairy cows by increasing expression of BoLA-I, and by immunosuppression mediated by increased IL-10 and decreased IL-6 expression.
Collapse
|
32
|
Spencer TE, Forde N, Lonergan P. Insights into conceptus elongation and establishment of pregnancy in ruminants. Reprod Fertil Dev 2017; 29:84-100. [DOI: 10.1071/rd16359] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This review integrates established and new information on the factors and pathways regulating conceptus–endometrial interactions, conceptus elongation and establishment of pregnancy in sheep and cattle. Establishment of pregnancy in domestic ruminants begins at the conceptus stage (embryo or fetus and associated extra-embryonic membranes) and includes pregnancy recognition signalling, implantation and the onset of placentation. Survival and growth of the preimplantation blastocyst and elongating conceptus require embryotrophic factors (amino acids, carbohydrates, proteins, lipids and other substances) provided by the uterus. The coordinated and interactive actions of ovarian progesterone and conceptus-derived factors (interferon-τ and prostaglandins) regulate expression of elongation- and implantation-related genes in the endometrial epithelia that alter the uterine luminal milieu and affect trophectoderm proliferation, migration, attachment, differentiation and function. A comparison of sheep and cattle finds both conserved and non-conserved embryotrophic factors in the uterus; however, the overall biological pathways governing conceptus elongation and establishment of pregnancy are likely conserved. Given that most pregnancy losses in ruminants occur during the first month of pregnancy, increased knowledge is necessary to understand why and provide a basis for new strategies to improve pregnancy outcome and reproductive efficiency.
Collapse
|
33
|
Sandra O, Charpigny G, Galio L, Hue I. Preattachment Embryos of Domestic Animals: Insights into Development and Paracrine Secretions. Annu Rev Anim Biosci 2016; 5:205-228. [PMID: 27959670 DOI: 10.1146/annurev-animal-022516-022900] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In mammalian species, endometrial receptivity is driven by maternal factors independently of embryo signals. When pregnancy initiates, paracrine secretions of the preattachment embryo are essential both for maternal recognition and endometrium preparation for implantation and for coordinating development of embryonic and extraembryonic tissues of the conceptus. This review mainly focuses on domestic large animal species. We first illustrate the major steps of preattachment embryo development, including elongation in bovine, ovine, porcine, and equine species. We next highlight conceptus secretions that are involved in the communication between extraembryonic and embryonic tissues, as well as between the conceptus and the endometrium. Finally, we introduce experimental data demonstrating the intimate connection between conceptus secretions and endometrial activity and how adverse events perturbing this interplay may affect the progression of implantation that will subsequently impact pregnancy outcome, postnatal health, and expression of production traits in livestock offspring.
Collapse
Affiliation(s)
- Olivier Sandra
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France; , , ,
| | - Gilles Charpigny
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France; , , ,
| | - Laurent Galio
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France; , , ,
| | - Isabelle Hue
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France; , , ,
| |
Collapse
|
34
|
Interferon Tau Affects Mouse Intestinal Microbiota and Expression of IL-17. Mediators Inflamm 2016; 2016:2839232. [PMID: 27610003 PMCID: PMC5005528 DOI: 10.1155/2016/2839232] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/30/2016] [Indexed: 01/12/2023] Open
Abstract
This study was conducted to explore the effects of interferon tau (IFNT) on the intestinal microbiota and expression of interleukin 17 (IL-17) in the intestine of mice. IFNT supplementation increased microbial diversity in the jejunum and ileum but decreased microbial diversity in the feces. IFNT supplementation influenced the composition of the intestinal microbiota as follows: (1) decreasing the percentage of Firmicutes and increasing Bacteroidetes in the jejunum and ileum; (2) enhancing the percentage of Firmicutes but decreasing Bacteroidetes in the colon and feces; (3) decreasing Lactobacillus in the jejunum and ileum; (4) increasing the percentage of Blautia, Bacteroides, Alloprevotella, and Lactobacillus in the colon; and (5) increasing the percentage of Lactobacillus, Bacteroides, and Allobaculum, while decreasing Blautia in the feces. Also, IFNT supplementation decreased the expression of IL-17 in the intestines of normal mice and of an intestinal pathogen infected mice. In conclusion, IFNT supplementation modulates the intestinal microbiota and intestinal IL-17 expression, indicating the applicability of IFNT to treat the intestinal diseases involving IL-17 expression and microbiota.
Collapse
|
35
|
Spencer TE, Forde N, Lonergan P. The role of progesterone and conceptus-derived factors in uterine biology during early pregnancy in ruminants. J Dairy Sci 2016; 99:5941-5950. [DOI: 10.3168/jds.2015-10070] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/03/2015] [Indexed: 11/19/2022]
|
36
|
Zhao G, Wu H, Jiang K, Chen X, Wang X, Qiu C, Guo M, Deng G. The Anti-Inflammatory Effects of Interferon Tau by Suppressing NF-κB/MMP9 in Macrophages Stimulated with Staphylococcus aureus. J Interferon Cytokine Res 2016; 36:516-24. [PMID: 27142785 DOI: 10.1089/jir.2015.0170] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Previous studies have reported that interferon tau (IFNT) significantly mitigates tissue inflammation. However, this effect and its regulating pathways have not been reported for Staphylococcus aureus-induced inflammation. In this study, RAW 264.7 cells stimulated with S. aureus were used to identify the anti-inflammatory effects and mechanism of IFNT. First, IFNT was found to be noncytotoxic to macrophages treated with the high dose of 200 ng/mL IFNT. ELISA and qPCR revealed that IFNT decreased the expression of proinflammatory cytokines such as TNF-α, IL-1β, and IL-6. TLR2, which is involved in the immune response during S. aureus infection, directly affected NF-κB pathway activation and was also downregulated by IFNT. Subsequent Western blotting showed that the phosphorylation of IκBα and NF-κB p65 was inhibited by IFNT. Therefore, although the MMP9 levels were significantly downregulated in a dose-dependent manner by IFNT, little change in MMP2 was observed in S. aureus-stimulated RAW 264.7 cells. Furthermore, PDTC, an inhibitor of NF-κB, also significantly decreased MMP9 levels by inhibiting NF-κB p65 activation. All of these findings strongly suggested that IFNT suppresses the NF-κB/MMP9 signal transduction pathway and subsequently exerts its anti-inflammatory effects in S. aureus-stimulated RAW 264.7 cells.
Collapse
Affiliation(s)
- Gan Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan, People's Republic of China
| | - Haichong Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan, People's Republic of China
| | - Kangfeng Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan, People's Republic of China
| | - Xiuying Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan, People's Republic of China
| | - Xiaoyan Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan, People's Republic of China
| | - Changwei Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan, People's Republic of China
| | - Mengyao Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan, People's Republic of China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan, People's Republic of China
| |
Collapse
|
37
|
Burns GW, Brooks KE, Spencer TE. Extracellular Vesicles Originate from the Conceptus and Uterus During Early Pregnancy in Sheep. Biol Reprod 2016; 94:56. [PMID: 26819476 DOI: 10.1095/biolreprod.115.134973] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/15/2016] [Indexed: 12/26/2022] Open
Abstract
Cells release diverse types of membrane-bound vesicles of endosomal and plasma membrane origin, termed exosomes and microvesicles, respectively. Extracellular vesicles (EVs) represent an important mode of intercellular communication by transferring select RNAs, proteins, and lipids between cells. The present studies tested the hypothesis that the elongating ovine conceptus and uterus produces EVs that mediate conceptus-maternal interactions during early pregnancy. In Study 1, EVs were purified from uterine luminal fluid of Day 14 cyclic sheep. The EVs were fluorescently labeled with PKH67 dye and infused into the uterine lumen of pregnant sheep for 6 days using an osmotic pump. On Day 14, labeled EVs were observed in the conceptus trophectoderm and uterine epithelia, but not in the uterine stroma or myometrium. In Study 2, Day 14 conceptuses were cultured ex vivo for 24 h and found to release EVs into the culture medium. Proteomics analysis of the Day 14 conceptus-derived EVs identified 231 proteins that were enriched for extracellular space and several protein classes, including proteases, protease inhibitors, chaperones and chaperonins. RNA sequencing of Day 14 conceptus-derived EVs detected expression of 512 mRNAs. The top-expressed genes were overrepresented in ribosomal functions and components. Isolated EVs from conceptuses were fluorescently labeled with PKH67 and infused into the uterine lumen of cyclic sheep for 6 days using an osmotic pump. On Day 14, labeled EVs were observed in the uterine epithelia, but not in the uterine stroma or myometrium. Labeled EVs were not observed in the ovary or in other maternal tissues. These studies support the ideas that EVs emanate from both the conceptus trophectoderm and uterine epithelia, and are involved in intercellular communication between those cells during the establishment of pregnancy in sheep.
Collapse
Affiliation(s)
- Gregory W Burns
- Division of Animal Sciences, University of Missouri, Columbia, Missouri
| | - Kelsey E Brooks
- Division of Animal Sciences, University of Missouri, Columbia, Missouri
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri
| |
Collapse
|
38
|
Hue I. Determinant molecular markers for peri-gastrulating bovine embryo development. Reprod Fertil Dev 2016; 28:51-65. [DOI: 10.1071/rd15355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Peri-gastrulation defines the time frame between blastocyst formation and implantation that also corresponds in cattle to elongation, pregnancy recognition and uterine secretion. Optimally, this developmental window prepares the conceptus for implantation, placenta formation and fetal development. However, this is a highly sensitive period, as evidenced by the incidence of embryo loss or early post-implantation mortality after AI, embryo transfer or somatic cell nuclear transfer. Elongation markers have often been used within this time frame to assess developmental defects or delays, originating either from the embryo, the uterus or the dam. Comparatively, gastrulation markers have not received great attention, although elongation and gastrulation are linked by reciprocal interactions at the molecular and cellular levels. To make this clearer, this peri-gastrulating period is described herein with a focus on its main developmental landmarks, and the resilience of the landmarks in the face of biotechnologies is questioned.
Collapse
|
39
|
Spencer TE, Hansen TR. Implantation and Establishment of Pregnancy in Ruminants. REGULATION OF IMPLANTATION AND ESTABLISHMENT OF PREGNANCY IN MAMMALS 2015; 216:105-35. [DOI: 10.1007/978-3-319-15856-3_7] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|