1
|
Xia TJ, Xie FY, Chen J, Zhang XG, Li S, Sun QY, Zhang Q, Yin S, Ou XH, Ma JY. CDK1 mediates the metabolic regulation of DNA double-strand break repair in metaphase II oocytes. BMC Biol 2025; 23:37. [PMID: 39915808 PMCID: PMC11803938 DOI: 10.1186/s12915-025-02142-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 01/23/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND During oocyte maturation, DNA double-strand breaks (DSBs) can decrease oocyte quality or cause mutations. How DSBs are repaired in dividing oocytes and which factors influence DSB repair are not well understood. RESULTS By analyzing DSB repair pathways in oocytes at different stages, we found that break-induced replication (BIR) and RAD51-mediated homology-directed repair (HDR) were highly active in germinal vesicle breakdown (GVBD) oocytes but suppressed in metaphase II (MII) oocytes and the BIR in oocytes was promoted by CDK1 activity. By culturing oocytes in different media, we found that high-energy media, such as DMEM, decreased CDK1 protein levels and suppressed BIR or HDR in MII oocytes. In contrast, 53BP1-mediated nonhomologous end joining (NHEJ) repair was inhibited in germinal vesicle (GV) and GVBD oocytes but promoted in MII oocytes, and NHEJ was not affected by DMEM medium and CDK1 activity. In addition, in DSB MII oocytes, polymerase theta-mediated end joining (TMEJ) was found to be suppressed by CDK1 activity and promoted by high-energy media. CONCLUSIONS In summary, MII oocytes exhibit high heterogeneity in DSB repair, which is regulated by both metabolic factors and CDK1 activity. These results not only expand our understanding of oocyte DSB repair but also contribute to the modification of in vitro maturation medium for oocytes.
Collapse
Affiliation(s)
- Tian-Jin Xia
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
- Reproductive Medicine Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Feng-Yun Xie
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
- Reproductive Medicine Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Juan Chen
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
- Reproductive Medicine Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Xiao-Guohui Zhang
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Sen Li
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
- Reproductive Medicine Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Qing-Yuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
- Reproductive Medicine Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Qin Zhang
- Reproductive Medicine Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China.
| | - Shen Yin
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| | - Xiang-Hong Ou
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China.
- Reproductive Medicine Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| | - Jun-Yu Ma
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China.
- Reproductive Medicine Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Sun L, Wang Y, Yang M, Xu ZJ, Miao J, Bai Y, Lin T. Delayed Blastocyst Formation Reduces the Quality and Hatching Ability of Porcine Parthenogenetic Blastocysts by Increasing DNA Damage, Decreasing Cell Proliferation, and Altering Transcription Factor Expression Patterns. J Dev Biol 2024; 12:26. [PMID: 39449318 PMCID: PMC11503403 DOI: 10.3390/jdb12040026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/02/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
The purpose of this study was to investigate the influence of blastocyst formation timing on the quality of porcine embryos derived from parthenogenetic activation. Newly formed blastocysts at days 6, 7, and 8 of culture [termed formation 6, 7, and 8 blastocysts (F6, F7, and F8 blastocysts)] were obtained, and a series of parameters related to the quality of blastocysts, including apoptosis incidents, DNA replication, pluripotent factors, and blastocyst hatching capacity, were assessed. Delayed blastocyst formation (F7 and/or F8 blastocysts) led to increased levels of ROS, DNA damage, and apoptosis while decreasing the mitochondrial membrane potential, DNA replication, Oct4 levels, and numbers of Sox2-positive cells. F7 blastocysts showed a significantly reduced hatching rate compared to F6 blastocysts; however, F8 blastocysts were unable to develop to the hatching stage. Collectively, our findings suggest a negative correlation between delayed blastocyst formation and blastocyst quality.
Collapse
Affiliation(s)
| | | | | | | | | | - Ying Bai
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China; (L.S.); (Y.W.); (M.Y.); (Z.-J.X.); (J.M.)
| | - Tao Lin
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China; (L.S.); (Y.W.); (M.Y.); (Z.-J.X.); (J.M.)
| |
Collapse
|
3
|
Ju BH, Kim YJ, Park YB, Kim BH, Kim MK. Evaluation of conical 9 well dish on bovine oocyte maturation and subsequent embryonic development. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:936-948. [PMID: 39398310 PMCID: PMC11466740 DOI: 10.5187/jast.2024.e68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 08/22/2024]
Abstract
The Conical 9 well dish (C9 well dish) is characterized by a decreasing cross-sectional area towards the base. This design was hypothesized to enhance embryonic development by emulating the in vivo physical environment through density modulation. Comparative analyses revealed no significant difference in nuclear maturation rates between the C9 well dish and the 5-well dish. Reactive oxygen species (ROS) generation was lower in the C9 well dish compared to the 5-well dish; however, this difference was not statistically significant. On the second day of in vitro culture, the cleavage rate in the C9 well dish was 4.66% higher, although not statistically significant, and the rates of blastocyst development were similar across both dishes. No significant differences were observed in the intracellular levels of glutathione (GSH) and ROS, as well as in the total cell number within the blastocysts between the dish types. The expression of mitogen-related factors, TGFα and IGF-1, in the blastocysts was consistent between the dishes. However, PDGFβ expression was significantly lower in the C9 well dish compared to the 35 mm petri dish. Similarly, the expression of the apoptosis factor Bax/Bcl2l2 showed no significant differences between the two dishes. Despite the marked difference in PDGFβ expression, its impact on blastocyst formation appeared negligible. The study also confirmed the feasibility of culturing a small number of oocytes per donor, collected via Ovum Pick-Up (OPU), with reduced volumes of culture medium and mineral oil, thus offering economic advantages. In conclusion, the present study indicates that the C9 well dish is effective for in vitro development of a small quantity of oocytes and embryos, presenting it as a viable alternative to traditional cell culture dishes.
Collapse
Affiliation(s)
- Byung Hyun Ju
- Division of Animal and Dairy Science,
College of Agriculture and Life Science, Chungnam National
University, Daejeon 34134, Korea
- MK biotech Inc., Daejeon
34134, Korea
| | - You Jin Kim
- Department of Obstetrics &
Gynecology, Chungnam National University Hospital, Daejeon
34134, Korea
| | - Youn Bae Park
- Division of Animal and Dairy Science,
College of Agriculture and Life Science, Chungnam National
University, Daejeon 34134, Korea
- MK biotech Inc., Daejeon
34134, Korea
| | - Byeong Ho Kim
- Division of Animal and Dairy Science,
College of Agriculture and Life Science, Chungnam National
University, Daejeon 34134, Korea
- MK biotech Inc., Daejeon
34134, Korea
| | - Min Kyu Kim
- Division of Animal and Dairy Science,
College of Agriculture and Life Science, Chungnam National
University, Daejeon 34134, Korea
- MK biotech Inc., Daejeon
34134, Korea
| |
Collapse
|
4
|
Goetten ALF, Barreta MH, Pinto da Silva Y, Bertolin K, Koch J, Rocha CC, Dias Gonçalves PB, Price CA, Antoniazzi AQ, Portela VM. FGF18 impairs blastocyst viability, DNA double-strand breaks and maternal recognition of pregnancy genes. Theriogenology 2024; 225:81-88. [PMID: 38796960 DOI: 10.1016/j.theriogenology.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Embryonic mortality in cattle is high, reaching 10-40 % in vivo and 60-70 % in vitro. Death of embryos involves reduced expression of genes related to embryonic viability, inhibition of DNA repair and increased DNA damage. In follicular granulosa cells, FGF18 from the theca layer increases apoptosis and DNA damage, so we hypothesized that FGF18 may also affect the oocyte and contribute to early embryonic death. The aims of this study were to identify the effects of FGF18 on cumulus expansion, oocyte maturation and embryo development from cleavage to blastocyst stage using a conventional bovine in vitro embryo production system using ovaries of abattoir origin. Addition of FGF18 during in-vitro maturation did not affect FSH-induced cumulus expansion or rates of nuclear maturation. When FGF18 was present in the culture system, rates of cleavage were not affected however, blastocyst and expanded blastocyst development was substantially inhibited (P < 0.05), indicating a delay of blastulation. The number of phosphorylated histone H2AFX foci per nucleus, a marker of DNA damage, was higher in cleavage-stage embryos cultured with FGF18 than in those from control group (P < 0.05). Furthermore, FGF18 decreased accumulation of PTGS2 and IFNT2 mRNA in blastocysts. In conclusion, these novel findings suggest that FGF18 plays a role in the regulation of embryonic death during the early stages of development by impairing DNA double-strand break repair and expression of genes associated with embryo viability and maternal recognition of pregnancy during the progression from oocyte to expanded blastocysts.
Collapse
Affiliation(s)
- André Lucio Fontana Goetten
- Laboratory of Animal Reproduction Physiology, LAFRA, Federal University of Santa Catarina, Curitibanos, SC, Brazil
| | - Marcos Henrique Barreta
- Laboratory of Animal Reproduction Physiology, LAFRA, Federal University of Santa Catarina, Curitibanos, SC, Brazil
| | - Yago Pinto da Silva
- Laboratory of Animal Reproduction Physiology, LAFRA, Federal University of Santa Catarina, Curitibanos, SC, Brazil
| | - Kalyne Bertolin
- Biotechnology and Animal Reproduction Laboratory, BioRep, Federal University of Santa Maria, RS, Brazil
| | - Júlia Koch
- Biotechnology and Animal Reproduction Laboratory, BioRep, Federal University of Santa Maria, RS, Brazil
| | - Cecilia Constantino Rocha
- Laboratory of Animal Reproduction Physiology, LAFRA, Federal University of Santa Catarina, Curitibanos, SC, Brazil
| | - Paulo Bayard Dias Gonçalves
- Biotechnology and Animal Reproduction Laboratory, BioRep, Federal University of Santa Maria, RS, Brazil; Molecular and Integrative Physiology of Reproduction Laboratory, MINT, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Christopher Alan Price
- Centre de Recherche en Reproduction et Fertilité, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC, Canada
| | - Alfredo Quites Antoniazzi
- Biotechnology and Animal Reproduction Laboratory, BioRep, Federal University of Santa Maria, RS, Brazil
| | - Valerio Marques Portela
- Biotechnology and Animal Reproduction Laboratory, BioRep, Federal University of Santa Maria, RS, Brazil.
| |
Collapse
|
5
|
Glanzner WG, da Silva Sousa LR, Gutierrez K, de Macedo MP, Currin L, Perecin F, Bordignon V. NRF2 attenuation aggravates detrimental consequences of metabolic stress on cultured porcine parthenote embryos. Sci Rep 2024; 14:2973. [PMID: 38316940 PMCID: PMC10844622 DOI: 10.1038/s41598-024-53480-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/31/2024] [Indexed: 02/07/2024] Open
Abstract
The nuclear factor erythroid 2-related factor 2 (NRF2) is a crucial transcription factor that plays a central role in regulating oxidative stress pathways by binding antioxidant response elements, but its involvement in early embryo development remains largely unexplored. In this study, we demonstrated that NRF2 mRNA is expressed in porcine embryos from day 2 to day 7 of development, showing a decrease in abundance from day 2 to day 3, followed by an increase on day 5 and day 7. Comparable levels of NRF2 mRNA were observed between early-cleaving and more developmental competent embryos and late-cleaving and less developmental competent embryos on day 4 and day 5 of culture. Attenuation of NRF2 mRNA significantly decreased development of parthenote embryos to the blastocyst stage. When NRF2-attenuated embryos were cultured in presence of 3.5 mM or 7 mM glucose, development to the blastocyst stage was dramatically decreased in comparison to the control group (15.9% vs. 27.8% for 3.5 mM glucose, and 5.4% vs. 25.3% for 7 mM glucose). Supplementation of melatonin moderately improved the development of NRF2-attenuated embryos cultured in presence of 0.6 mM glucose. These findings highlight the importance of NRF2 in early embryo development, particularly in embryos cultured under metabolically stressful conditions.
Collapse
Affiliation(s)
- Werner Giehl Glanzner
- Department of Animal Science, McGill University, 21111, Lakeshore Road, Sainte Anne de Bellevue, QC, H9X 3V9, Canada.
| | - Leticia Rabello da Silva Sousa
- Veterinary Medicine Department, College of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga, SP, Brazil
| | - Karina Gutierrez
- Department of Animal Science, McGill University, 21111, Lakeshore Road, Sainte Anne de Bellevue, QC, H9X 3V9, Canada
| | - Mariana Priotto de Macedo
- Department of Animal Science, McGill University, 21111, Lakeshore Road, Sainte Anne de Bellevue, QC, H9X 3V9, Canada
| | - Luke Currin
- Department of Animal Science, McGill University, 21111, Lakeshore Road, Sainte Anne de Bellevue, QC, H9X 3V9, Canada
| | - Felipe Perecin
- Veterinary Medicine Department, College of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga, SP, Brazil
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, 21111, Lakeshore Road, Sainte Anne de Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
6
|
Somfai T. Vitrification of immature oocytes in pigs. Anim Sci J 2024; 95:e13943. [PMID: 38578008 DOI: 10.1111/asj.13943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 04/06/2024]
Abstract
Cryopreservation of oocytes is an important technology for the in vitro gene banking of female germplasm. Although slow freezing is not feasible, porcine oocytes survive vitrification at high rates. Cryopreservation at the germinal vesicle stage appears to be more advantageous than that at the metaphase-II stage. Several factors are considered to affect the success of vitrification and subsequent utilization of immature porcine oocytes such as the device, the protocols for cryoprotectant application, warming, and the post-warming culture. Although live piglets could be obtained from vitrified immature oocytes, their competence to develop to the blastocyst stage is still reduced compared to their non-vitrified counterparts, indicating that there is room for further improvement. Vitrified oocytes suffer various types of damage and alteration which may reduce their developmental ability. Some of these can recover to some extent during subsequent culture, such as the damage of the cytoskeleton and mitochondria. Others such as premature nuclear progression, DNA damage and epigenetic alterations will require further research to be clarified and addressed. To date, the practical application of oocyte vitrification in pigs has been confined to the gene banking of a few native breeds.
Collapse
Affiliation(s)
- Tamás Somfai
- Animal Model Development Group, Division of Biomaterial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| |
Collapse
|
7
|
Bollwein H, Malama E. Review: Evaluation of bull fertility. Functional and molecular approaches. Animal 2023; 17 Suppl 1:100795. [PMID: 37567681 DOI: 10.1016/j.animal.2023.100795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 08/13/2023] Open
Abstract
With the term "assisted reproduction technologies" in modern cattle farming, one could imply the collection of techniques that aim at the optimal use of bovine gametes to produce animals of high genetic value in a time- and cost-efficient manner. The accurate characterisation of sperm quality plays a critical role for the efficiency of several assisted reproduction-related procedures, such as sperm processing, in vitro embryo production and artificial insemination. Bull fertility is ultimately a collective projection of the ability of a series of ejaculates to endure sperm processing stress, and achieve fertilisation of the oocyte and production of a viable and well-developing embryo. In this concept, the assessment of sperm functional and molecular characteristics is key to bull fertility diagnostics and prognostics. Among others, functional features linked to sperm plasma membrane, acrosome and DNA integrity are usually assessed as a measure of the ability of sperm to express the phenotypes that will allow them to maintain their homeostasis and orchestrate-in a strict temporal manner-the course of events that will enable the delivery of their genetic content to the oocyte upon fertilisation. Nevertheless, measures of sperm functionality are not always adequate indicators of bull fertility. Nowadays, advancements in the field of molecular biology have facilitated the profiling of several biomolecules in male gametes. The molecular profiling of bovine sperm offers a deeper insight into the mechanisms underlying sperm physiology and, thus, can reveal novel candidate markers for bull fertility prognosis. In this review, the importance of three organelles (the nucleus, the plasma membrane and the acrosome) for the characterisation of sperm fertilising capacity and bull fertility is discussed at functional and molecular levels. In particular, information about sperm head morphometry, chromatin structure, viability as well as the ability of sperm to capacitate and undergo the acrosome reaction are presented in relation to the cryotolerance of male gametes and bull fertility. Finally, major spermatozoal coding and non-coding RNAs, and proteins that are involved in the above-mentioned aspects of sperm functionality are also summarised.
Collapse
Affiliation(s)
- H Bollwein
- Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland.
| | - E Malama
- Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| |
Collapse
|
8
|
Somfai T, Haraguchi S, Dang-Nguyen TQ, Kaneko H, Kikuchi K. Vitrification of porcine immature oocytes and zygotes results in different levels of DNA damage which reflects developmental competence to the blastocyst stage. PLoS One 2023; 18:e0282959. [PMID: 36930621 PMCID: PMC10022796 DOI: 10.1371/journal.pone.0282959] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
The present study investigated the effects of vitrification of porcine oocytes either at the immature Germinal Vesicle (GV) stage before in vitro maturation (GV-stage oocytes) or at the pronuclear stage after in vitro maturation and fertilization (zygotes) on DNA integrity in relevance with their subsequent embryo development. Vitrification at the GV stage but not at the pronuclear stage significantly increased the abundance of double-strand breaks (DSBs) in the DNA measured by the relative fluorescence after γH2AX immunostaining. Treatment of GV-stage oocytes with cryoprotectant agents alone had no effect on DSB levels. When oocytes were vitrified at the GV stage and subjected to in vitro maturation and fertilization (Day 0) and embryo culture, significantly increased DSB levels were detected in subsequent cleavage-stage embryos which were associated with low cell numbers on Day 2, the upregulation of the RAD51 gene at the 4-8 cell stage (measured by RT-qPCR) and reduced developmental ability to the blastocyst stage when compared with the non-vitrified control. However, total cell numbers and percentages of apoptotic cells (measured by TUNEL) in resultant blastocysts were not different from those of the non-vitrified control. On the other hand, vitrification of zygotes had no effect on DSB levels and the expression of DNA-repair genes in resultant embryos, and their development did not differ from that of the non-vitrified control. These results indicate that during vitrification GV-stage oocytes are more susceptible to DNA damages than zygotes, which affects their subsequent development to the blastocyst stage.
Collapse
Affiliation(s)
- Tamás Somfai
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
- * E-mail:
| | - Seiki Haraguchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Thanh Quang Dang-Nguyen
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Hiroyuki Kaneko
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Kazuhiro Kikuchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| |
Collapse
|
9
|
de Macedo MP, Glanzner WG, Gutierrez K, Bordignon V. Chromatin role in early programming of embryos. Anim Front 2021; 11:57-65. [PMID: 34934530 PMCID: PMC8683133 DOI: 10.1093/af/vfab054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
| | - Werner Giehl Glanzner
- Department of Animal Science, McGill University, Sainte Anne de Bellevue, QC, Canada
| | - Karina Gutierrez
- Department of Animal Science, McGill University, Sainte Anne de Bellevue, QC, Canada
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, Sainte Anne de Bellevue, QC, Canada
| |
Collapse
|
10
|
Lin T, Sun L, Lee JE, Kim SY, Jin DI. DNA damage repair is suppressed in porcine aged oocytes. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:984-997. [PMID: 34796342 PMCID: PMC8564305 DOI: 10.5187/jast.2021.e90] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/01/2021] [Accepted: 07/09/2021] [Indexed: 12/24/2022]
Abstract
This study sought to evaluate DNA damage and repair in porcine postovulatory aged
oocytes. The DNA damage response, which was assessed by H2A.X expression,
increased in porcine aged oocytes over time. However, the aged oocytes exhibited
a significant decrease in the expression of RAD51, which reflects the DNA damage
repair capacity. Further experiments suggested that the DNA repair ability was
suppressed by the downregulation of genes involved in the homologous
recombination (HR) and nonhomologous end-joining (NHEJ) pathways. The expression
levels of the cell cycle checkpoint genes, CHEK1 and
CHEK2, were upregulated in porcine aged oocytes in response
to induced DNA damage. Immunofluorescence results revealed that the expression
level of H3K79me2 was significantly lower in porcine aged oocytes than in
control oocytes. In addition, embryo quality was significantly reduced in aged
oocytes, as assessed by measuring the cell proliferation capacity. Our results
provide evidence that DNA damage is increased and the DNA repair ability is
suppressed in porcine aged oocytes. These findings increase our understanding of
the events that occur during postovulatory oocyte aging.
Collapse
Affiliation(s)
- Tao Lin
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China.,Division of Animal & Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Ling Sun
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China.,Division of Animal & Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Jae Eun Lee
- Division of Animal & Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - So Yeon Kim
- Division of Animal & Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Dong Il Jin
- Division of Animal & Dairy Science, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
11
|
Singh AK, Kumar SL, Beniwal R, Mohanty A, Kushwaha B, Rao HBDP. Local DNA synthesis is critical for DNA repair during oocyte maturation. J Cell Sci 2021; 134:272449. [PMID: 34415018 DOI: 10.1242/jcs.257774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 08/16/2021] [Indexed: 01/04/2023] Open
Abstract
Mammalian oocytes can be very long-lived cells and thereby are very likely to encounter DNA damage during their lifetime. Defective DNA repair may result in oocytes that are developmentally incompetent or give rise to progeny with congenital disorders. During oocyte maturation, damaged DNA is repaired primarily by non-homologous end joining (NHEJ) or homologous recombination (HR). Although these repair pathways have been studied extensively, the associated DNA synthesis is poorly characterized. Here, using porcine oocytes, we demonstrate that the DNA synthesis machinery is present during oocyte maturation and dynamically recruited to sites of DNA damage. DNA polymerase δ is identified as being crucial for oocyte DNA synthesis. Furthermore, inhibiting synthesis causes DNA damage to accumulate and delays the progression of oocyte maturation. Importantly, inhibition of the spindle assembly checkpoint (SAC) bypassed the delay of oocyte maturation caused by DNA synthesis inhibition. Finally, we found that ∼20% of unperturbed oocytes experienced spontaneously arising damage during maturation. Cumulatively, our findings indicate that oocyte maturation requires damage-associated DNA synthesis that is monitored by the SAC. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Ajay K Singh
- National Institute of Animal Biotechnology, Hyderabad, Telangana 500032, India
| | - S Lava Kumar
- National Institute of Animal Biotechnology, Hyderabad, Telangana 500032, India.,Graduate studies, Regional Centre for Biotechnology, Faridabad 121 001, India
| | - Rohit Beniwal
- National Institute of Animal Biotechnology, Hyderabad, Telangana 500032, India.,Graduate studies, Regional Centre for Biotechnology, Faridabad 121 001, India
| | - Aradhana Mohanty
- National Institute of Animal Biotechnology, Hyderabad, Telangana 500032, India.,Graduate studies, Regional Centre for Biotechnology, Faridabad 121 001, India
| | - Bhawna Kushwaha
- National Institute of Animal Biotechnology, Hyderabad, Telangana 500032, India
| | - H B D Prasada Rao
- National Institute of Animal Biotechnology, Hyderabad, Telangana 500032, India
| |
Collapse
|
12
|
Dicks N, Gutierrez K, Currin L, de Macedo MP, Glanzner WG, Mondadori RG, Michalak M, Agellon LB, Bordignon V. Tauroursodeoxycholic acid/TGR5 signaling promotes survival and early development of glucose-stressed porcine embryos†. Biol Reprod 2021; 105:76-86. [PMID: 33889948 PMCID: PMC8256098 DOI: 10.1093/biolre/ioab072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/24/2021] [Accepted: 04/12/2021] [Indexed: 01/21/2023] Open
Abstract
Conditions of impaired energy and nutrient homeostasis, such as diabetes and obesity, are associated with infertility. Hyperglycemia increases endoplasmic reticulum stress as well as oxidative stress and reduces embryo development and quality. Oxidative stress also causes deoxyribonucleic acid damage, which impairs embryo quality and development. The natural bile acid tauroursodeoxycholic acid reduces endoplasmic reticulum stress and rescues developmentally incompetent late-cleaving embryos, as well as embryos subjected to nuclear stress, suggesting the endoplasmic reticulum stress response, or unfolded protein response, and the genome damage response are linked. Tauroursodeoxycholic acid acts via the Takeda-G-protein-receptor-5 to alleviate nuclear stress in embryos. To evaluate the role of tauroursodeoxycholic acid/Takeda-G-protein-receptor-5 signaling in embryo unfolded protein response, we used a model of glucose-induced endoplasmic reticulum stress. Embryo development was impaired by direct injection of tauroursodeoxycholic acid into parthenogenetically activated oocytes, whereas it was improved when tauroursodeoxycholic acid was added to the culture medium. Attenuation of the Takeda-G-protein-receptor-5 precluded the positive effect of tauroursodeoxycholic acid supplementation on development of parthenogenetically activated and fertilized embryos cultured under standard conditions and parthenogenetically activated embryos cultured with excess glucose. Moreover, attenuation of tauroursodeoxycholic acid/Takeda-G-protein-receptor-5 signaling induced endoplasmic reticulum stress, oxidative stress and cell survival genes, but decreased expression of pluripotency genes in parthenogenetically activated embryos cultured under excess glucose conditions. These data suggest that Takeda-G-protein-receptor-5 signaling pathways link the unfolded protein response and genome damage response. Furthermore, this study identifies Takeda-G-protein-receptor-5 signaling as a potential target for mitigating fertility issues caused by nutrient excess-associated blastomere stress and embryo death.
Collapse
Affiliation(s)
- Naomi Dicks
- Department of Animal Science, McGill University, Quebec, Canada
| | | | - Luke Currin
- Department of Animal Science, McGill University, Quebec, Canada
| | | | | | - Rafael G Mondadori
- Department of Animal Science, McGill University, Quebec, Canada
- ReproPel, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Luis B Agellon
- School of Human Nutrition, McGill University, Quebec, Canada
| | | |
Collapse
|
13
|
Liu Y, Sun B, Zhang S, Li J, Qi J, Bai C, Zhang J, Liang S. Glycine alleviates fluoride-induced oxidative stress, apoptosis and senescence in a porcine testicular Sertoli cell line. Reprod Domest Anim 2021; 56:884-896. [PMID: 33738852 DOI: 10.1111/rda.13930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/16/2021] [Indexed: 12/18/2022]
Abstract
Glycine is a well-known free radical scavenger in the cellular antioxidant system that prevents oxidative damage and apoptosis. Excessive fluoride exposure is associated with multiple types of cellular damage in humans and animals. The objective of the present study was to investigate the protective effects of glycine on sodium fluoride (NaF) exposure and the possible underlying mechanisms in a porcine testicular Sertoli cell line model. Cellular viability and proliferation were examined following NaF exposure and glycine supplementation, and glycine dramatically ameliorated the decreases in NaF-induced porcine testicular Sertoli cell viability and proliferation. Further investigations revealed that glycine decreased NaF-induced intracellular reactive oxygen species production, DNA fragment accumulation and the apoptosis incidence in the porcine testicular Sertoli cell line; in addition, glycine improved mitochondrial function and ATP production. Notably, results of the SPiDER-β-Gal analysis suggested that glycine alleviated NaF-induced cellular senescence and downregulated P53, P21, HMGA2 and P16INK4a gene expression in the porcine testicular Sertoli cell line. Collectively, the beneficial effects of glycine alleviate NaF-induced oxidative stress, apoptosis and senescence, and together with our previous findings, support the hypothesis that glycine plays an important role in protecting against NaF exposure-induced impairments in the porcine testicular Sertoli cell line.
Collapse
Affiliation(s)
- Ying Liu
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Boxing Sun
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Shaoxuan Zhang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Jing Li
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Jiajia Qi
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Chunyan Bai
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Jiabao Zhang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Shuang Liang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| |
Collapse
|
14
|
Optical imaging of cleavage stage bovine embryos using hyperspectral and confocal approaches reveals metabolic differences between on-time and fast-developing embryos. Theriogenology 2020; 159:60-68. [PMID: 33113445 DOI: 10.1016/j.theriogenology.2020.10.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 01/15/2023]
Abstract
The assessment of embryo quality aims to enhance subsequent pregnancy and live birth outcomes. Metabolic analysis of embryos has immense potential in this regard. As a step towards this goal, here we assess the metabolism of bovine embryos using label-free optical imaging. We compared embryos defined as either on-time or fast-developing, as fast dividing embryos are more likely to develop to the blastocyst stage. Specifically, bovine embryos at 48 (Day 2) and 96 (Day 4) hours post fertilization were fixed and separated based on morphological assessment: on-time (Day 2: 2 cell; Day 4: 5-7 cell) or fast-developing (Day 2: 3-7 cell; Day 4: 8-16 cell). Embryos with different developmental rates on Day 2 and Day 4 were correlated with metabolic activity and DNA damage. Confocal microscopy was used to assess metabolic activity by quantification of cellular autofluorescence specific for the endogenous fluorophores NAD(P)H and FAD with a subsequent calculation of the optical redox ratio. Separately, hyperspectral microscopy was employed to assess a broader range of endogenous fluorophores. DNA damage was determined using γH2AX immunohistochemistry. Hyperspectral imaging showed significantly lower abundance of endogenous fluorophores in fast-developing compared to on-time embryos on Day 2, indicating a lower metabolic activity. On Day 4 of development there was no difference in the abundance of FAD between on-time and fast-developing embryos. There was, however, significantly higher levels of NAD(P)H in fast-developing embryos leading to a significantly lower optical redox ratio when compared to on-time embryos. Collectively, these results demonstrate that fast-developing embryos present a 'quiet' metabolic pattern on Day 2 and Day 4 of development, compared to on-time embryos. There was no difference in the level of DNA damage between on-time and fast-developing embryos on either day of development. To our knowledge, this is the first collective use of confocal and hyperspectral imaging in cleavage-stage bovine embryos in the absence of fluorescent tags.
Collapse
|
15
|
Glanzner WG, Gutierrez K, Rissi VB, de Macedo MP, Lopez R, Currin L, Dicks N, Baldassarre H, Agellon LB, Bordignon V. Histone Lysine Demethylases KDM5B and KDM5C Modulate Genome Activation and Stability in Porcine Embryos. Front Cell Dev Biol 2020; 8:151. [PMID: 32211412 PMCID: PMC7076052 DOI: 10.3389/fcell.2020.00151] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/24/2020] [Indexed: 12/16/2022] Open
Abstract
The lysine demethylases KDM5B and KDM5C are highly, but transiently, expressed in porcine embryos around the genome activation stage. Attenuation of KDM5B and KDM5C mRNA hampered embryo development to the blastocyst stage in fertilized, parthenogenetically activated and nuclear transfer embryos. While KDM5B attenuation increased H3K4me2-3 levels on D3 embryos and H3K4me1-2-3 on D5 embryos, KDM5C attenuation increased H3K9me1 on D3 embryos, and H3K9me1 and H3K4me1 on D5 embryos. The relative mRNA abundance of EIF1AX and EIF2A on D3 embryos, and the proportion of D4 embryos presenting a fluorescent signal for uridine incorporation were severely reduced in both KDM5B- and KDM5C-attenuated compared to control embryos, which indicate a delay in the initiation of the embryo transcriptional activity. Moreover, KDM5B and KDM5C attenuation affected DNA damage response and increased DNA double-strand breaks (DSBs), and decreased development of UV-irradiated embryos. Findings from this study revealed that both KDM5B and KDM5C are important regulators of early development in porcine embryos as their attenuation altered H3K4 and H3K9 methylation patterns, perturbed embryo genome activation, and decreased DNA damage repair capacity.
Collapse
Affiliation(s)
- Werner Giehl Glanzner
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Karina Gutierrez
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Vitor Braga Rissi
- Laboratory of Biotechnology and Animal Reproduction - BioRep, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | | | - Rosalba Lopez
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Luke Currin
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Naomi Dicks
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Hernan Baldassarre
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Luis B Agellon
- School of Human Nutrition, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| |
Collapse
|
16
|
Akagi S, Tamura S, Matsukawa K. Timing of the First Cleavage and In Vitro Developmental Potential of Bovine Somatic Cell Nuclear Transfer Embryos Activated by Different Protocols. Cell Reprogram 2019; 22:36-42. [PMID: 31895588 DOI: 10.1089/cell.2019.0074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The objective of this study was to examine the relationship between the timing of the first cleavage and in vitro development of somatic cell nuclear transfer (SCNT) embryos produced by different activation protocols. SCNT embryos were activated with calcium ionophore A23187 and further treated with 6-dimethylaminopurine (DMAP group), cycloheximide (CHX group), or anisomycin (ANI group). The proportion of SCNT embryos that cleaved within 18 hours after activation was significantly higher in the DMAP group (20%) than that in the CHX and ANI groups (3% and 2%, respectively). More than 70% of the cleaved embryos were observed within 24 hours in the DMAP and CHX groups, and within 26 hours in the ANI group. The blastocyst formation rate of SCNT embryos decreased gradually as the time from activation to the first cleavage increased in the DMAP group. The blastocyst formation rate of SCNT embryos cleaved at 22 hours (>20 to ≤22 hours) in the CHX group or within 26 hours in the ANI group was significantly higher than that of SCNT embryos cleaved more than 26 hours in each group. These results indicate that the activation protocol affects the timing of the first cleavage and subsequent in vitro development potential of bovine SCNT embryos and that late-cleaving embryos have a low developmental potential irrespective of the activation protocol.
Collapse
Affiliation(s)
- Satoshi Akagi
- Animal Breeding and Reproduction Research Division, Institute of Livestock and Grassland Science, NARO, Tsukuba, Japan
| | | | | |
Collapse
|
17
|
de Macedo MP, Glanzner WG, Rissi VB, Gutierrez K, Currin L, Baldassarre H, Bordignon V. A fast and reliable protocol for activation of porcine oocytes. Theriogenology 2018; 123:22-29. [PMID: 30273737 DOI: 10.1016/j.theriogenology.2018.09.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/10/2018] [Accepted: 09/23/2018] [Indexed: 12/29/2022]
Abstract
Oocyte activation is physiologically triggered by the sperm during fertilization, however, production of porcine embryos by somatic cell nuclear transfer (SCNT), intracytoplasmic sperm injection (ICSI) or parthenogenetic activation (PA) requires artificial oocyte activation. Although effective protocols for artificial oocyte activation have been developed, current protocols require long exposures to non-specific inhibitors, which do not mimic the physiological process and may have detrimental consequences for embryo development. This study attempted to mimic the physiological activation events induced by fertilization, through the manipulation of Ca2+ and Zn2+ levels, and protein kinase C (PKC) as well as cyclin dependent kinase 1 (CDK1) activities, with the aim of developing an improved protocol for activation of porcine oocytes. In the first experiment, matured oocytes were exposed to ionomycin (Ion) for 5 min, and then treated with a specific CDK1 inhibitor (RO-3306) and/or PKC activator (OAG) for different time intervals. The highest rate of pronuclear (PN) formation (58.8%) was obtained when oocytes were treated with PKCa + CDK1i for 4 h. Second, PN formation and embryo development were evaluated in oocytes exposed for different times to a Zn2+ chelator (TPEN) following Ion treatment. This revealed that 15 min was the minimal exposure time to TPEN required to maximise oocyte activation and embryo development. Next, we observed that treatment with PKCa + CDK1i for 4 h after TPEN for 15 min decreased embryo development compared to TPEN alone. Lastly, we compared the efficiency of the Ion (5 min) plus TPEN (15 min) protocol (IT-20) with a control protocol used in our laboratory (CT-245) for production of PA, SCNT and ICSI embryos. In PA embryos, IT-20 resulted in higher cleavage (72% vs 49.2%) and blastocyst from cleaved embryos (65.5% vs 46.2%) compared to CT-245. In ICSI embryos, higher PN rates were obtained with the IT-20 protocol compared with CT-245 and the non-activated (N-A) group. Moreover, the two protocols were equally efficient for activation of SCNT embryos. Based on these findings, we propose that IT-20 is a fast and effective protocol for activation of porcine oocytes.
Collapse
Affiliation(s)
- Mariana P de Macedo
- Department of Animal Science, McGill University, Sainte-Anne de Bellevue, Quebec, Canada
| | - Werner G Glanzner
- Department of Animal Science, McGill University, Sainte-Anne de Bellevue, Quebec, Canada
| | - Vitor B Rissi
- Laboratory of Biotechnology and Animal Reproduction - BioRep, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Karina Gutierrez
- Department of Animal Science, McGill University, Sainte-Anne de Bellevue, Quebec, Canada
| | - Luke Currin
- Department of Animal Science, McGill University, Sainte-Anne de Bellevue, Quebec, Canada
| | - Hernan Baldassarre
- Department of Animal Science, McGill University, Sainte-Anne de Bellevue, Quebec, Canada
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, Sainte-Anne de Bellevue, Quebec, Canada.
| |
Collapse
|
18
|
Yao T, Suzuki R, Furuta N, Suzuki Y, Kabe K, Tokoro M, Sugawara A, Yajima A, Nagasawa T, Matoba S, Yamagata K, Sugimura S. Live-cell imaging of nuclear-chromosomal dynamics in bovine in vitro fertilised embryos. Sci Rep 2018; 8:7460. [PMID: 29748644 PMCID: PMC5945782 DOI: 10.1038/s41598-018-25698-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 04/26/2018] [Indexed: 02/06/2023] Open
Abstract
Nuclear/chromosomal integrity is an important prerequisite for the assessment of embryo quality in artificial reproductive technology. However, lipid-rich dark cytoplasm in bovine embryos prevents its observation by visible light microscopy. We performed live-cell imaging using confocal laser microscopy that allowed long-term imaging of nuclear/chromosomal dynamics in bovine in vitro fertilised (IVF) embryos. We analysed the relationship between nuclear/chromosomal aberrations and in vitro embryonic development and morphological blastocyst quality. Three-dimensional live-cell imaging of 369 embryos injected with mRNA encoding histone H2B-mCherry and enhanced green fluorescent protein (EGFP)-α-tubulin was performed from single-cell to blastocyst stage for eight days; 17.9% reached the blastocyst stage. Abnormalities in the number of pronuclei (PN), chromosomal segregation, cytokinesis, and blastomere number at first cleavage were observed at frequencies of 48.0%, 30.6%, 8.1%, and 22.2%, respectively, and 13.0%, 6.2%, 3.3%, and 13.4%, respectively, for abnormal embryos developed into blastocysts. A multivariate analysis showed that abnormal chromosome segregation (ACS) and multiple PN correlated with delayed timing and abnormal blastomere number at first cleavage, respectively. In morphologically transferrable blastocysts, 30-40% of embryos underwent ACS and had abnormal PN. Live-cell imaging may be useful for analysing the association between nuclear/chromosomal dynamics and embryonic development in bovine embryos.
Collapse
Affiliation(s)
- Tatsuma Yao
- Faculty of Biology-Oriented Science and Technology (BOST), Kindai University, Wakayama, Japan
- Research and Development Center, Fuso Pharmaceutical Industries, Ltd., Osaka, Japan
| | - Rie Suzuki
- Faculty of Biology-Oriented Science and Technology (BOST), Kindai University, Wakayama, Japan
| | - Natsuki Furuta
- Faculty of Biology-Oriented Science and Technology (BOST), Kindai University, Wakayama, Japan
| | - Yuka Suzuki
- Faculty of Biology-Oriented Science and Technology (BOST), Kindai University, Wakayama, Japan
| | - Kyoko Kabe
- Faculty of Biology-Oriented Science and Technology (BOST), Kindai University, Wakayama, Japan
| | - Mikiko Tokoro
- Faculty of Biology-Oriented Science and Technology (BOST), Kindai University, Wakayama, Japan
- Asada Institute for Reproductive Medicine, Asada Ladies Clinic, Aichi, Japan
| | - Atsushi Sugawara
- Department of Biological Production, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Institute for Biogenesis Research, University of Hawaii Medical School, Honolulu, Hawaii, USA
| | - Akira Yajima
- Department of Biological Production, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Tomohiro Nagasawa
- Department of Biological Production, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Satoko Matoba
- Division of Animal Breeding and Reproduction Research, Institute of Livestock and Grassland Science, NARO (NILGS), Ibaraki, Japan
| | - Kazuo Yamagata
- Faculty of Biology-Oriented Science and Technology (BOST), Kindai University, Wakayama, Japan.
| | - Satoshi Sugimura
- Department of Biological Production, Tokyo University of Agriculture and Technology, Tokyo, Japan.
| |
Collapse
|
19
|
Gill K, Rosiak A, Gaczarzewicz D, Jakubik J, Kurzawa R, Kazienko A, Rymaszewska A, Laszczynska M, Grochans E, Piasecka M. The effect of human sperm chromatin maturity on ICSI outcomes. Hum Cell 2018; 31:220-231. [PMID: 29594950 DOI: 10.1007/s13577-018-0203-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/10/2018] [Indexed: 01/03/2023]
Abstract
Because sperm chromatin may play a key role in reproductive success, we verify the associations between sperm chromatin abnormalities, embryo development and the ability to achieve pregnancy. The evaluation of sperm chromatin maturity using aniline blue (AB), chromomycin A3 (CMA3) and toluidine blue (TB) staining were carried out in group of males from infertile couples that underwent ICSI. Low levels of sperm chromatin abnormalities (< 16%) were found in most subjects (> 50%). A higher percentage of TB-positive sperm cells were discovered in the men from couples who achieved ≤ 50% fertilized oocytes compared to men who achieved > 50%. No significant differences were discovered by the applied tests between the men from couples who achieved ≤ 50% and those who achieved > 50% high-quality embryos on the 3rd or 5th day after fertilization, nor between the men from couples who achieved pregnancy and those who failed. The sperm chromatin maturity did not correlate with the ICSI results. However, the ROC analysis revealed a significant predictive value of TB-positive spermatozoa only for fertilization. Therefore, the TB assay can be considered as a useful test for the prediction of fertilization. Our findings suggest that the level of sperm chromatin abnormalities of the examined men was not clinically significant. No found associations between sperm chromatin maturity and embryo development and the ability to achieve pregnancy. We could not exclude the effects of the repairing processes in the fertilized oocyte. The use of complementary tests that verify the status of the sperm chromatin seems justified.
Collapse
Affiliation(s)
- Kamil Gill
- Department of Histology and Developmental Biology, Pomeranian Medical University, Zolnierska 48, 71-210, Szczecin, Poland
| | - Aleksandra Rosiak
- Department of Histology and Developmental Biology, Pomeranian Medical University, Zolnierska 48, 71-210, Szczecin, Poland.,VitroLive Fertility Clinic, 70-001, Szczecin, Poland
| | - Dariusz Gaczarzewicz
- Department of Animal Reproduction, Biotechnology and Environmental Hygiene, West Pomeranian University of Technology, 71-270, Szczecin, Poland
| | - Joanna Jakubik
- Department of Histology and Developmental Biology, Pomeranian Medical University, Zolnierska 48, 71-210, Szczecin, Poland
| | - Rafal Kurzawa
- Department of Gynecology and Procreative Health, Pomeranian Medical University, 71-210, Szczecin, Poland.,VitroLive Fertility Clinic, 70-001, Szczecin, Poland
| | - Anna Kazienko
- Department of Histology and Developmental Biology, Pomeranian Medical University, Zolnierska 48, 71-210, Szczecin, Poland
| | - Anna Rymaszewska
- Department of Genetics, Faculty of Biology, University of Szczecin, 71-412, Szczecin, Poland
| | - Maria Laszczynska
- Department of Histology and Developmental Biology, Pomeranian Medical University, Zolnierska 48, 71-210, Szczecin, Poland
| | - Elzbieta Grochans
- Department of Nursing, Pomeranian Medical University, 71-210, Szczecin, Poland
| | - Malgorzata Piasecka
- Department of Histology and Developmental Biology, Pomeranian Medical University, Zolnierska 48, 71-210, Szczecin, Poland.
| |
Collapse
|
20
|
Bohrer RC, Dicks N, Gutierrez K, Duggavathi R, Bordignon V. Double‐strand DNA breaks are mainly repaired by the homologous recombination pathway in early developing swine embryos. FASEB J 2018; 32:1818-1829. [DOI: 10.1096/fj.201700800r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Naomi Dicks
- Department of Animal ScienceMcGill UniversityMontrealQuebecCanada
| | - Karina Gutierrez
- Department of Animal ScienceMcGill UniversityMontrealQuebecCanada
| | - Raj Duggavathi
- Department of Animal ScienceMcGill UniversityMontrealQuebecCanada
| | - Vilceu Bordignon
- Department of Animal ScienceMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
21
|
Dicks N, Bohrer RC, Gutierrez K, Michalak M, Agellon LB, Bordignon V. Relief of endoplasmic reticulum stress enhances DNA damage repair and improves development of pre-implantation embryos. PLoS One 2017; 12:e0187717. [PMID: 29099865 PMCID: PMC5669469 DOI: 10.1371/journal.pone.0187717] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/24/2017] [Indexed: 11/18/2022] Open
Abstract
Early-cleaving embryos are known to have better capacity to reach the blastocyst stage and produce better quality embryos compared to late-cleaving embryos. To investigate the significance of endoplasmic reticulum (ER) stress on early embryo cleavage kinetics and development, porcine embryos produced in vitro were separated into early- and late-cleaving groups and then cultured in the absence or presence of the ER stress inhibitor tauroursodeoxycholic acid (TUDCA). Developing embryos were collected at days 3 to 7 of culture for assessment of ER stress status, incidence of DNA double-strand breaks (DSBs), development and total cell number. In the absence of TUDCA treatment, late-cleaving embryos exhibited ER stress, higher incidence of DNA DSBs, as well as reductions in development to the blastocyst stage and total embryo cell numbers. Treatment of late-cleaving embryos with TUDCA mitigated these effects and markedly improved embryo quality and development. These results demonstrate the importance of stress coping responses in early developing embryos, and that reduction of ER stress is a potential means to improve embryo quality and developmental competence.
Collapse
Affiliation(s)
- Naomi Dicks
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Rodrigo C. Bohrer
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Karina Gutierrez
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Luis B. Agellon
- School of Human Nutrition, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
- * E-mail: (VB); (LBA)
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
- * E-mail: (VB); (LBA)
| |
Collapse
|
22
|
Lin T, Lee JE, Oqani RK, Kim SY, Cho ES, Jeong YD, Baek JJ, Jin DI. Delayed blastocyst formation or an extra day culture increases apoptosis in pig blastocysts. Anim Reprod Sci 2017; 185:128-139. [PMID: 28844338 DOI: 10.1016/j.anireprosci.2017.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 07/26/2017] [Accepted: 08/11/2017] [Indexed: 12/18/2022]
Abstract
In the present study, the timing was examined of blastocyst collection/formation or of how the duration of post-blastulation culture affected the quality and developmental competence of in vitro-produced pig parthenogenetic embryos. The earliest apoptotic signals were observed at the morula stage while the earliest cytoplasmic fragmentation was observed before the 4- to 8-cell stage of embryo development. Nuclear condensation was detected in morulae and blastocysts, but not all condensed nuclei were positive for the apoptotic signal (TUNEL staining). The mean blastocyst diameter increased with delayed blastocyst collection or extended post-blastulation culture, but decreased with delayed blastocyst formation. Delayed blastocyst collection/formation or an additional day of post-blastulation culture increased the frequencies of apoptosis, condensed nuclei, and low quality blastocysts (those showing a nuclear destruction that negated counting of the nuclei); increased the expression of the pro-apoptotic BAX gene; and reduced the ratio of ICM (inner cell mass) cells to TE (trophectoderm) cells. In addition, delayed blastocyst formation decreased POU5F1 gene expression. These results suggest that a delay in blastocyst collection/formation or an additional day of culture could increase the incidence of apoptosis, decrease the ICM:TE cell ratio, and influence the gene expression and diameter of blastocysts derived from in vitro-produced pig embryos. These findings provide a useful reference for improving the quality of in vitro-produced embryos.
Collapse
Affiliation(s)
- Tao Lin
- Department of Animal Science & Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jae Eun Lee
- Department of Animal Science & Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Reza K Oqani
- Department of Animal Science & Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon 34134, Republic of Korea
| | - So Yeon Kim
- Department of Animal Science & Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Eun Seok Cho
- Department of Animal Resource Development, National Institute of Animal Science, Cheonan, 31001, Republic of Korea
| | - Yong Dae Jeong
- Department of Animal Resource Development, National Institute of Animal Science, Cheonan, 31001, Republic of Korea
| | - Jun Jong Baek
- Department of Animal Improvement, Chungnam Livestock Institute, Cheongyang-gun, Chungman, 33350, Republic of Korea
| | - Dong Il Jin
- Department of Animal Science & Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
23
|
Glanzner WG, Wachter A, Coutinho ARS, Albornoz MS, Duggavathi R, GonÇAlves PBD, Bordignon V. Altered expression of BRG1 and histone demethylases, and aberrant H3K4 methylation in less developmentally competent embryos at the time of embryonic genome activation. Mol Reprod Dev 2016; 84:19-29. [PMID: 27879032 DOI: 10.1002/mrd.22762] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/18/2016] [Indexed: 12/16/2022]
Abstract
Epigenetics is a fundamental regulator underlying many biological functions, such as development and cell differentiation. Epigenetic modifications affect key chromatin regulation, including transcription and DNA repair, which are critical for normal embryo development. In this study, we profiled the expression of epigenetic modifiers and patterns of epigenetic changes in porcine embryos around the period of embryonic genome activation (EGA). We observed that Brahma-related gene 1 (BRG1) and Lysine demethylase 1A (KDM1A), which can alter the methylation status of lysine 4 in histone 3 (H3K4), localize to the nucleus at Day 3-4 of development. We then compared the abundance of epigenetic modifiers between early- and late-cleaving embryos, which were classified based on the time to the first cell cleavage, to investigate if their nuclear localization contributes to developmental competence. The mRNA abundance of BRG1, KDM1A, as well as other lysine demethylases (KDM1B, KDM5A, KDM5B, and KDM5C), were significantly higher in late- compared to early-cleaving embryos near the EGA period, although these difference disappeared at the blastocyst stage. The abundance of H3K4 mono- (H3K4me) and di-methylation (H3K4me2) during the EGA period was reduced in late-cleaving and less developmentally competent embryos. By contrast, BRG1, KDM1A, and H3K4me2 abundance was greater in embryos with more than eight cells at Day 3-4 of development compared to those with fewer than four cells. These findings suggest that altered epigenetic modifications of H3K4 around the EGA period may affect the developmental capacity of porcine embryos to reach the blastocyst stage. Mol. Reprod. Dev. 84: 19-29, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Werner G Glanzner
- Laboratory of Biotechnology and Animal Reproduction - BioRep, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | - Audrey Wachter
- Department of Animal Science, McGill University, Sainte Anne de Bellevue, Quebec, Canada
| | - Ana Rita S Coutinho
- Department of Animal Science, McGill University, Sainte Anne de Bellevue, Quebec, Canada
| | - Marcelo S Albornoz
- Department of Animal Science, McGill University, Sainte Anne de Bellevue, Quebec, Canada
| | - Raj Duggavathi
- Department of Animal Science, McGill University, Sainte Anne de Bellevue, Quebec, Canada
| | - Paulo B D GonÇAlves
- Laboratory of Biotechnology and Animal Reproduction - BioRep, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, Sainte Anne de Bellevue, Quebec, Canada
| |
Collapse
|
24
|
Unraveling the association between genetic integrity and metabolic activity in pre-implantation stage embryos. Sci Rep 2016; 6:37291. [PMID: 27853269 PMCID: PMC5112559 DOI: 10.1038/srep37291] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 10/28/2016] [Indexed: 02/07/2023] Open
Abstract
Early development of certain mammalian embryos is protected by complex checkpoint systems to maintain the genomic integrity. Several metabolic pathways are modulated in response to genetic insults in mammalian cells. The present study investigated the relationship between the genetic integrity, embryo metabolites and developmental competence in preimplantation stage mouse embryos with the aim to identify early biomarkers which can predict embryonic genetic integrity using spent medium profiling by NMR spectroscopy. Embryos carrying induced DNA lesions (IDL) developed normally for the first 2.5 days, but began to exhibit a developmental delay at embryonic day 3.5(E3.5) though they were morphologically indistinguishable from control embryos. Analysis of metabolites in the spent medium on E3.5 revealed a significant association between pyruvate, lactate, glucose, proline, lysine, alanine, valine, isoleucine and thymine and the extent of genetic instability observed in the embryos on E4.5. Further analysis revealed an association of apoptosis and micronuclei frequency with P53 and Bax transcripts in IDL embryos on the E4.5 owing to delayed induction of chromosome instability. We conclude that estimation of metabolites on E3.5 in spent medium may serve as a biomarker to predict the genetic integrity in pre-implantation stage embryos which opens up new avenues to improve outcomes in clinical IVF programs.
Collapse
|
25
|
The role of Rad51 in safeguarding mitochondrial activity during the meiotic cell cycle in mammalian oocytes. Sci Rep 2016; 6:34110. [PMID: 27677401 PMCID: PMC5039699 DOI: 10.1038/srep34110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/07/2016] [Indexed: 12/03/2022] Open
Abstract
Rad51 is a conserved eukaryotic protein that mediates the homologous recombination repair of DNA double-strand breaks that occur during mitosis and meiosis. In addition, Rad51 promotes mitochondrial DNA synthesis when replication stress is increased. Rad51 also regulates cell cycle progression by preserving the G2/M transition in embryonic stem cells. In this study, we report a novel function of Rad51 in regulating mitochondrial activity during in vitro maturation of mouse oocytes. Suppression of Rad51 by injection of Rad51 dsRNA into germinal vesicle-stage oocytes resulted in arrest of meiosis in metaphase I. Rad51-depleted oocytes showed chromosome misalignment and failures in spindle aggregation, affecting the completion of cytokinesis. We found that Rad51 depletion was accompanied by decreased ATP production and mitochondrial membrane potential and increased DNA degradation. We further demonstrated that the mitochondrial defect activated autophagy in Rad51-depleted oocytes. Taken together, we concluded that Rad51 functions to safeguard mitochondrial integrity during the meiotic maturation of oocytes.
Collapse
|