1
|
Cuevas-Gómez I, Molina L, Sánchez-Madueño JF, Sánchez-Madueño I, Lonergan P, Rizos D, Pérez-Marín CC, Sánchez JM. Circulating progesterone concentrations and pregnancy outcomes in high-producing lactating dairy cows treated with human chorionic gonadotropin on day 2 of the estrus cycle. J Dairy Sci 2025:S0022-0302(25)00155-9. [PMID: 40139361 DOI: 10.3168/jds.2024-26000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/05/2025] [Indexed: 03/29/2025]
Abstract
Suboptimal concentrations of circulating progesterone (P4) in the early postovulatory period have been associated with low fertility observed in high-producing lactating dairy cows. The administration of human chorionic gonadotropin (hCG) increases P4 in cattle by stimulating its endogenous production by the corpus luteum (CL) and creating an accessory CL if administered at an appropriate stage of the cycle. The aim of this study was to evaluate the effect of a single administration of hCG on d 2 of the estrus cycle on circulating P4 concentrations and pregnancy per artificial insemination (P/AI) in high-producing lactating dairy cows in confinement systems. To that end, 796 lactating Holstein-Friesian dairy cows from 15 farms were enrolled on this study. The mean ± SD parity and DIM at enrollment were 2.3 ± 1.4 and 86.7 ± 17.8, respectively. After a voluntary waiting period (50-60 d after calving), cows underwent fixed-time AI (FTAI) following a routine protocol for synchronization of ovulation (Double Ovsynch, G6G, or 7-d Ovsynch + P4). Cows on each farm were blocked on parity, DIM, BCS, and synchronization protocol and were randomly assigned to receive either 3,000 IU of hCG (n = 420) or an equivalent volume of saline solution (control; n = 376) on d 2 after estimated estrus (~16 h before FTAI = d 0). Blood samples were collected from a subset of cows from both treatments (control n = 65 and hCG n = 65) on d 0, 7, and 14 of the estrus cycle to measure serum P4 concentrations. Pregnancy per AI on d 30 after FTAI was affected by hCG treatment and parity. Moreover, there was a tendency for an interaction between treatment and parity. Overall, treatment with hCG on d 2 of the estrus cycle increased P/AI (45.2% vs. control 38.8%). In ≤2nd lactation cows, P/AI was similar between hCG-treated and control cows (47.1% vs. control 45.9%). Conversely, ≥3rd lactation cows treated with hCG had greater P/AI (42.1% vs. control 27.3%). The overall incidence of pregnancy loss between d 30 and d 70 was 14.7% and was not affected by treatment. Cows treated with hCG had higher P4 concentrations on d 7 and 14 compared with control cows (3.4 ± 0.66 vs. 3.0 ± 0.58 ng/mL and 6.6 ± 1.28 vs. 5.3 ± 1.02 ng/mL, respectively). Moreover, an interaction between treatment and parity revealed that P4 concentrations were higher in hCG-treated ≥3rd lactation cows compared with control cows in the same parity group on d 7 and 14, while no differences were observed in ≤2nd lactation cows. In conclusion, administration of hCG on d 2 of the estrus cycle increased fertility in ≥3rd lactation high-producing dairy cows in association with an early increase of circulating P4.
Collapse
Affiliation(s)
- I Cuevas-Gómez
- Departament of Animal Reproduction, National Institute for Agricultural and Food Research and Technology (INIA-CSIC), Madrid 28040, Spain
| | - L Molina
- Rusama Ganadería S.L, Pozoblanco 14400, Spain
| | | | | | - P Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - D Rizos
- Departament of Animal Reproduction, National Institute for Agricultural and Food Research and Technology (INIA-CSIC), Madrid 28040, Spain
| | - C C Pérez-Marín
- Department of Animal Medicine and Surgery, University of Cordoba, Cordoba 14014, Spain
| | - J M Sánchez
- Departament of Animal Reproduction, National Institute for Agricultural and Food Research and Technology (INIA-CSIC), Madrid 28040, Spain; Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Hinojosa del Duque Center 14270, Spain.
| |
Collapse
|
2
|
Zhang B, Han Y, Cheng M, Yan L, Gao K, Zhou D, Wang A, Lin P, Jin Y. Metabolomic effects of intrauterine meloxicam perfusion on histotroph in dairy heifers during diestrus. Front Vet Sci 2025; 12:1528530. [PMID: 40171410 PMCID: PMC11959509 DOI: 10.3389/fvets.2025.1528530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/26/2025] [Indexed: 04/03/2025] Open
Abstract
In ruminants, conceptus elongation is a crucial developmental process that depends on uterine lumen fluid (ULF) and coincides with a period of high pregnancy loss. Prostaglandins (PGs) play indispensable roles in conceptus elongation and implantation. However, the effects of uterus-derived PGs on the uterine environment remain unclear. To explore the metabolic pathways and metabolites induced by endometrium-derived PGs that may affect conceptus elongation and implantation in dairy cows, we investigated the biochemical composition of ULF following intrauterine perfusion of meloxicam from days 12 to 14 of the estrous cycle. Intrauterine administration of meloxicam significantly downregulated the prostaglandin-related metabolites in the ULF. A total of 385 distinct metabolites, primarily clustered within lipids and lipid-like molecules, organic acids and derivatives, organoheterocyclic compounds, and benzenoids, were identified. The metabolite network analysis identified 10 core metabolites as follows: S-adenosylhomocysteine, guanosine, inosine, thymidine, cholic acid, xanthine, niacinamide, prostaglandin I2, 5-hydroxyindoleacetic acid, and indoleacetaldehyde. The pathway enrichment analysis revealed three significantly altered metabolic pathways: arachidonic acid metabolism, tryptophan (Trp) metabolism, and linoleic acid metabolism. A total of five metabolites-guanosine, inosine, thymidine, butyryl-l-carnitine, and l-carnitine-were associated with attachment and pregnancy loss and could serve as predictors of fertility. This global metabolic study of ULF enhances our understanding of histotroph alternations induced by uterus-derived PGs during diestrus in dairy cows, with implications for improving dairy cow fertility.
Collapse
Affiliation(s)
- Beibei Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuan Han
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Ming Cheng
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Longgang Yan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Kangkang Gao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Dong Zhou
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Aihua Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengfei Lin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yaping Jin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
3
|
Zhang B, Han Y, Wang S, Cheng M, Yan L, Zhou D, Wang A, Lin P, Jin Y. The Impact of Uterus-Derived Prostaglandins on the Composition of Uterine Fluid During the Period of Conceptus Elongation in Dairy Heifers. Int J Mol Sci 2025; 26:1792. [PMID: 40076420 PMCID: PMC11899274 DOI: 10.3390/ijms26051792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 03/14/2025] Open
Abstract
In ruminants, the survival and development of the conceptus are heavily dependent on the composition of the uterine lumen fluid (ULF), which is influenced by prostaglandins (PGs). However, the variations in underlying PG-mediated ULF remain unclear. Herein, cycling heifers received an intrauterine infusion of vehicle as a control (CON) or meloxicam (MEL) on days 12-14 of the estrous cycle. Then, the ULF was collected on day 15 and alternations in its protein and lipid levels were analyzed. The suppression of prostaglandins induced by meloxicam resulted in 1343 differentially abundant proteins (DAPs) and 59 differentially altered lipids. These DAPs were primarily associated with vesicle-mediated transport, immune response, and actin filament organization, and were mainly concentrated on the ribosome, complement and coagulation cascades, cholesterol metabolism, chemokine signal pathway, regulation of actin cytoskeleton and starch and sucrose metabolism. These differential lipids reflected a physiological metabolic shift as the abundance of cell membrane-related lipids was modulated, including an accumulation of triacylglycerols and reductions in lysophosphatidylcholines, hexosyl ceramides, ceramides, and sphingomyelins species. Integration analysis of the DAPs and differentially altered lipid metabolites revealed that glycerophospholipid metabolism and choline metabolism were the core pathways. These findings highlight the potential roles of prostaglandins in ULF, providing new insights into the contributions of prostaglandins in the development of the conceptus.
Collapse
Affiliation(s)
- Beibei Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (B.Z.); (Y.H.); (S.W.); (M.C.); (L.Y.); (D.Z.); (A.W.)
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Yuan Han
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (B.Z.); (Y.H.); (S.W.); (M.C.); (L.Y.); (D.Z.); (A.W.)
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Shengxiang Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (B.Z.); (Y.H.); (S.W.); (M.C.); (L.Y.); (D.Z.); (A.W.)
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Ming Cheng
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (B.Z.); (Y.H.); (S.W.); (M.C.); (L.Y.); (D.Z.); (A.W.)
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Longgang Yan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (B.Z.); (Y.H.); (S.W.); (M.C.); (L.Y.); (D.Z.); (A.W.)
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Dong Zhou
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (B.Z.); (Y.H.); (S.W.); (M.C.); (L.Y.); (D.Z.); (A.W.)
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Aihua Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (B.Z.); (Y.H.); (S.W.); (M.C.); (L.Y.); (D.Z.); (A.W.)
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Pengfei Lin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (B.Z.); (Y.H.); (S.W.); (M.C.); (L.Y.); (D.Z.); (A.W.)
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Yaping Jin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (B.Z.); (Y.H.); (S.W.); (M.C.); (L.Y.); (D.Z.); (A.W.)
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
4
|
Silva CP, Fernandes CCL, Alves JPM, Cavalcanti CM, Oliveira FBB, Conde AJH, Pinheiro DCSN, Teixeira DIA, Rego AC, Rondina D. Efficacy of Fat Supplements with Different Unsaturated/Saturated FA Ratios Undergoing First Postpartum Ovulation in Lactating Anovulatory Goats. Vet Sci 2025; 12:60. [PMID: 39852935 PMCID: PMC11768978 DOI: 10.3390/vetsci12010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/17/2024] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
We investigated whether microalgae or linseed supply during the early postpartum period affects ovarian restimulation and supports the first postpartum ovulation in lactating anovulatory goats. Thirty-eight An-glo-Nubian-crossbred adult goats were allocated into three groups, one with a control diet (n = 12), fed a total mixed ration (TMR) comprising chopped elephant grass and concentrate; an algal diet (n = 13), fed TMR + green microalgae (1% dry matter); and a linseed diet (n = 13), TMR + linseed (12% dry matter). Supplements were furnished from the second to fifth week (time of weaning). Goats were estrus synchronized on day 40 by insertion of an intravaginal CIDR device for 5 days, after which 0.075 mg PGF2α was applied to induce ovulation, and estrus was monitored for 72 h. From the 5th-15th day of ovulation induction, the corpus luteum (CL) area and progesterone rate were monitored. The algal and linseed groups showed lower feed intake (p < 0.001) and higher (p < 0.001) triglyceride levels/follicle numbers, respectively. After estrus induction, no differences were observed in estrus response; however, the linseed group showed more and larger growing follicles (p = 0.016 and p < 0.01), a higher ovulation rate (p < 0.05), a larger CL area (p < 0.05), and higher progesterone levels (p < 0.001). Linseed after delivery stimulates follicular growth before and after ovulation induction, favoring better CL quality during the first ovulation.
Collapse
Affiliation(s)
- Caroline P. Silva
- School of Veterinary Medicine, Ceará State University (UECE), Fortaleza 60714-903, CE, Brazil; (C.P.S.); (J.P.M.A.); (C.M.C.); (A.J.H.C.); (D.C.S.N.P.); (D.I.A.T.)
| | - César C. L. Fernandes
- Health Sciences Center, University of Fortaleza (UNIFOR), Fortaleza 60811-905, CE, Brazil;
| | - Juliana P. M. Alves
- School of Veterinary Medicine, Ceará State University (UECE), Fortaleza 60714-903, CE, Brazil; (C.P.S.); (J.P.M.A.); (C.M.C.); (A.J.H.C.); (D.C.S.N.P.); (D.I.A.T.)
| | - Camila M. Cavalcanti
- School of Veterinary Medicine, Ceará State University (UECE), Fortaleza 60714-903, CE, Brazil; (C.P.S.); (J.P.M.A.); (C.M.C.); (A.J.H.C.); (D.C.S.N.P.); (D.I.A.T.)
| | - Felipe B. B. Oliveira
- Institute of Animal Health and Production, Amazônia Federal Rural University (UFRA), Belém 66077-830, PA, Brazil;
| | - Alfredo J. H. Conde
- School of Veterinary Medicine, Ceará State University (UECE), Fortaleza 60714-903, CE, Brazil; (C.P.S.); (J.P.M.A.); (C.M.C.); (A.J.H.C.); (D.C.S.N.P.); (D.I.A.T.)
| | - Diana Celia S. N. Pinheiro
- School of Veterinary Medicine, Ceará State University (UECE), Fortaleza 60714-903, CE, Brazil; (C.P.S.); (J.P.M.A.); (C.M.C.); (A.J.H.C.); (D.C.S.N.P.); (D.I.A.T.)
| | - Darcio I. A. Teixeira
- School of Veterinary Medicine, Ceará State University (UECE), Fortaleza 60714-903, CE, Brazil; (C.P.S.); (J.P.M.A.); (C.M.C.); (A.J.H.C.); (D.C.S.N.P.); (D.I.A.T.)
| | - Anibal C. Rego
- Animal Science Department, Federal University of Ceará, Fortaleza 60455-760, CE, Brazil;
| | - Davide Rondina
- School of Veterinary Medicine, Ceará State University (UECE), Fortaleza 60714-903, CE, Brazil; (C.P.S.); (J.P.M.A.); (C.M.C.); (A.J.H.C.); (D.C.S.N.P.); (D.I.A.T.)
| |
Collapse
|
5
|
Elsafadi S, Hankele AK, Giesbertz P, Ulbrich SE. Roe deer uterine fluid metabolome reveals elevated glycolysis, fatty acid breakdown, and spermidine synthesis upon reactivation from diapause†. Biol Reprod 2025; 112:70-85. [PMID: 39673258 PMCID: PMC11736431 DOI: 10.1093/biolre/ioae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/25/2024] [Accepted: 11/28/2024] [Indexed: 12/16/2024] Open
Abstract
The blastocyst of the European roe deer (Capreolus capreolus) undergoes a period of decelerated growth and limited metabolism. During this period known as embryonic diapause, it floats freely in the uterus encircled by the histotroph. Prior to implantation, reactivation is marked by rapid embryonic growth and conceptus elongation. We hypothesized that the uterine fluid, which is known to undergo changes in its composition to support early embryonic development, contributes to controlling embryonic growth during diapause and elongation. We therefore characterized the pre-implantation uterine fluid metabolome during diapause and at elongation by mass spectrometry and particularly assessed nonpolar lipids, polar metabolites, acylcarnitines, and polyamines. Our results show that triglycerides and diglycerides levels decreased at elongation, likely serving as a source for membrane synthesis rather than for energy production. A functional analysis identified glycolysis as a key pathway during elongation, which may compensate for the energy requirements during this phase. We also observed an increase of sphingomyelin; prostaglandin precursors; and the amino acids asparagine, glutamine, and methionine upon elongation. The sphingolipid and glycerophospholipid metabolism pathways were implicated during elongation. Particularly, spermidine, and to some extent spermine but not putrescine-levels significantly increased in the uterine fluid during elongation, indicating their significance for reactivation and/or proliferation at embryo elongation. We conclude that the roe deer uterine fluid sustained dynamic compositional changes necessary to support the energy- and resource-intensive conceptus elongation. However, it remains to be determined whether these changes are the cause or a consequence of embryo elongation. Studying the metabolic changes and molecular interactions in the roe deer during diapause and elongation not only reveals insights into aspects of its reproductive strategy, but also deepens our knowledge of embryo metabolic demands and developmental velocities across species.
Collapse
Affiliation(s)
- Sara Elsafadi
- ETH Zürich, Animal Physiology, Institute of Agricultural Sciences, Universtitätstr. 2, CH-8092 Zurich, Switzerland
| | - Anna-Katharina Hankele
- ETH Zürich, Animal Physiology, Institute of Agricultural Sciences, Universtitätstr. 2, CH-8092 Zurich, Switzerland
| | - Pieter Giesbertz
- Else Kröner-Fresenius-Center of Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Susanne E Ulbrich
- ETH Zürich, Animal Physiology, Institute of Agricultural Sciences, Universtitätstr. 2, CH-8092 Zurich, Switzerland
| |
Collapse
|
6
|
Crowe AD, Sánchez JM, Moore SG, McDonald M, McCabe MS, Randi F, Lonergan P, Butler ST. Incidence and timing of pregnancy loss following timed artificial insemination or timed embryo transfer with a fresh or frozen in vitro-produced embryo. J Dairy Sci 2025; 108:1022-1038. [PMID: 39343229 DOI: 10.3168/jds.2024-25139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024]
Abstract
The aim of this study was to characterize the incidence and timing of pregnancy loss from service event (timed artificial insemination or timed embryo transfer) to parturition. Lactating Holstein-Friesian cows were randomly assigned to receive either AI (n = 243) or embryo transfer (ET, n = 863) with a fresh or frozen in vitro-produced blastocyst derived from oocytes collected from the ovaries of elite dairy donors (n = 14 Holstein-Friesian and n = 8 Jersey) and elite beef donors (n = 21 Angus) using transvaginal ovum pick-up. In addition, oocytes were collected from the ovaries of beef heifers of known pedigree following slaughter at a commercial abattoir (n = 119). Blood samples were collected on d 7 from all cows to determine progesterone concentration and from subsets of cows on d 18 (n = 524) and d 25 (n = 378) to determine mRNA abundance of interferon-stimulated gene-15 and pregnancy-specific protein B concentration, respectively, to provide an early pregnancy diagnosis. Transrectal ultrasonography was conducted to determine pregnancy status on d 32, d 62 and 125 after synchronized ovulation. Parturition date was recorded for all cows that reached a term delivery. The predicted probability of pregnancy (%) varied at each time point (d7, 18, 25, 32, 62, 125, parturition) depending on treatment (AI: 77.0, 60.2, 52.3, 48.8, 47.0, 44.6, 44.0; fresh ET: 100.0, 69.5, 60.3, 56.1, 48.4, 46.8, 45.5; frozen ET: 100.0, 61.7, 52.2, 41.6, 32.9, 31.8, 30.2). Irrespective of treatment, the largest proportion of pregnancy loss occurred in the period from service event (AI on d 0 or ET on d 7) to d 18, with minimal loss occurring between d 62 and parturition (AI: 1.8%, fresh ET: 1.9%, frozen ET: 3.5%). Treatment differences in the predicted probability of pregnancy per service event were detected between fresh ET versus frozen ET on d 32 and both AI and fresh ET versus frozen ET on d 62, 125, and at parturition. There was greater probability of pregnancy loss between d 32 and 62 following ET (fresh: 11.3%, Frozen: 18.0%) than AI (4.0%). The percentage of cows that calved following transfer of a fresh embryo (45.5%) was similar to AI (44.0%), but less when a frozen embryo was transferred (30.2%). In conclusion, AI and fresh ET led to a greater probability of a cow becoming pregnant and maintaining the pregnancy to term than frozen ET. Cows that were still pregnant on d 62 had a very strong likelihood of maintaining the pregnancy to full-term parturition, irrespective of treatment. Further work is required to improve the likelihood of pregnancy establishment and reduce embryonic and fetal mortality following transfer of a cryopreserved in vitro-produced embryo.
Collapse
Affiliation(s)
- A D Crowe
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland; School of Agriculture and Food Science, University College Dublin, Dublin D04 V1W8, Ireland
| | - J M Sánchez
- School of Agriculture and Food Science, University College Dublin, Dublin D04 V1W8, Ireland; Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28040 Madrid, Spain
| | - S G Moore
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland
| | - M McDonald
- School of Agriculture and Food Science, University College Dublin, Dublin D04 V1W8, Ireland
| | - M S McCabe
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Grange, Co. Meath C15 PW93, Ireland
| | - F Randi
- CEVA Santé Animale, Libourne, Bordeaux 33500, France
| | - P Lonergan
- School of Agriculture and Food Science, University College Dublin, Dublin D04 V1W8, Ireland.
| | - S T Butler
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland.
| |
Collapse
|
7
|
Fan X, Wei J, Guo Y, Ma J, Qi M, Huang H, Zheng P, Jiang W, Yao Y. LPS Disrupts Endometrial Receptivity by Inhibiting STAT1 Phosphorylation in Sheep. Int J Mol Sci 2024; 25:13673. [PMID: 39769435 PMCID: PMC11678167 DOI: 10.3390/ijms252413673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/05/2024] [Accepted: 12/19/2024] [Indexed: 01/30/2025] Open
Abstract
Uterine infections reduce ruminant reproductive efficiency. Reproductive dysfunction caused by infusion of Gram-negative bacteria is characterized by the failure of embryo implantation and reduced conception rates. Lipopolysaccharide (LPS), a major component of the outer membrane of Gram-negative bacteria, is highly abortogenic. In this study, the effects of LPS infusion on the endometrial receptivity of sheep were studied during three critical periods of embryo implantation. The results showed that LPS infusion on d12, d16, and d20 of pregnancy in vivo interfered with the expression of prostaglandins (PGs) and affected the expression of adhesion-related factors (ITGB1/3/5, SPP1), key implantation genes (HOXA10, HOXA11 and LIF), and progestational elongation genes (ISG15, RSAD2 and CXCL10) during embryo implantation. In addition, after LPS infusion on d12, d16, and d20, the phosphorylation level of STAT1 significantly decreased and the protein expression level of IRF9 significantly increased on d12, suggesting that LPS infusion in sheep impairs endometrial receptivity through the JAK2/STAT1 pathway. Sheep endometrial epithelial cells were treated with 17 β-estrogen, progesterone, and/or interferon-tau in vitro to mimic the receptivity of the endometrium during early pregnancy for validation. LPS and the p-STAT1 inhibitor fludarabine were both added to the model, which resulted in reduced p-STAT1 protein expression, significant inhibition of PGE2/PGF2α, and significant suppression of the expression of key embryo implantation genes. Collectively, these results indicate that LPS infusion in sheep on d12, d16, and d20 impairs endometrial receptivity through the JAK2/STAT1 pathway, which is responsible for LPS-associated pregnancy failure.
Collapse
Affiliation(s)
- Xing Fan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150038, China; (X.F.); (J.W.); (Y.G.); (J.M.); (H.H.); (P.Z.)
| | - Jinzi Wei
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150038, China; (X.F.); (J.W.); (Y.G.); (J.M.); (H.H.); (P.Z.)
| | - Yu Guo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150038, China; (X.F.); (J.W.); (Y.G.); (J.M.); (H.H.); (P.Z.)
| | - Juan Ma
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150038, China; (X.F.); (J.W.); (Y.G.); (J.M.); (H.H.); (P.Z.)
| | - Meiyu Qi
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
| | - He Huang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150038, China; (X.F.); (J.W.); (Y.G.); (J.M.); (H.H.); (P.Z.)
| | - Peng Zheng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150038, China; (X.F.); (J.W.); (Y.G.); (J.M.); (H.H.); (P.Z.)
| | - Wenjie Jiang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150038, China; (X.F.); (J.W.); (Y.G.); (J.M.); (H.H.); (P.Z.)
| | - Yuchang Yao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150038, China; (X.F.); (J.W.); (Y.G.); (J.M.); (H.H.); (P.Z.)
| |
Collapse
|
8
|
Lawson EF, Pickford R, Aitken RJ, Gibb Z, Grupen CG, Swegen A. Mapping the lipidomic secretome of the early equine embryo. Front Vet Sci 2024; 11:1439550. [PMID: 39430383 PMCID: PMC11486720 DOI: 10.3389/fvets.2024.1439550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/10/2024] [Indexed: 10/22/2024] Open
Abstract
The lipidomic secretions of embryos provide a unique opportunity to examine the cellular processes of the early conceptus. In this study we profiled lipids released by the early equine conceptus, using high-resolution mass spectrometry to detect individual lipid species. This study examined the lipidomic profile in embryo-conditioned media from in vivo-produced, 8-9 day-old equine embryos (n = 3) cultured in vitro for 36 h, analyzed over 3 timepoints. A total of 1,077 lipid IDs were recorded across all samples, containing predominantly glycerolipids. Seventy-nine of these were significantly altered in embryo conditioned-media versus media only control (p < 0.05, fold-change >2 or < 0.5). Fifty-five lipids were found to be released into the embryo-conditioned media, of which 54.5% were triacylglycerols and 23.6% were ceramides. The sterol lipid, cholesterol, was also identified and secreted in significant amounts as embryos developed. Further, 24 lipids were found to be depleted from the media during culture, of which 70.8% were diacylglycerols, 16.7% were triacylglycerols and 12.5% were ceramides. As lipid-free media contained consistently detectable lipid peaks, a further profile analysis of the various components of non-embryo-conditioned media consistently showed the presence of 137 lipids. Lipid peaks in non-embryo-conditioned media increased in response to incubation under mineral oil, and contained ceramides, diacylglycerols and triacylglycerols. These results emphasize the importance of a defined embryo culture medium and a need to identify the lipid requirements of the embryo precisely. This study sheds light on early embryo lipid metabolism and the transfer of lipids during in vitro culture.
Collapse
Affiliation(s)
- Edwina F. Lawson
- School of Environmental and Life Sciences, College of Engineering, Science and the Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, Australia
| | - Robert John Aitken
- School of Environmental and Life Sciences, College of Engineering, Science and the Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Zamira Gibb
- School of Environmental and Life Sciences, College of Engineering, Science and the Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Christopher G. Grupen
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| | - Aleona Swegen
- School of Environmental and Life Sciences, College of Engineering, Science and the Environment, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
9
|
Pérez-Gómez A, González-Brusi L, Flores-Borobia I, Martínez De Los Reyes N, Toledano-Díaz A, López-Sebastián A, Santiago Moreno J, Ramos-Ibeas P, Bermejo-Álvarez P. PPARG is dispensable for bovine embryo development up to tubular stages†. Biol Reprod 2024; 111:557-566. [PMID: 38832705 PMCID: PMC11402522 DOI: 10.1093/biolre/ioae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/25/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024] Open
Abstract
Following blastocyst hatching, ungulate embryos undergo a prolonged preimplantation period termed conceptus elongation. Conceptus elongation constitutes a highly susceptible period for embryonic loss, and the embryonic requirements during this process are largely unknown, but multiple lipid compounds have been identified in the fluid nourishing the elongating conceptuses. Peroxisome proliferator-activated receptors mediate the signaling actions of prostaglandins and other lipids, and, between them, PPARG has been pointed out to play a relevant role in conceptus elongation by a functional study that depleted PPARG in both uterus and conceptus. The objective of this study has been to determine if embryonic PPARG is required for bovine embryo development. To that aim, we have generated bovine PPARG knock-out embryos in vitro using two independent gene ablation strategies and assessed their developmental ability. In vitro development to Day 8 blastocyst was unaffected by PPARG ablation, as total, inner cell mass, and trophectoderm cell numbers were similar between wild-type and knock-out D8 embryos. In vitro post-hatching development to D12 was also comparable between different genotypes, as embryo diameter, epiblast cell number, embryonic disk formation, and hypoblast migration rates were unaffected by the ablation. The development of tubular stages equivalent to E14 was assessed in vivo, following a heterologous embryo transfer experiment, observing that the development of extra-embryonic membranes and of the embryonic disk was not altered by PPARG ablation. In conclusion, PPARG ablation did not impaired bovine embryo development up to tubular stages.
Collapse
Affiliation(s)
- Alba Pérez-Gómez
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Leopoldo González-Brusi
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Inés Flores-Borobia
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Nuria Martínez De Los Reyes
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Adolfo Toledano-Díaz
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Antonio López-Sebastián
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Julián Santiago Moreno
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Priscila Ramos-Ibeas
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Pablo Bermejo-Álvarez
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
10
|
Madureira G, Mion B, Van Winters B, Peñagaricano F, Li J, Ribeiro ES. Endometrial responsiveness to interferon-tau and its association with subsequent reproductive performance in dairy heifers. J Dairy Sci 2024; 107:7371-7391. [PMID: 38642656 DOI: 10.3168/jds.2023-24627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/14/2024] [Indexed: 04/22/2024]
Abstract
Our objectives were to evaluate the endometrial responsiveness of dairy heifers to an intrauterine infusion of recombinant bovine interferon-tau (rbIFN-τ) and to associate endometrial responses to rbIFN-τ with subsequent reproductive performance. In experiments 1 and 2, cyclic heifers were enrolled in a program for synchronization of the estrous cycle, and blood sampling and ultrasonography examinations were performed on d 0, 4, 7, 11, and 14 of the estrous cycle. In experiment 1, heifers were randomly assigned to receive an intrauterine infusion containing 2 µg of rbIFN-τ (rbIFN-τ = 19) or saline control (CTRL = 19) into the uterine horn ipsilateral to the corpus luteum (CL) on d 14 of the estrous cycle. Then, 6 hours after the infusion, the infused uterine horn was flushed for sampling of the uterine luminal fluid (ULF) for composition analysis, and the endometrium was biopsied for transcriptomics. In experiment 2, 100 heifers received an intrauterine infusion of rbIFN-τ, and the same procedures for uterine sample collection were performed as described in experiment 1. After the intrauterine test, heifers were enrolled in a breeding program and classified as highly fertile (HF; pregnant at first AI) or subfertile (SF; not pregnant at first AI). Statistical analyses were performed using regression models, which included the effects of treatment (experiment 1: CTRL vs. rbIFN-τ) or fertility group (experiment 2: HF vs. SF) and block of samples. Intrauterine infusion of rbIFN-τ increased the expression of classical interferon-stimulated genes in the endometrium (e.g., ISG15, MX1, OAS2, IRF9, and USP18), and an antiviral response was predicted to be the main downstream effect of the transcriptome changes. In addition, rbIFN-τ increased the abundance of cholesterol, glycerol, and the overall concentration of oxylipins in the ULF. Analysis of endometrial transcriptome between HF and SF heifers revealed important differences in the expression of genes associated with cell signaling, metabolism, attachment, and migration, with a large representation of genes encoding extracellular matrix proteins. In general, differentially expressed genes were expected to be downregulated by IFN-τ but seemed to fail to be downregulated in SF heifers, resulting in higher expression in SF compared with HF heifers. Subfertile heifers had lower concentrations of glycerol and an altered profile of oxylipins in the ULF, with a lower abundance of oxylipins derived from arachidonic acid and dihomo-γ-linolenic acid, and a greater abundance of oxylipins derived from linoleic acid. Measurements of ovarian function did not differ between groups and, therefore, did not influence the observed results in uterine biology. Overall, the endometrial responsiveness to IFN-τ is variable among individuals and associated with subsequent fertility of heifers, indicating that communication between conceptus and endometrium is critical for the uterine receptivity and survival of pregnancy.
Collapse
Affiliation(s)
- G Madureira
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - B Mion
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - B Van Winters
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - F Peñagaricano
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - J Li
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - E S Ribeiro
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
11
|
Pérez-Gómez A, Hamze JG, Flores-Borobia I, Galiano-Cogolludo B, Lamas-Toranzo I, González-Brusi L, Ramos-Ibeas P, Bermejo-Álvarez P. HH5 double-carrier embryos fail to progress through early conceptus elongation. J Dairy Sci 2024; 107:6371-6382. [PMID: 38642647 DOI: 10.3168/jds.2023-24482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/14/2024] [Indexed: 04/22/2024]
Abstract
Massive genotyping in cattle has uncovered several deleterious haplotypes that cause preterm mortality. Holstein haplotype 5 (HH5) is a deleterious haplotype present in the Holstein Friesian population that involves the ablation of the transcription factor B1 mitochondrial (TFB1M) gene. The developmental stage at which HH5 double-carrier (DC, homozygous) embryos or fetuses die remains unknown and this is a relevant information to estimate the economic losses associated with the inadvertent cross between carriers. To determine whether HH5 DC survive to maternal recognition of pregnancy, embryonic day (E) 14 embryos were flushed from superovulated carrier cows inseminated with a carrier bull. Double-carrier E14 conceptuses were recovered at Mendelian rates but they failed to achieve early elongation, as evidenced by a drastic reduction of their extra-embryonic membranes, which were >26-fold shorter than those of carrier or noncarrier embryos. To assess development at earlier stages, TFB1M knockout (KO) embryos-functionally equivalent to DC embryos-were generated by clustered regularly interspaced short palindromic repeats (CRISPR) technology and cultured to the blastocyst stage, in vitro culture day (D) 8, and to the early embryonic disc stage, D12. No significant effect of TFB1M ablation was observed on the differentiation and proliferation of embryonic lineages and relative mitochondrial DNA (mtDNA) content up to D12. In conclusion, HH5 DC embryos are able to develop to early embryonic disc stage but fail to undergo early conceptus elongation, which is required for pregnancy recognition.
Collapse
Affiliation(s)
- A Pérez-Gómez
- Animal Reproduction Department, INIA, CSIC, 28040 Madrid, Spain
| | - J G Hamze
- Animal Reproduction Department, INIA, CSIC, 28040 Madrid, Spain; Department of Cell Biology and Histology, Universidad de Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), 30100 Murcia, Spain
| | | | | | - I Lamas-Toranzo
- Animal Reproduction Department, INIA, CSIC, 28040 Madrid, Spain; Department of Cell Biology and Histology, Universidad de Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), 30100 Murcia, Spain
| | - L González-Brusi
- Animal Reproduction Department, INIA, CSIC, 28040 Madrid, Spain; Department of Cell Biology and Histology, Universidad de Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), 30100 Murcia, Spain
| | - P Ramos-Ibeas
- Animal Reproduction Department, INIA, CSIC, 28040 Madrid, Spain
| | | |
Collapse
|
12
|
Ferraz PA, Poit DAS, Ferreira Pinto LM, Guerra AC, Laurindo Neto A, do Prado FL, Azrak AJ, Çakmakçı C, Baruselli PS, Pugliesi G. Accuracy of early pregnancy diagnosis and determining pregnancy loss using different biomarkers and machine learning applications in dairy cattle. Theriogenology 2024; 224:82-93. [PMID: 38759608 DOI: 10.1016/j.theriogenology.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 05/19/2024]
Abstract
This study aimed to compare the accuracy of IFN-τ stimulated gene abundance (ISGs) in peripheral blood mononuclear cells (PBMCs), CL blood perfusion by Doppler ultrasound (Doppler-US), plasma concentration of P4 on Day 21 and pregnancy-associated glycoproteins (PAGs) test on Day 25 after timed-artificial insemination (TAI) for early pregnancy diagnosis in dairy cows and heifers. Holstein cows (n = 140) and heifers (n = 32) were subjected to a hormonal synchronization protocol and TAI on Day 0. On Day 21 post-TAI, blood samples were collected for PBMC isolation and plasma concentration of P4. The CL blood perfusion was evaluated by Doppler-US. Plasma samples collected on Day 25 were assayed for PAGs. The abundance of ISGs (ISG15 and RSAD2) in PBMCs was determined by RT-qPCR. Pregnancy was confirmed on Days 32 and 60 post-TAI by B-mode ultrasonography. Statistical analyses were performed by ANOVA using the MIXED procedure and GLIMMIX in SAS software. The pregnancy biomarkers were used to categorize the females as having undergone late luteolysis (LL); early embryonic mortality (EEM); late embryonic mortality (LEM); or late pregnancy loss (LPL). The abundance of ISGs, CL blood perfusion by Doppler-US, and concentrations of P4 on Day 21, and PAGs test on Day 25 were significant (P < 0.05) predictors of early pregnancy in dairy cows and heifers. Dairy cows had a greater (P = 0.01) occurrence of LL than heifers, but there was no difference (P > 0.1) for EEM, LEM, and LPL in heifers compared to cows. Cows with postpartum reproductive issues had a greater (P = 0.008) rate of LEM and a lesser (P = 0.01) rate of LPL compared to cows without reproductive issues. In summary, the CL blood perfusion by Doppler-US had the highest accuracy and the least number of false negatives, suggesting it is the best predictor of pregnancy on Day 21 post-TAI. The PAGs test was the most reliable indicator of pregnancy status on Day 25 post-TAI in dairy heifers and cows. The application of machine learning, specifically the MARS algorithm, shows promise in enhancing the accuracy of predicting early pregnancies in cows.
Collapse
Affiliation(s)
- Priscila Assis Ferraz
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.
| | - Diego Angelo Schmidt Poit
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Leonardo Marin Ferreira Pinto
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Arthur Cobayashi Guerra
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Adomar Laurindo Neto
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | | | - Cihan Çakmakçı
- Department of Agricultural Biotechnology, Animal Biotechnology Section, Faculty of Agriculture, Van Yüzüncü Yıl University, Van, Turkey
| | - Pietro Sampaio Baruselli
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Guilherme Pugliesi
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Speckhart SL, Oliver MA, Keane JA, Dias NW, Mercadante VRG, Biase FH, Ealy AD. Interleukin-6 supplementation improves bovine conceptus elongation and transcriptomic indicators of developmental competence†. Biol Reprod 2024; 111:43-53. [PMID: 38519105 PMCID: PMC11247277 DOI: 10.1093/biolre/ioae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/15/2023] [Accepted: 03/15/2024] [Indexed: 03/24/2024] Open
Abstract
A high incidence of pregnancy failures occurs in cattle during the second week of pregnancy as blastocysts transition into an elongated conceptus. This work explored whether interleukin-6 supplementation during in vitro embryo production would improve subsequent conceptus development. Bovine embryos were treated with 0 or 100 ng/mL recombinant bovine interleukin-6 beginning on day 5 post-fertilization. At day 7.5 post-fertilization, blastocysts were transferred into estrus synchronized beef cows (n = 5 recipients/treatment, 10 embryos/recipient). Seven days after transfer (day 14.5), cows were euthanized to harvest reproductive tracts and collect conceptuses. Individual conceptus lengths and stages were recorded before processing for RNA sequencing. Increases in conceptus recovery, length, and the proportion of tubular and filamentous conceptuses were detected in conceptuses derived from interleukin-6-treated embryos. The interleukin-6 treatment generated 591 differentially expressed genes in conceptuses (n = 9-10/treatment). Gene ontology enrichment analyses revealed changes in transcriptional regulation, DNA-binding, and antiviral actions. Only a few differentially expressed genes were associated with extraembryonic development, but several differentially expressed genes were associated with embryonic regulation of transcription, mesoderm and ectoderm development, organogenesis, limb formation, and somatogenesis. To conclude, this work provides evidence that interleukin-6 treatment before embryo transfer promotes pre-implantation conceptus development and gene expression in ways that resemble the generation of a robust conceptus containing favorable abilities to survive this critical period of pregnancy.
Collapse
Affiliation(s)
- Savannah L Speckhart
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Mary A Oliver
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Jessica A Keane
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Nicholas W Dias
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Vitor R G Mercadante
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Fernando H Biase
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Alan D Ealy
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
14
|
Kelson VC, Kiser JN, Davenport KM, Suarez EM, Murdoch BM, Neibergs HL. Identifying Regions of the Genome Associated with Conception Rate to the First Service in Holstein Heifers Bred by Artificial Insemination and as Embryo Transfer Recipients. Genes (Basel) 2024; 15:765. [PMID: 38927701 PMCID: PMC11202900 DOI: 10.3390/genes15060765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Heifer conception rate to the first service (HCR1) is defined as the number of heifers that become pregnant to the first breeding service compared to the heifers bred. This study aimed to identify loci associated and gene sets enriched for HCR1 for heifers that were bred by artificial insemination (AI, n = 2829) or were embryo transfer (ET, n = 2086) recipients, by completing a genome-wide association analysis and gene set enrichment analysis using SNP data (GSEA-SNP). Three unique loci, containing four positional candidate genes, were associated (p < 1 × 10-5) with HCR1 for ET recipients, while the GSEA-SNP identified four gene sets (NES ≥ 3) and sixty-two leading edge genes (LEGs) enriched for HCR1. While no loci were associated with HCR1 bred by AI, one gene set and twelve LEGs were enriched (NES ≥ 3) for HCR1 with the GSEA-SNP. This included one gene (PKD2) shared between HCR1 AI and ET services. Identifying loci associated or enriched for HCR1 provides an opportunity to use them as genomic selection tools to facilitate the selection of cattle with higher reproductive efficiency, and to better understand embryonic loss.
Collapse
Affiliation(s)
- Victoria C. Kelson
- Department of Animal Sciences, Washington State University, Pullman, WA 99163, USA; (V.C.K.); (K.M.D.); (E.M.S.)
| | - Jennifer N. Kiser
- Washington Animal Disease Diagnostics Laboratory, Pullman, WA 99164, USA;
| | - Kimberly M. Davenport
- Department of Animal Sciences, Washington State University, Pullman, WA 99163, USA; (V.C.K.); (K.M.D.); (E.M.S.)
| | - Emaly M. Suarez
- Department of Animal Sciences, Washington State University, Pullman, WA 99163, USA; (V.C.K.); (K.M.D.); (E.M.S.)
| | - Brenda M. Murdoch
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844, USA;
| | - Holly L. Neibergs
- Department of Animal Sciences, Washington State University, Pullman, WA 99163, USA; (V.C.K.); (K.M.D.); (E.M.S.)
| |
Collapse
|
15
|
Degrelle SA, Liu F, Laloe D, Richard C, Le Bourhis D, Rossignol MN, Hue I. Understanding bovine embryo elongation: a transcriptomic study of trophoblastic vesicles. Front Physiol 2024; 15:1331098. [PMID: 38348224 PMCID: PMC10859461 DOI: 10.3389/fphys.2024.1331098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/02/2024] [Indexed: 02/15/2024] Open
Abstract
Background: During the process of elongation, the embryo increases in size within the uterus, while the extra-embryonic tissues (EETs) develop and differentiate in preparation for implantation. As it grows, the ovoid embryo transforms into a tubular form first and then a filamentous form. This process is directed by numerous genes and pathways, the expression of which may be altered in the case of developmental irregularities such as when the conceptus is shorter than expected or when the embryo develops after splitting. In bovines, efforts to understand the molecular basis of elongation have employed trophoblastic vesicles (TVs)-short tubular EET pieces that lack an embryo-which also elongate in vivo. To date, however, we lack molecular analyses of TVs at the ovoid or filamentous stages that might shed light on the expression changes involved. Methods: Following in vivo development, we collected bovine conceptuses from the ovoid (D12) to filamentous stages (D18), sectioned them into small pieces with or without their embryonic disc (ED), and then, transferred them to a receptive bovine uterus to assess their elongation abilities. We also grew spherical blastocysts in vitro up to D8 and subjected them to the same treatment. Then, we assessed the differences in gene expression between different samples and fully elongating controls at different stages of elongation using a bovine array (10 K) and an extended qPCR array comprising 224 genes across 24 pathways. Results: In vivo, TVs elongated more or less depending on the stage at which they had been created and the time spent in utero. Their daily elongation rates differed from control EET, with the rates of TVs sometimes resembling those of earlier-stage EET. Overall, the molecular signatures of TVs followed a similar developmental trajectory as intact EET from D12-D18. However, within each stage, TVs and intact EET displayed distinct expression dynamics, some of which were shared with other short epithelial models. Conclusion: Differences between TVs and EET likely result from multiple factors, including a reduction in the length and signaling capabilities of TVs, delayed elongation from inadequate uterine signals, and modified crosstalk between the conceptus and the uterus. These findings confirm that close coordination between uterine, embryonic, and extra-embryonic tissues is required to orchestrate proper elongation and, based on the partial differentiation observed, raise questions about the presence/absence of certain developmental cues or even their asynchronies.
Collapse
Affiliation(s)
- Séverine A. Degrelle
- Université Paris-Saclay, Université Versailles Saint-Quentin en Yvelines, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Biologie de la Reproduction, Environnement, Epigénétique et Développment, Jouy en Josas, France
- Inovarion, Paris, France
| | - Fulin Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology, Chengdu, China
| | - Denis Laloe
- Université Paris Saclay, INRAE, AgroParisTech, GABI, Domaine de Vilvert, Jouy en Josas, France
| | - Christophe Richard
- Université Paris-Saclay, Université Versailles Saint-Quentin en Yvelines, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Biologie de la Reproduction, Environnement, Epigénétique et Développment, Jouy en Josas, France
| | | | - Marie-Noëlle Rossignol
- Université Paris Saclay, INRAE, AgroParisTech, GABI, Domaine de Vilvert, Jouy en Josas, France
| | - Isabelle Hue
- Université Paris-Saclay, Université Versailles Saint-Quentin en Yvelines, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Biologie de la Reproduction, Environnement, Epigénétique et Développment, Jouy en Josas, France
| |
Collapse
|
16
|
Schalich KM, Koganti PP, Castillo JM, Reiff OM, Cheong SH, Selvaraj V. The uterine secretory cycle: recurring physiology of endometrial outputs that setup the uterine luminal microenvironment. Physiol Genomics 2024; 56:74-97. [PMID: 37694291 DOI: 10.1152/physiolgenomics.00035.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/12/2023] Open
Abstract
Conserved in female reproduction across all mammalian species is the estrous cycle and its regulation by the hypothalamic-pituitary-gonadal (HPG) axis, a collective of intersected hormonal events that are crucial for ensuring uterine fertility. Nonetheless, knowledge of the direct mediators that synchronously shape the uterine microenvironment for successive yet distinct events, such as the transit of sperm and support for progressive stages of preimplantation embryo development, remain principally deficient. Toward understanding the timed endometrial outputs that permit luminal events as directed by the estrous cycle, we used Bovidae as a model system to uniquely surface sample and study temporal shifts to in vivo endometrial transcripts that encode for proteins destined to be secreted. The results revealed the full quantitative profile of endometrial components that shape the uterine luminal microenvironment at distinct phases of the estrous cycle (estrus, metestrus, diestrus, and proestrus). In interpreting this comprehensive log of stage-specific endometrial secretions, we define the "uterine secretory cycle" and extract a predictive understanding of recurring physiological actions regulated within the uterine lumen in anticipation of sperm and preimplantation embryonic stages. This repetitive microenvironmental preparedness to sequentially provide operative support was a stable intrinsic framework, with only limited responses to sperm or embryos if encountered in the lumen within the cyclic time period. In uncovering the secretory cycle and unraveling realistic biological processes, we present novel foundational knowledge of terminal effectors controlled by the HPG axis to direct a recurring sequence of vital functions within the uterine lumen.NEW & NOTEWORTHY This study unravels the recurring sequence of changes within the uterus that supports vital functions (sperm transit and development of preimplantation embryonic stages) during the reproductive cycle in female Ruminantia. These data present new systems knowledge in uterine reproductive physiology crucial for setting up in vitro biomimicry and artificial environments for assisted reproduction technologies for a range of mammalian species.
Collapse
Affiliation(s)
- Kasey M Schalich
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States
| | - Prasanthi P Koganti
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States
| | - Juan M Castillo
- Department of Clinical Sciences, Veterinary College, Cornell University, Ithaca, New York, United States
| | - Olivia M Reiff
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States
| | - Soon Hon Cheong
- Department of Clinical Sciences, Veterinary College, Cornell University, Ithaca, New York, United States
| | - Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States
| |
Collapse
|
17
|
Peixoto PM, Bromfield JJ, Ribeiro ES, Santos JEP, Thatcher WW, Bisinotto RS. Transcriptome changes associated with elongation of bovine conceptuses II: Differentially expressed transcripts in the endometrium on day 17 after insemination. J Dairy Sci 2023; 106:9763-9777. [PMID: 37641338 DOI: 10.3168/jds.2023-23399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/15/2023] [Indexed: 08/31/2023]
Abstract
The objective was to characterize endometrial transcriptome on d 17 of gestation in dairy cows according to conceptus length. Nonlactating Holstein cows (n = 48) were slaughtered 17 d after AI and the uterine horn ipsilateral to the corpus luteum (CL) was flushed with saline solution. Recovered conceptuses were classified as small (1.2-6.9 cm; n = 9), medium (10.5-16.0 cm; n = 9), or large (18.0-26.4 cm; n = 10). Samples of intercaruncular endometrium dissected from the caudal, intermediate, and cranial portions of the uterine horn ipsilateral to the pregnancy were pooled for analyses. Total mRNA was extracted from endometrial tissue and subjected to transcriptome analyses using the Affymetrix Gene Chip Bovine array. Data were normalized using the GCRMA method and analyzed by robust regression using the Linear Models for Microarray library within Bioconductor in R. Transcripts with P ≤ 0.05 after adjustment for false discovery rate and fold change ≥1.5 were considered differentially expressed. Functional analyses were conducted using the Ingenuity Pathway Analysis platform. Comparisons between endometria of cows carrying large versus small (LvsS), large versus medium (LvsM), and medium versus small (MvsS) conceptuses yielded a total of 235, 21, and 94 differentially expressed transcripts, respectively. Top canonical pathways included the antigen presentation pathway and Th1/Th2 activation pathways, both for LvsS and MvsS. Interferon-α and -γ were identified as activated upstream regulators, primarily based on differently expressed transcripts such as IDO1, ISG20, WARS, LGALS9, IFI44, and PSMB9 (LvsS and MvsS). For LvsS, regulator analyses revealed predicted activation of FOXO1, IFN, NFACTC2, IL-12, IL-6, and IL-18, whereas it depicted inhibition of IL10RA and ZBTB1. Changes in these regulators were associated with a downstream activation of leukocytes, as well as quantity and expansion of T lymphocytes. Canonical pathways associated with the comparison LvsM included cell cycle G2/M DNA damage checkpoint regulation, cell cycle control of chromosomal replication. Moreover, tretinoin was predicted, as activated in upstream analysis for the same comparison. In conclusion, most of the differently expressed transcripts in the endometrium on d 17 of gestation were identified between cows carrying small conceptuses compared with counterparts carrying medium and large conceptuses and were involved with pathways associated with modulation of the immune response.
Collapse
Affiliation(s)
- P M Peixoto
- Department of Large Animal Clinical Sciences, D. H. Barron Reproductive, and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32610
| | - J J Bromfield
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32608
| | - E S Ribeiro
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - J E P Santos
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32608
| | - W W Thatcher
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32608
| | - R S Bisinotto
- Department of Large Animal Clinical Sciences, D. H. Barron Reproductive, and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32610.
| |
Collapse
|
18
|
Peixoto PM, Bromfield JJ, Ribeiro ES, Santos JEP, Thatcher WW, Bisinotto RS. Transcriptome changes associated with elongation of bovine conceptuses I: Differentially expressed transcripts in the conceptus on day 17 after insemination. J Dairy Sci 2023; 106:9745-9762. [PMID: 37641295 DOI: 10.3168/jds.2023-23398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/15/2023] [Indexed: 08/31/2023]
Abstract
The objective was to characterize transcriptome changes associated with elongation in bovine conceptuses during preimplantation stages. Nonlactating Holstein cows were euthanized 17 d after artificial insemination (AI) and the uterine horn ipsilateral to the CL was flushed with saline solution. Recovered conceptuses were classified as small (1.2 to 6.9 cm; n = 9), medium (10.5 to 16.0 cm; n = 9), or large (18.0 to 26.4 cm; n = 10). Total mRNA was extracted and subjected to transcriptome analyses using the Affymetrix Gene Chip Bovine array. Data were normalized using the GCRMA method and analyzed by robust regression using the Linear Models for Microarray library within Bioconductor in R. Transcripts with P ≤ 0.05 after adjustment for false discovery rate and fold change ≥1.5 were considered differentially expressed. Functional analyses were conducted using the Ingenuity Pathway Analysis platform. Comparisons between large versus small (LvsS), large versus medium (LvsM), and medium versus small (MvsS) conceptuses yielded a total of 634, 240, and 63 differentially expressed transcripts, respectively. Top canonical pathways of known involvement with embryo growth that were upregulated in large conceptuses included actin cytoskeleton (LvsS), integrin signaling (LvsS and LvsM), ephrin receptor (LvsS), mesenchymal transition by growth factor (LvsM), and regulation of calpain protease (LvsS). Transcripts involved with lipid metabolism pathways (LXR/RXR, FXR/RXR, hepatic fibrosis) were associated with the LvsS and LvsM, and some transcripts such as APOC2, APOH, APOM, RARA, RBP4, and PPARGC1A, were involved in these pathways. An overall network summary associated biological downstream effects of invasion of cells, proliferation of embryonic cells, and inhibition of organismal death in the LvsS. In conclusion, differently expressed transcripts in the LvsS comparison were associated with the cell growth, adhesion, and organismal development, although part of these findings could be attributed to differences in circulatory concentrations of progesterone of the cows that bore large and small conceptuses. The large and medium conceptuses developed under similar concentrations of progesterone and presented 240 differently expressed transcripts, associated with cell differentiation, metabolite regulation, and other biological processes.
Collapse
Affiliation(s)
- P M Peixoto
- Department of Large Animal Clinical Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32610
| | - J J Bromfield
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32608
| | - E S Ribeiro
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - J E P Santos
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32608
| | - W W Thatcher
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32608
| | - R S Bisinotto
- Department of Large Animal Clinical Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32610.
| |
Collapse
|
19
|
Hao K, Wang J, Yu H, Chen L, Zeng W, Wang Z, Hu G. Peroxisome Proliferator-Activated Receptor γ Regulates Lipid Metabolism in Sheep Trophoblast Cells through mTOR Pathway-Mediated Autophagy. PPAR Res 2023; 2023:6422804. [PMID: 38020065 PMCID: PMC10651342 DOI: 10.1155/2023/6422804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/03/2023] [Accepted: 10/14/2023] [Indexed: 12/01/2023] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a key nuclear receptor transcription factor that is highly expressed in trophoblastic cells during embryonic attachment and is accompanied by rapid cell proliferation and increased lipid accumulation. We previously showed that the autophagy pathway is activated in cells after activation of PPARγ, accompanied by increased lipid accumulation. In this study, we used PPARγ agonist rosiglitazone and inhibitor GW9662, as well as autophagy activator rapamycin and inhibitor 3-methyladenine, to unravel the probable mechanism of PPARγ engaged in lipid metabolism in sheep trophoblast cells (STCs). After 12 h, 24 h, and 48 h of drug treatment, the levels of autophagy-related proteins were detected by Western blot, the triglyceride content and MDA level of cells were detected by colorimetry, and the lipid droplets and lysosomes were localized by immunofluorescence. We found that PPARγ inhibited the activity of mammalian target of rapamycin (mTOR) pathway in STCs for a certain period of time, promoted the increase of autophagy and lysosome formation, and enhanced the accumulation of lipid droplets and triglycerides. Compared with cells whose PPARγ function is activated, blocking autophagy before activating PPARγ will hinder lipid accumulation in STCs. Pretreatment of cells with rapamycin promoted autophagy with results similar to rosiglitazone treatment, while inhibition of autophagy with 3-methyladenine reduced lysosome and lipid accumulation. Based on these observations, we conclude that PPARγ can induce autophagy by blocking the mTOR pathway, thereby promoting the accumulation of lipid droplets and lysosomal degradation, providing an energy basis for the rapid proliferation of trophoblast cells during embryo implantation. In brief, this study partially revealed the molecular regulatory mechanism of PPARγ, mTOR pathway, and autophagy on trophoblast cell lipid metabolism, which provides a theoretical basis for further exploring the functional regulatory network of trophoblast cells during the attachment of sheep embryos.
Collapse
Affiliation(s)
- Kexing Hao
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Jing Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Hengbin Yu
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Lei Chen
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Weibin Zeng
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Zhengrong Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Guangdong Hu
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| |
Collapse
|
20
|
Husnain A, Arshad U, Zimpel R, Schmitt E, Dickson MJ, Perdomo MC, Marinho MN, Ashrafi N, Graham SF, Bishop JV, Hansen TR, Jeong KC, Gonella-Diaza AM, Chebel RC, Sheldon IM, Bromfield JJ, Santos JEP. Induced endometrial inflammation compromises conceptus development in dairy cattle†. Biol Reprod 2023; 109:415-431. [PMID: 37540198 PMCID: PMC10577276 DOI: 10.1093/biolre/ioad088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/24/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023] Open
Abstract
Endometrial inflammation is associated with reduced pregnancy per artificial insemination (AI) and increased pregnancy loss in cows. It was hypothesized that induced endometritis alters histotroph composition and induces inflammatory signatures on conceptus that compromise development. In Experiment 1, lactating cows were assigned to control (CON; n = 23) or to an intrauterine infusion of Escherichia coli and Trueperella pyogenes (ENDO; n = 34) to induce endometritis. Cows received AI 26 days after treatment, and the uterine fluid and conceptuses were collected on day 16 after AI. In Experiment 2, Holstein heifers were assigned to CON (n = 14) or ENDO (n = 14). An embryo was transferred on day 7 of the estrous cycle, and uterine fluid and conceptuses were recovered on day 16. Composition of histotroph and trophoblast and embryonic disc gene expression were assessed. Bacterial-induced endometritis in lactating cows altered histotroph composition and pathways linked to phospholipid synthesis, cellular energy production, and the Warburg effect. Also, ENDO reduced conceptus length in cows and altered expression of genes involved in pathogen recognition, nutrient uptake, cell growth, choline metabolism, and conceptus signaling needed for maternal recognition of pregnancy. The impact of ENDO was lesser on conceptuses from heifers receiving embryo transfer; however, the affected genes and associated pathways involved restricted growth and increased immune response similar to the observed responses to ENDO in conceptuses from lactating cows. Bacterial-induced endometrial inflammation altered histotroph composition, reduced conceptus growth, and caused embryonic cells to activate survival rather than anabolic pathways that could compromise development.
Collapse
Affiliation(s)
- Ali Husnain
- Department of Animal Sciences, DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL, USA
| | - Usman Arshad
- Department of Animal Sciences, DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL, USA
| | - Roney Zimpel
- Department of Animal Sciences, DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL, USA
| | - Eduardo Schmitt
- Department of Animal Sciences, DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL, USA
| | - Mackenzie J Dickson
- Department of Animal Sciences, DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL, USA
| | - Milerky C Perdomo
- Department of Animal Sciences, DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL, USA
| | - Mariana N Marinho
- Department of Animal Sciences, DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL, USA
| | - Nadia Ashrafi
- Metabolomics Department, Beaumont Health, Royal Oak, MI, USA
| | - Stewart F Graham
- Metabolomics Department, Beaumont Health, Royal Oak, MI, USA
- Oakland University-William Beaumont School of Medicine, Rochester, MI, USA
| | - Jeanette V Bishop
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Thomas R Hansen
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Kwang C Jeong
- Department of Animal Sciences, DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL, USA
| | | | - Ricardo C Chebel
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - I Martin Sheldon
- Swansea University Medical School, Swansea University, Swansea, UK
| | - John J Bromfield
- Department of Animal Sciences, DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL, USA
| | - José E P Santos
- Department of Animal Sciences, DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL, USA
| |
Collapse
|
21
|
Esmaili H, Eslami M, Khalilvandi-Behrozyar H, Farrokhi-Ardabili F. Effect of varying amounts of linseed oil or saturated fatty acids around insemination on reproductive and blood parameters of ewes. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:922-938. [PMID: 37969340 PMCID: PMC10640941 DOI: 10.5187/jast.2022.e106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/17/2023]
Abstract
The current study was designed to evaluate the effect of sequential low and high dietary linseed oil (LO; as omega-3 enriched fatty acid; FA) before and post insemination, respectively, on different plasma variables of ewes. Fat-tailed Qezel ewes were assigned randomly to be fed a diet enriched with 3% LO (n = 30) or the saturated FA (SFA; n = 30) three weeks before insemination (Day 0). The lipogenic diet supplemented with 6% LO or SFA was fed after insemination until Day +21. The control ewes were fed an isocaloric and isonitrogenous diet with no additional FA during the study. Estrus was synchronized by inserting a vaginal sponge (Spongavet®) for 12 days + 500 IU equine chorionic gonadotropin (eCG; Gonaser®), and ewes were inseminated via laparoscopic approach 56-59 h after eCG injection. The size of ovarian structures was assessed by transvaginal ultrasonography at -21, -14, -2, 0, and +10 days. Blood samples were collected weekly to measure the plasma's different biochemical variables and FA profile. Treatment did not affect the amounts of glucose, aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, interleukin-10, interleukin-2, and non-esterified FA (p > 0.05). Conversely, concentrations of triglyceride, cholesterol, tumor necrosis factor-alpha, and insulin-like growth factor-1 were higher in SFA-fed ewes relative to control animals (p < 0.05). LO feeding resulted in greater amounts of n-3 FA isomers in plasma, while higher amounts of stearic acid were detected in SFA fed group 0 and +21 (p < 0.05). The number of ovarian follicles and corpora lutea also were not affected by treatment. Other reproductive variables were not affected by treatment except for the reproductive rate. It seems that LO or SFA feeding of fat-tailed ewes peri-insemination period was not superior to the isocaloric non-additional fat diet provided for the control group during the non-breeding season.
Collapse
Affiliation(s)
- Hamed Esmaili
- Department of Theriogenology, Faculty of
Veterinary Medicine, Urmia University, Urmia 5756115111,
Iran
| | - Mohsen Eslami
- Department of Theriogenology, Faculty of
Veterinary Medicine, Urmia University, Urmia 5756115111,
Iran
| | | | | |
Collapse
|
22
|
Walker MB, Holton MP, Callaway TR, Lourenco JM, Fontes PLP. Differences in Microbial Community Composition between Uterine Horns Ipsilateral and Contralateral to the Corpus Luteum in Beef Cows on Day 15 of the Estrous Cycle. Microorganisms 2023; 11:2117. [PMID: 37630677 PMCID: PMC10458157 DOI: 10.3390/microorganisms11082117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/10/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
This study evaluated differences in uterine microbiota composition between uterine horns ipsilateral and contralateral to the corpus luteum of beef cows on day 15 of the estrous cycle. Cows (n = 23) were exposed to an estrus synchronization protocol to exogenously induce synchronized ovulation. Cows were then euthanized on day 15 of the estrous cycle, and individual swabs were collected from uterine horns ipsilateral and contralateral to the corpus luteum using aseptic techniques. DNA was extracted, and the entire (V1-V9 hypervariable regions) 16s rRNA gene was sequenced. Sequences were analyzed, and amplicon sequence variants (ASVs) were determined. Across all samples, 2 bacterial domains, 24 phyla, and 265 genera were identified. Butyribirio, Cutibacterium, BD7-11, Bacteroidales BS11 gut group, Ruminococcus, Bacteroidales RF16 group, and Clostridia UCG-014 differed in relative abundances between uterine horns. Rikenellaceae RC9 gut group, Bacteroidales UCG-001, Lachnospiraceae AC2044 group, Burkholderia-Caballeronia-Paraburkholderia, Psudobutyribibrio, and an unidentified genus of the family Chitinophagaceae and dgA-11 gut group differed between cows that expressed estrus and those that did not. The composition of the microbial community differed between the ipsilateral and contralateral horns and between cows that expressed estrus and cows that failed to express estrus, indicating that the uterine microbiota might play a role in cow fertility.
Collapse
Affiliation(s)
| | | | | | | | - Pedro Levy Piza Fontes
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (M.B.W.); (M.P.H.); (T.R.C.); (J.M.L.)
| |
Collapse
|
23
|
Miles JR, Walsh SC, Rempel LA, Pannier AK. Mechanisms regulating the initiation of porcine conceptus elongation. Mol Reprod Dev 2023; 90:646-657. [PMID: 35719060 DOI: 10.1002/mrd.23623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/10/2022] [Accepted: 06/01/2022] [Indexed: 11/12/2022]
Abstract
Significant increases in litter size within commercial swine production over the past decades have led to increases in preweaning piglet mortality due to increase within-litter birthweight variation, typically due to mortality of the smallest littermate piglets. Therefore, identifying mechanisms to reduce variation in placental development and subsequent fetal growth are critical to normalizing birthweight variation and improving piglet survivability in high-producing commercial pigs. A major contributing factor to induction of within-litter variation occurs during the peri-implantation period as the pig blastocyst elongates from spherical to filamentous morphology in a short period of time and rapidly begins superficial implantation. During this period, there is significant within-litter variation in the timing and extent of elongation among littermates. As a result, delays and deficiencies in conceptus elongation not only contribute directly to early embryonic mortality, but also influence subsequent within-litter birthweight variation. This study will highlight key aspects of conceptus elongation and provide some recent evidence pertaining to specific mechanisms from -omics studies (i.e., metabolomics of the uterine environment and transcriptomics of the conceptus) that may specifically regulate the initiation of conceptus elongation to identify potential factors to reduce within-litter variation and improve piglet survivability.
Collapse
Affiliation(s)
- Jeremy R Miles
- USDA, U.S. Meat Animal Research Center (USMARC), Clay Center, Nebraska, USA
| | - Sophie C Walsh
- Department of Biological Systems Engineering, University of Nebraska-Lincoln (UNL), Lincoln, Nebraska, USA
| | - Lea A Rempel
- USDA, U.S. Meat Animal Research Center (USMARC), Clay Center, Nebraska, USA
| | - Angela K Pannier
- Department of Biological Systems Engineering, University of Nebraska-Lincoln (UNL), Lincoln, Nebraska, USA
| |
Collapse
|
24
|
Mion B, Madureira G, Spricigo JFW, King K, Van Winters B, LaMarre J, LeBlanc SJ, Steele MA, Ribeiro ES. Effects of source of supplementary trace minerals in pre- and postpartum diets on reproductive biology and performance in dairy cows. J Dairy Sci 2023:S0022-0302(23)00216-3. [PMID: 37164845 DOI: 10.3168/jds.2022-22784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/03/2023] [Indexed: 05/12/2023]
Abstract
Our objectives were to evaluate the effects of complete replacement of inorganic salts of trace minerals (STM) with organic trace minerals (OTM) in both pre- and postpartum diets on ovarian dynamics, estrous behavior measured by sensors, preimplantation conceptus development, and reproductive performance in dairy cows. Pregnant cows and heifers (n = 273) were blocked by parity and body condition score and randomly assigned to either STM or OTM diets at 45 ± 3 d before their expected calving. Pre- and postpartum diets were formulated to meet 100% of recommended levels of each trace mineral in both treatments, taking into consideration both basal and supplemental levels. The final target concentrations of Co, Cu, Mn, Se, and Zn were, respectively, 0.25, 13.7, 40.0, 0.3, and 40.0 mg/kg in the prepartum diet, and 0.25, 15.7, 40.0, 0.3, and 63.0 mg/kg in the postpartum diet. The STM group was supplemented with Co, Cu, Mn, and Zn sulfates and sodium selenite, while the OTM group was supplemented with Co, Cu, Mn, and Zn proteinates and selenized yeast. Treatments continued until 156 d in milk (DIM) and were assigned to individual cows using automatic feeding gates. Starting at 21 DIM, ultrasonography examinations of the ovaries were performed weekly to determine the presence of a corpus luteum and postpartum resumption of ovarian cyclicity. Cows were presynchronized with 2 injections of PGF2α at 42 and 56 DIM. Estrous behavior was monitored using electronic activity tags that indirectly measured walking activity. Cows detected in estrus after the second PGF2α were inseminated, and those not detected in estrus by 67 DIM were enrolled in a synchronization program. Cows that returned to estrus after artificial insemination (AI) were reinseminated. Pregnancy diagnosis was performed 33 d after AI, and nonpregnant cows were resynchronized. Transcript expression of interferon-stimulated genes in peripheral blood leukocytes was performed in a subgroup of cows (STM, n = 67; OTM, n = 73) on d 19 after AI. A different subgroup of cows (28 STM, 29 OTM) received uterine flushing 15 d after AI for recovery of conceptuses and uterine fluid for analyses of transcriptomics and metabolomics, respectively. In addition, dominant follicle diameter, luteal size and blood flow, and concentration of progesterone in plasma were measured on d 0, 7, and 15 relative to AI. After flushing, PGF2α was given and the dominant follicle was aspirated 2 d later to measure the concentration of trace minerals by mass spectrometry. Estrous behavior, size of the dominant follicle and corpus luteum, concentration of progesterone, time to pregnancy, and proportion of cows pregnant by 100 d of the breeding period did not differ between treatments. A greater proportion of cows supplemented with OTM had a corpus luteum detected before presynchronization (64.3 vs. 75.2%), and primiparous cows supplemented with OTM tended to resume cyclicity earlier than their STM counterparts. Cows supplemented with OTM had a greater concentration of Cu in follicular fluid than cows supplemented with STM (0.89 vs. 0.77 µg/mL, respectively). In pregnant multiparous cows, expression of receptor transporter protein 4 in peripheral blood leukocytes was 42% greater in the OTM group. Conceptuses of the 2 treatments had 589 differentially expressed transcripts, with many indicating advanced conceptus elongation and greater transcript expression of selenoproteins in the OTM group. In pregnant cows, 24 metabolites were more abundant in the uterine fluid of OTM, including spermidine, sucrose, and cholesterol. In conclusion, replacing STM with OTM caused modest improvements to resumption of ovarian cyclicity and important changes in preimplantation conceptus development, but it did not alter conception risk and pregnancy rate.
Collapse
Affiliation(s)
- B Mion
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - G Madureira
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - J F W Spricigo
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - K King
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - B Van Winters
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - J LaMarre
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - S J LeBlanc
- Department of Population Medicine, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - M A Steele
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - E S Ribeiro
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
25
|
Rabaglino MB. Review: Overview of the transcriptomic landscape in bovine blastocysts and elongated conceptuses driving developmental competence. Animal 2023; 17 Suppl 1:100733. [PMID: 37567651 DOI: 10.1016/j.animal.2023.100733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 08/13/2023] Open
Abstract
In cattle, pregnancy loss due to early embryonic mortality is a major concern that significantly impacts reproductive efficiency. Given the economic importance of cattle in livestock productivity, much research has been carried out to comprehend the regulatory mechanisms underlying this early embryo loss. Thus, understanding the molecular principles behind the reciprocal communication between the maternal uterus and the developing conceptus is paramount. Measurement of mRNA expression through a variety of techniques is widely used to unravel the complex and dynamic interaction between these two players. Development of high-throughput technologies, such as microarrays and RNA sequencing, have allowed global quantification of the full range of expressed mRNA, or transcriptome, of a biological sample. Therefore, numerous investigators have applied one or the other method to study the bovine embryo transcriptome at different developmental checkpoints and under different conditions. The goal of this article was to review studies involving the use of high-throughput techniques to study the transcriptome of the bovine embryo from the blastocyst (∼day 7) to the elongating conceptus stage (∼days 13-16) in terms of developmental capacity and the impact of procedures for in vitro embryo production. Furthermore, the differentially expressed genes reported by each study and enriched pathways were compared to determine common terms. The studies described here highlight differences in the transcriptome (i) between blastocysts with divergent ability to sustain a pregnancy, (ii) between age-matched elongated conceptuses with divergent developmental fates, and (iii) between blastocysts and elongated conceptuses produced in vitro or in vivo. Comparison between these works, supported by other studies involving transcriptomic data integration presented at the end of this review, highlights the involvement of pathways related to energy metabolism in embryonic competence, which may be altered because of the procedures involved in the in vitro production of embryos.
Collapse
Affiliation(s)
- M B Rabaglino
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4 D04 V1W8, Ireland.
| |
Collapse
|
26
|
Walsh SC, Miles JR, Broeckling CD, Rempel LA, Wright-Johnson EC, Pannier AK. Secreted metabolome of porcine blastocysts encapsulated within in vitro 3D alginate hydrogel culture systems undergoing morphological changes provides insights into specific mechanisms involved in the initiation of porcine conceptus elongation. Reprod Fertil Dev 2023; 35:375-394. [PMID: 36780705 DOI: 10.1071/rd22210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/24/2023] [Indexed: 02/15/2023] Open
Abstract
CONTEXT The exact mechanisms regulating the initiation of porcine conceptus elongation are not known due to the complexity of the uterine environment. AIMS To identify contributing factors for initiation of conceptus elongation in vitro , this study evaluated differential metabolite abundance within media following culture of blastocysts within unmodified alginate (ALG) or Arg-Gly-Asp (RGD)-modified alginate hydrogel culture systems. METHODS Blastocysts were harvested from pregnant gilts, encapsulated within ALG or RGD or as non-encapsulated control blastocysts (CONT), and cultured. At the termination of 96h culture, media were separated into blastocyst media groups: non-encapsulated control blastocysts (CONT); ALG and RGD blastocysts with no morphological change (ALG- and RGD-); ALG and RGD blastocysts with morphological changes (ALG+ and RGD+) and evaluated for non-targeted metabolomic profiling by liquid chromatography (LC)-mass spectrometry (MS) techniques and gas chromatography-(GC-MS). KEY RESULTS Analysis of variance identified 280 (LC-MS) and 1 (GC-MS) compounds that differed (P <0.05), of which 134 (LC-MS) and 1 (GC-MS) were annotated. Metabolites abundance between ALG+ vs ALG-, RGD+ vs RGD-, and RGD+ vs ALG+ were further investigated to identify potential differences in metabolic processes during the initiation of elongation. CONCLUSIONS This study identified changes in phospholipid, glycosphingolipid, lipid signalling, and amino acid metabolic processes as potential RGD-independent mechanisms of elongation and identified changes in lysophosphatidylcholine and sphingolipid secretions during RGD-mediated elongation. IMPLICATIONS These results illustrate changes in phospholipid and sphingolipid metabolic processes and secretions may act as mediators of the RGD-integrin adhesion that promotes porcine conceptus elongation.
Collapse
Affiliation(s)
- Sophie C Walsh
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, P.O. Box 830726, Lincoln, NE 68583, USA
| | - Jeremy R Miles
- USDA, U.S. Meat Animal Research Center, P.O. Box 166, Clay Center, NE 68933, USA
| | - Corey D Broeckling
- Bioanalysis and Omics Center, Colorado State University, Fort Collins, CO, USA
| | - Lea A Rempel
- USDA, U.S. Meat Animal Research Center, P.O. Box 166, Clay Center, NE 68933, USA
| | | | - Angela K Pannier
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, P.O. Box 830726, Lincoln, NE 68583, USA
| |
Collapse
|
27
|
Stoecklein KS, Garcia-Guerra A, Duran BJ, Prather RS, Ortega MS. Actions of FGF2, LIF, and IGF1 on bovine embryo survival and conceptus elongation following slow-rate freezing. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.1040064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Culture environment during in vitro embryo production can affect embryo phenotype and pregnancy outcomes, making culture modifications a logical approach for improving embryo competence. Previously, the addition of the growth factors FGF2, LIF, and IGF1, termed FLI, to the culture medium improved bovine embryo development, and re-expansion following cryopreservation. The objective of this study was to investigate the survival of cryopreserved FLI treated embryos at day 15 of pregnancy and evaluate conceptus transcriptomes. Embryos were produced using in vitro fertilization of abattoir-derived oocytes, cultured to the blastocyst stage in the presence or absence of FLI (+/- FLI), and cryopreserved by slow-rate freezing. Thawed embryos were transferred into non-lactating recipient beef cows and eight days later conceptuses were recovered and analyzed. For a subset of conceptuses whole transcriptome analysis was performed by using the NovaSeq 6000. There was no detectable difference in conceptus recovery or average conceptus length between the two groups. There were 32 differentially expressed transcripts, 23 up-regulated and nine down-regulated in the +FLI group compared to -FLI. Genes were involved in interferon signaling, prostaglandin synthesis, and placental development. This study reveals that embryos cultured with or without FLI and cryopreserved by slow-rate freezing have similar developmental competence up to day 15 of development. Nevertheless, differences in gene expression exhibit an effect of FLI on conceptus signaling during elongation.
Collapse
|
28
|
Hao K, Wang J, Li Z, Chen H, Jia B, Hu G. PPARγ/mTOR Regulates the Synthesis and Release of Prostaglandins in Ovine Trophoblast Cells in Early Pregnancy. Vet Sci 2022; 9:649. [PMID: 36423098 PMCID: PMC9694237 DOI: 10.3390/vetsci9110649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/04/2022] [Accepted: 11/17/2022] [Indexed: 09/16/2023] Open
Abstract
Trophoblast cells synthesize and secrete prostaglandins (PGs), which are essential for ruminants in early gestation to recognize pregnancy. Hormones in the intrauterine environment play an important role in regulating PGs synthesis during implantation, but the underlying mechanism remains unclear. In this study, co-treatment of sheep trophoblast cells (STCs) with progesterone (P4), estradiol (E2), and interferon-tau (IFN-τ) increased the ratio of prostaglandin E2 (PGE2) to prostaglandin F2α (PGF2α) and upregulated peroxisome proliferator-activated receptor γ (PPARγ) expression, while inhibiting the mechanistic target of rapamycin (mTOR) pathway and activating cellular autophagy. Under hormone treatment, inhibition of PPARγ activity decreased the ratio of PGE2/PGF2α and cellular activity, while activating expression of the mTOR downstream marker-the phosphorylation of p70S6K (p-p70S6K). We also found that the PPARγ/mTOR pathway played an important role in regulating trophoblast cell function. Inhibition of the mTOR pathway by rapamycin increased the ratio of PGE2/PGF2α and decreased the expression of apoptosis-related proteins after inhibiting PPARγ activity. In conclusion, our findings provide new insights into the molecular mechanism of prostaglandin regulation of trophoblast cells in sheep during early pregnancy, indicating that the PPARγ/mTOR pathway plays an important role in PGs secretion and cell viability.
Collapse
Affiliation(s)
| | | | | | | | - Bin Jia
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Guangdong Hu
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| |
Collapse
|
29
|
Zenobi M, Bollatti J, Lopez A, Barton B, Hixson C, Maunsell F, Thatcher W, Miller-Cushon K, Santos J, Staples C, Nelson C. Effects of maternal choline supplementation on performance and immunity of progeny from birth to weaning. J Dairy Sci 2022; 105:9896-9916. [DOI: 10.3168/jds.2021-21689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 07/13/2022] [Indexed: 11/05/2022]
|
30
|
Berg DK, Ledgard A, Donnison M, McDonald R, Henderson HV, Meier S, Juengel JL, Burke CR. The first week following insemination is the period of major pregnancy failure in pasture-grazed dairy cows. J Dairy Sci 2022; 105:9253-9270. [PMID: 36153157 DOI: 10.3168/jds.2021-21773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/13/2022] [Indexed: 11/19/2022]
Abstract
A 60% pregnancy success for inseminations is targeted to optimize production efficiency for dairy cows within a seasonal, pasture-grazed system. Routine measures of pregnancy success are widely available but are limited, in practice, to a gestation stage beyond the first 28 d. Although some historical data exist on embryonic mortality before this stage, productivity of dairy systems and genetics of the cows have advanced significantly in recent decades. Accordingly, the aim was to construct an updated estimate of pregnancy success at key developmental stages during the first 70 d after insemination. Blood samples were collected for progesterone concentrations on d 0 and 7. A temporal series of 4 groups spanning fertilization through d 70 were conducted on 4 seasonal, pasture-grazed dairy farms (n = 1,467 cows) during the first 21 d of the seasonal breeding period. Morphological examination was undertaken on embryos collected on d 7 (group E7) and 15 (group E15), and pregnancy was diagnosed via ultrasonography on approximately d 28 and 35 (group E35) as well as d 70 (group E70). Fertilization, embryo, and fetal evaluation for viability established a pregnancy success pattern. Additionally, cow and on-farm risk factor variables associated with pregnancy success were evaluated. We estimated pregnancy success rates of 70.9%, 59.1%, 63.8%, 62.3%, and 56.7% at d 7, 15, 28, 35, and 70, respectively. Fertilization failure (15.8%) and embryonic arrest before the morula stage (10.3%) were the major developmental events contributing to first-week pregnancy failures. Embryo elongation failure of 7% contributed to pregnancy failure during the second week. The risk factors for pregnancy success that were related to the cows included interval between calving and insemination, and d-7 plasma progesterone concentrations, whereas insemination sire was associated with pregnancy outcome. Most pregnancy failure occurs during the first week among seasonal-calving pasture-grazed dairy cows.
Collapse
Affiliation(s)
- D K Berg
- AgResearch Ltd., Ruakura Agricultural Centre, 10 Bisley Rd., Hamilton 3214, New Zealand.
| | - A Ledgard
- AgResearch Ltd., Ruakura Agricultural Centre, 10 Bisley Rd., Hamilton 3214, New Zealand
| | - M Donnison
- AgResearch Ltd., Ruakura Agricultural Centre, 10 Bisley Rd., Hamilton 3214, New Zealand
| | - R McDonald
- AgResearch Ltd., Ruakura Agricultural Centre, 10 Bisley Rd., Hamilton 3214, New Zealand
| | - H V Henderson
- AgResearch Ltd., Ruakura Agricultural Centre, 10 Bisley Rd., Hamilton 3214, New Zealand
| | - S Meier
- DairyNZ Ltd., Private Bag 3221, Hamilton, New Zealand
| | - J L Juengel
- AgResearch Ltd., Invermay, Puddle Alley Rd., Mosgiel 9092, New Zealand
| | - C R Burke
- DairyNZ Ltd., Private Bag 3221, Hamilton, New Zealand
| |
Collapse
|
31
|
Cavalcanti CM, Silva MRL, Conde AJH, Bezerra AF, Alves JPM, Fernandes CCL, Teixeira DÍA, Rêgo AC, Rondina D. Effect of peri-conception high fat diets on maternal ovarian function, fetal and placentome growth, and vascular umbilical development in goats. Reprod Domest Anim 2022; 57:1481-1492. [PMID: 35925942 DOI: 10.1111/rda.14224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 11/27/2022]
Abstract
The objective of this study was to determine whether a high-fat diet (HFD) fed to goats for a brief period during peri-conception would optimize reproductive and fetal responses. Thirty-four Anglo-Nubian crossbred adult goats were allocated into three groups: control (n = 11), fed with a total mixed ration (TMR) based on chopped elephant grass and concentrate; HFBM (n = 11), given TMR supplemented with soybean oil on a 0.5% dry matter basis for 11 days starting nine days before mating (BM); and HFAM (n = 12), fed with soybean oil included in the TMR for 15 days after mating (AM). The TMR diets differed in their fat content (7.5% vs. 2.9%). All goats had estrus synchronized for 14 days BM by intravaginal administration of 60 mg MPA sponge for 12 days. Forty-eight hours BM, the sponge was removed and 0.075 mg PGF2α was applied intramuscularly. After 36 hours, 1 mL GnRH was administered intramuscularly, and goats were mated after sponge removal. The fat groups showed lower feed intake (P < 0.001) and higher cholesterol levels (P < 0.001) when HFD was administered. Doppler and B-mode ultrasound evaluations revealed a greater (P < 0.05) number of small (< 3 mm, 10 ± 0.6 vs 8 ± 0.5) and large (≥ 3 mm, 6 ± 0.4 vs 5.0 ± 0.2) follicles and intraovarian blood area (P < 0.05) in the HFBM group during sponge removal (57.6%) and mating (24.2%) than those of the no-fat group. During AM, the fat-fed groups exhibited higher glutathione peroxidase levels (P < 0.05) and a reduction (P < 0.001) in corpus luteum size (19%) and vascularized Doppler area (41%). No difference (P > 0.05) between groups was found in fetal traits, placentome, and umbilical vascular development, except for the embryonic vesicle where HFAM twin pregnancy showed a smaller size than the control (26.1 ± 3.5 cm vs 33.7 ± 2.7 cm; P < 0.01). Thus, HFD applied during peri-conception of goats has no impact on later fetal development but improved the follicular growth when given before the mating. Thus the use of HFD in periconception has no impact on fetal development but increases follicular growth before breeding time.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Anibal Coutinho Rêgo
- Department of Animal Science, Federal University of Ceará (UFC), Fortaleza, Ceará, Brazil
| | - Davide Rondina
- School of Veterinary Medicine, Ceará State University (UECE), Fortaleza, Ceará, Brazil
| |
Collapse
|
32
|
Hubner A, Canisso I, Peixoto P, Coelho W, Cunha L, Ribeiro L, Crump S, Lima F. Effect of nerve growth factor-β administered at insemination for lactating Holstein dairy cows bred after timed-artificial insemination protocol. J Dairy Sci 2022; 105:6353-6363. [DOI: 10.3168/jds.2022-21874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/24/2022] [Indexed: 11/19/2022]
|
33
|
Ramos-Ibeas P, González-Brusi L, Used MT, Cocero MJ, Marigorta P, Alberio R, Bermejo-Álvarez P. In vitro culture of ovine embryos up to early gastrulating stages. Development 2022; 149:274801. [PMID: 35319748 PMCID: PMC8977095 DOI: 10.1242/dev.199743] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 02/03/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Developmental failures occurring shortly after blastocyst hatching from the zona pellucida constitute a major cause of pregnancy losses in both humans and farm ungulates. The developmental events occurring following hatching in ungulates include the proliferation and maturation of extra-embryonic membranes – trophoblast and hypoblast – and the formation of a flat embryonic disc, similar to that found in humans, which initiates gastrulation prior to implantation. Unfortunately, our understanding of these key processes for embryo survival is limited because current culture systems cannot sustain ungulate embryo development beyond hatching. Here, we report a culture system that recapitulates most developmental landmarks of gastrulating ovine embryos: trophoblast maturation, hypoblast migration, embryonic disc formation, disappearance of the Rauber's layer, epiblast polarization and mesoderm differentiation. Our system represents a highly valuable platform for exploring the cell differentiation, proliferation and migration processes governing gastrulation in a flat embryonic disc and for understanding pregnancy failures during the second week of gestation.
This article has an associated ‘The people behind the papers’ interview.
Collapse
Affiliation(s)
| | | | | | | | - Pilar Marigorta
- Animal Reproduction Department, INIA-CSIC, Madrid 28040, Spain
| | - Ramiro Alberio
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, LE12 5RD, UK
| | | |
Collapse
|
34
|
Simintiras CA, Drum JN, Liu H, Sofia Ortega M, Spencer TE. Uterine lumen fluid is metabolically semi-autonomous. Commun Biol 2022; 5:191. [PMID: 35233029 PMCID: PMC8888695 DOI: 10.1038/s42003-022-03134-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 02/08/2022] [Indexed: 11/23/2022] Open
Abstract
Uterine lumen fluid (ULF) is central to successful pregnancy establishment and maintenance, and impacts offspring wellbeing into adulthood. The current dogma is that ULF composition is primarily governed by endometrial glandular epithelial cell secretions and influenced by progesterone. To investigate the hypothesis that ULF is metabolically semi-autonomous, ULF was obtained from cyclic heifers, and aliquots incubated for various durations prior to analysis by untargeted semi-quantitative metabolomic profiling. Metabolite flux was observed in these ULF isolates, supporting the idea that the biochemical makeup of ULF is semi-autonomously dynamic due to enzyme activities. Subsequent integrative analyses of these, and existing, data predict the specific reactions underpinning this phenomenon. These findings enhance our understanding of the mechanisms leading to pregnancy establishment, with implications for improving fertility and pregnancy outcomes in domestic animals as well as women.
Collapse
Affiliation(s)
| | - Jessica N Drum
- Division of Animal Science, University of Missouri, Columbia, MO, 65211, USA
| | - Hongyu Liu
- Division of Animal Science, University of Missouri, Columbia, MO, 65211, USA
| | - M Sofia Ortega
- Division of Animal Science, University of Missouri, Columbia, MO, 65211, USA
| | - Thomas E Spencer
- Division of Animal Science, University of Missouri, Columbia, MO, 65211, USA.
- Division of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, MO, 65201, USA.
| |
Collapse
|
35
|
Bisinotto RS, Ribeiro ES, Greco LF, Taylor-Rodriguez D, Ealy AD, Ayres H, Lima FS, Martinez N, Thatcher WW, Santos JEP. Effects of progesterone concentrations and follicular wave during growth of the ovulatory follicle on conceptus and endometrial transcriptome in dairy cows. J Dairy Sci 2021; 105:889-903. [PMID: 34635351 DOI: 10.3168/jds.2021-20193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/21/2021] [Indexed: 11/19/2022]
Abstract
Objectives were to evaluate the effects of follicular wave and progesterone concentration on growth of the ovulatory follicle, conceptus elongation, uterine IFN-τ concentration, and transcriptome of conceptus and endometrium of pregnant cows on d 17 of gestation. Nonlactating nonpregnant Holstein cows were assigned randomly to one of 3 treatments: ovulation of a first-wave follicle (FW, n = 15); ovulation of a first-wave follicle and progesterone supplementation (FWP4, n = 12); and ovulation of a second-wave follicle (SW, n = 19). Ovulation of a first- or second-wave follicle was achieved by initiating the Ovsynch protocol (d -9 GnRH, d -2 and -1 PGF2α, d 0 GnRH and artificial insemination, d 0.7 artificial insemination) on d 0 or 6 of a presynchronized estrous cycle, respectively. Cows in FWP4 received 3 intravaginal inserts containing progesterone at 12, 24, and 48 h after the first GnRH injection that were removed on d -2. Cows were killed on d 17 for collection of the reproductive tract. Transcriptome was evaluated by microarray using the Affymetrix Bovine Array. Orthogonal contrasts were built to assess the effects of progesterone concentration during follicle growth (FW vs. FWP4 + SW) and follicular wave (FWP4 vs. SW). Progesterone concentrations (LSM ± SEM) from d -9 to -2 were greater for SW, followed by FWP4 and FW (5.38 ± 0.24, 4.26 ± 0.28, and 1.17 ± 0.27 ng/mL). Diameter of the ovulatory follicle (FW = 19.6 ± 0.6; FWP4 = 15.6 ± 0.6; SW = 15.2 ± 0.5 mm) and concentrations of estradiol from d -2 to 1 (FW = 4.05 ± 0.33; FWP4 = 2.73 ± 0.35; SW = 2.48 ± 0.30 pg/mL) were greater for FW compared with FWP4 and SW. Progesterone concentrations from d 3 to 16 were greater for FW compared with FWP4 and SW. A total of 28 singleton conceptuses were collected (FW, n = 8; FWP4, n = 8; SW, n = 12) and only intact conceptuses were included in the analyses of length (FW, n = 8; FWP4, n = 6; SW, n = 12). Although conceptuses were longer for FW compared with FWP4 and SW (FW = 16.6 ± 2.3; FWP4 = 9.8 ± 2.2; SW = 9.6 ± 2.0 cm), treatment did not affect the amount of IFN-τ in uterine flushing. Transcriptome of conceptuses and endometrium of pregnant cows was not extensively affected by follicular wave (8 and 1 differentially expressed transcripts) or concentration of progesterone during follicle growth (0 and 3 differentially expressed transcripts), showing that these factors did not affect conceptuses and endometrium transcriptome in pregnancies that are maintained to d 17.
Collapse
Affiliation(s)
- R S Bisinotto
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville 32610; D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville 32610.
| | - E S Ribeiro
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - L F Greco
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - D Taylor-Rodriguez
- Department of Mathematics and Statistics, Portland State University, Portland, OR 97201
| | - A D Ealy
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg 24060
| | - H Ayres
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - F S Lima
- Department of Population Health and Reproduction, University of California-Davis, Davis 95616
| | - N Martinez
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - W W Thatcher
- D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville 32610; Department of Animal Sciences, University of Florida, Gainesville 32611
| | - J E P Santos
- D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville 32610; Department of Animal Sciences, University of Florida, Gainesville 32611
| |
Collapse
|
36
|
Moraes JGN, Behura SK, Geary TW, Spencer TE. Analysis of the uterine lumen in fertility-classified heifers: I. Glucose, prostaglandins, and lipids†. Biol Reprod 2021; 102:456-474. [PMID: 31616913 DOI: 10.1093/biolre/ioz191] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/27/2019] [Accepted: 10/01/2019] [Indexed: 12/18/2022] Open
Abstract
Survival and growth of the bovine conceptus (embryo and associated extraembryonic membranes) are dependent on endometrial secretions or histotroph found in the uterine lumen. Previously, serial embryo transfer was used to classify heifers as high fertile (HF), subfertile (SF), or infertile (IF). Here, we investigated specific histotroph components [glucose, prostaglandins (PGs), and lipids] in the uterine lumen of day 17 pregnant and open fertility-classified heifers. Concentrations of glucose in the uterine lumen were increased by pregnancy but did not differ among fertility-classified heifers. Differences in expression of genes encoding glucose transporters and involved with glycolysis and gluconeogenesis were observed between conceptuses collected from HF and SF heifers. In the uterine lumen, PGE2 and PGF2α were increased by pregnancy, and HF heifers had higher concentrations of PGE2, PGF2α, and 6-keto-PFG1α than SF heifers. Differences were found in expression of genes regulating PG signaling, arachidonic acid metabolism, and peroxisome proliferator-activated receptor signaling among conceptuses and endometrium from fertility-classified heifers. Lipidomics was conducted exclusively in samples from HF heifers, and phosphatidylcholine was the main lipid class that increased in the uterine lumen by pregnancy. Expression of several lipid metabolism genes differed between HF and SF conceptuses, and a number of fatty acids were differentially abundant in the uterine lumen of pregnant HF and SF heifers. These results support the ideas that uterine luminal histotroph impacts conceptus survival and programs its development and is a facet of dysregulated conceptus-endometrial interactions that result in loss of the conceptus in SF cattle during the implantation period of pregnancy establishment.
Collapse
Affiliation(s)
- Joao G N Moraes
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Thomas W Geary
- USDA-ARS, Fort Keogh Livestock and Range Research Laboratory, Miles City, Montana, USA
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
37
|
Leme LO, Machado GM, Fidelis AAG, Guimarães ALS, Sprícigo JFW, Carvalho JO, Pivato I, Franco MM, Dode MAN. Transcriptome of D14 in vivo x in vitro bovine embryos: is there any difference? In Vitro Cell Dev Biol Anim 2021; 57:598-609. [PMID: 34128156 DOI: 10.1007/s11626-021-00599-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/03/2021] [Indexed: 10/21/2022]
Abstract
It is well-established that in vitro culture affects quality, gene expression, and epigenetic processes in bovine embryos and that trophectoderm cells are the most susceptible to abnormalities. These changes have been reported as the main factors responsible for losses observed after transfer of in vitro-produced embryos. The present study aimed to investigate the effect of an in vitro system on bovine embryo transcriptional profiles on D14 of development. Two groups were used-one with embryos produced in vitro until D7 (day 7; VT group) and another with embryos produced in vivo by hormonal stimulation, with embryos collected on D7 (VV group). D7 embryos at similar developmental stages from both treatments were transferred to recipient uteri and recollected on D14. From D14 embryos of both treatments, trophoblast samples were removed by biopsy for sexing and transcriptome analyses. Embryos were sexed by polymerase chain reaction (PCR), and only males were used for RNA sequencing. In total, 29,005 transcripts were expressed, from which 900 were differentially expressed, but only 29 genes were significantly differentially expressed. In addition, 20 genes were found uniquely for VV and 27 for VT. These findings suggested that although the uterine environment minimized transcriptional differences, it was not able to make trophoblasts from the in vitro embryos similar to the in vivo ones. The few genes exhibiting differences are in control of important events that may be responsible for embryonic losses occurring during the first period of gestation.
Collapse
Affiliation(s)
| | - Grazieli Marinheiro Machado
- University of Brasilia, Animal Science, Merk Millipore /Sigma-Aldrich Brasil, São Paulo, DF, 70910-900, Brazil
| | | | - Ana Luiza Silva Guimarães
- University of Brasilia, Animal Science, Merk Millipore /Sigma-Aldrich Brasil, São Paulo, DF, 70910-900, Brazil
| | | | | | - I Pivato
- University of Brasilia, Animal Science, Merk Millipore /Sigma-Aldrich Brasil, São Paulo, DF, 70910-900, Brazil
| | - Maurício Machaim Franco
- Embrapa Genetic Resources and Biotechnology, Laboratory of Animal Reproduction, Parque Estação Biológica, W5 Norte Final, Brasília, DF, 70770-900, Brazil
| | - Margot Alves Nunes Dode
- University of Brasilia, Animal Science, Merk Millipore /Sigma-Aldrich Brasil, São Paulo, DF, 70910-900, Brazil. .,Embrapa Genetic Resources and Biotechnology, Laboratory of Animal Reproduction, Parque Estação Biológica, W5 Norte Final, Brasília, DF, 70770-900, Brazil.
| |
Collapse
|
38
|
Northrop-Albrecht EJ, Rich JJJ, Cushman RA, Yao R, Ge X, Perry GA. Influence of estradiol on bovine trophectoderm and uterine gene transcripts around maternal recognition of pregnancy†. Biol Reprod 2021; 105:381-392. [PMID: 33962467 DOI: 10.1093/biolre/ioab091] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/30/2021] [Accepted: 04/29/2021] [Indexed: 01/08/2023] Open
Abstract
Embryo survival and pregnancy success is increased among animals that exhibit estrus prior to fixed time-artificial insemination, but there are no differences in conceptus survival to d16. The objective of this study was to determine effects of preovulatory estradiol on uterine transcriptomes, select trophectoderm (TE) transcripts, and uterine luminal fluid proteins. Beef cows/heifers were synchronized, artificially inseminated (d0), and grouped into either high (highE2) or low (lowE2) preovulatory estradiol. Uteri were flushed (d16); conceptuses and endometrial biopsies (n = 29) were collected. RNA sequencing was performed on endometrium. Real-time polymerase chain reaction (RT-PCR) was performed on TE (n = 21) RNA to measure relative abundance of IFNT, PTGS2, TM4SF1, C3, FGFR2, and GAPDH. Uterine fluid was analyzed using 2D Liquid Chromatography with tandem mass spectrometry-based Isobaric tags for relative and absolute quantitation (iTRAQ) method. RT-PCR data were analyzed using the MIXED procedure in SAS. There were no differences in messenger RNA (mRNA) abundances in TE, but there were 432 differentially expressed genes (253 downregulated, 179 upregulated) in highE2/conceptus versus lowE2/conceptus groups. There were also 48 differentially expressed proteins (19 upregulated, 29 downregulated); 6 of these were differentially expressed (FDR < 0.10) at the mRNA level. Similar pathways for mRNA and proteins included: calcium signaling, protein kinase A signaling, and corticotropin-releasing hormone signaling. These differences in uterine function may be preparing the conceptus for improved likelihood of survival after d16 among highE2 animals.
Collapse
Affiliation(s)
| | - Jerica J J Rich
- Department of Animal Science, South Dakota State University, Brookings, SD, USA
| | - Robert A Cushman
- USDA, Agricultural Research Service, Roman L. Hruska US Meat Animal Research Center, Clay Center, NE, USA
| | - Runan Yao
- Department of Mathematics and Statistics, South Dakota State University, Brookings, SD, USA
| | - Xijin Ge
- Department of Mathematics and Statistics, South Dakota State University, Brookings, SD, USA
| | - George A Perry
- Department of Animal Science, South Dakota State University, Brookings, SD, USA
| |
Collapse
|
39
|
mRNA Expressions of Candidate Genes in Gestational Day 16 Conceptus and Corresponding Endometrium in Repeat Breeder Dairy Cows with Suboptimal Uterine Environment Following Transfer of Different Quality Day 7 Embryos. Animals (Basel) 2021; 11:ani11041092. [PMID: 33920430 PMCID: PMC8070175 DOI: 10.3390/ani11041092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The mRNA expression of Interferon-τ (IFNT), IFN stimulated genes (ISG15, CTSL1, RSAD2, SLC2A1, CXCL10, and SLC27A6), Peroxisome proliferator-activated receptors (PPARA, D, and G), and Retinoid X receptors (RXRA, B, and G) genes and proteins (IFNT, ISG15, CXCL10, PPARG, RXRG, SLC2A1, and SLC27A6) were lower and MUC1 at mRNA and protein levels, was greater in gestation day (GD) 16 embryo and corresponding endometrium of subclinical endometritis cows, and in cows following transfer of poor quality embryo (Grade 3). All genes and proteins but MUC1 expression was lower in GD16 tubular conceptus and corresponding endometrium vs. GD16 filamentous conceptus and matching endometrium in cows with SCE and in cows following the transfer of Grade 3 embryo. Disrupted embryo-uterine communication by altered expression of candidate genes in SCE cows, and in cows following the transfer of poor GD7 embryo negatively programs the conceptus development and plausibly affects the conceptus survival. Abstract Effect of the gestational day (GD) 7 embryo quality grade (QG) and subclinical endometritis (SCE) on mRNA and protein expressions of candidate genes [Interferon-τ (IFNT), IFN stimulated genes (ISG15, CTSL1, RSAD2, SLC2A1, CXCL10, and SLC27A6), Peroxisome proliferator activated receptors (PPARA, D, and G), Retinoid X receptors (RXRA, B, and G), and Mucin-1 (MUC1)] in GD16 conceptus and corresponding endometrium were evaluated. After screening of performance records (n = 2389) and selection of repeat breeders (n = 681), cows with SCE (≥6% polymorphonuclear neutrophils—PMN; n = 180) and no-SCE (<6%PMN; n = 180) received GD7 embryos of different QGs. Based on GD16 conceptus recovery, cows with SCE (n = 30) and No- SCE (n = 30) that received GD7 embryos QG1 (good, n = 20), 2 (fair, n = 20), and 3 (poor, n = 20) were included for gene analysis. mRNA and protein expressions (IFNT, ISG15, CXCL10, PPARG, RXRG, SLC2A1, and SLC27A6) differed between SCE and embryo QG groups. All genes but MUC1 and all proteins but MUC1 expression was greater in filamentous conceptus and corresponding endometrium vs. tubular conceptus and matching endometrium in SCE and embryo QG groups. In conclusion, disrupted embryo-uterine communication by altered expression of candidate genes in SCE cows, and in cows following the transfer of poor embryo negatively programs the conceptus development and plausibly affects conceptus survival.
Collapse
|
40
|
O'Neil EV, Spencer TE. Insights into the lipidome and primary metabolome of the uterus from day 14 cyclic and pregnant sheep†. Biol Reprod 2021; 105:87-99. [PMID: 33768235 DOI: 10.1093/biolre/ioab053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/24/2021] [Accepted: 03/22/2021] [Indexed: 12/23/2022] Open
Abstract
In ruminants, conceptus elongation requires the endometrium and its secretions. The amino acid, carbohydrate, and protein composition of the uterine lumen during early pregnancy has been defined in sheep; however, a comprehensive understanding of metabolomic changes in the uterine lumen is lacking, particularly with respect to lipids. Here, the lipidome and primary metabolome of the uterine lumen, endometrium, and/or conceptus was determined on day 14 of the estrous cycle and pregnancy. Lipid droplets and select triglycerides were depleted in the endometrium of pregnant ewes. In contrast, select ceramides, diglycerides, and non-esterified fatty acids as well as several phospholipid classes (phosphatidylcholine, phosphatidylinositol, phosphatidylglycerols, and diacylglycerols) were elevated in the uterine lumen of pregnant ewes. Lipidomic analysis of the conceptus revealed that triglycerides are particularly abundant within the conceptus. Primary metabolite analyses found elevated amino acids, carbohydrates, and energy substrates, among others, in the uterine lumen of pregnant ewes. Collectively, this study supports the hypothesis that lipids are important components of the uterine lumen that govern conceptus elongation and growth during early pregnancy.
Collapse
Affiliation(s)
- Eleanore V O'Neil
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
41
|
Simintiras CA, Sánchez JM, McDonald M, O'Callaghan E, Aburima AA, Lonergan P. Conceptus metabolomic profiling reveals stage-specific phenotypes leading up to pregnancy recognition in cattle†. Biol Reprod 2021; 104:1022-1033. [PMID: 33590828 DOI: 10.1093/biolre/ioab021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/16/2021] [Accepted: 02/03/2021] [Indexed: 12/20/2022] Open
Abstract
Reproductive efficiency in livestock is a major driver of sustainable food production. The poorly understood process of ruminant conceptus elongation (a) prerequisites maternal pregnancy recognition, (b) is essential to successful pregnancy establishment, and (c) coincides with a period of significant conceptus mortality. Conceptuses at five key developmental stages between Days 8-16 were recovered and cultured in vitro for 6 h prior to conditioned media analysis by untargeted ultrahigh-performance liquid chromatography tandem mass spectroscopy. This global temporal biochemical interrogation of the ex situ bovine conceptus unearths two antithetical stage-specific metabolic phenotypes during tubular (metabolically retentive) vs. filamentous (secretory) development. Moreover, the retentive conceptus phenotype on Day 14 coincides with an established period of elevated metabolic density in the uterine fluid of heifers with high systemic progesterone-a model of accelerated conceptus elongation. These data, combined, suggest a metabolic mechanism underpinning conceptus elongation, thereby enhancing our understanding of the biochemical reciprocity of maternal-conceptus communication, prior to maternal pregnancy recognition.
Collapse
Affiliation(s)
| | - José M Sánchez
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Michael McDonald
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Elena O'Callaghan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ahmed A Aburima
- Centre for Atherothrombotic and Metabolic Research, Hull York Medical School, Kingston-Upon-Hull, UK
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
42
|
King K, Ticiani E, Sprícigo JFW, Carvalho MR, Mion B, Bertolini M, Contreras GA, Ribeiro ES. Dynamics of lipid droplets in the endometrium and fatty acids and oxylipins in the uterine lumen, blood, and milk of lactating cows during diestrus. J Dairy Sci 2021; 104:3676-3692. [PMID: 33455794 DOI: 10.3168/jds.2020-19196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/19/2020] [Indexed: 12/20/2022]
Abstract
Our objective was to investigate the lipid content of uterus, blood plasma, and milk at early, mid, and late diestrus. Lactating cows (n = 30) had the estrous cycle and ovulation synchronized by administration of exogenous hormones. Cows were blocked by parity and assigned randomly to receive transcervical uterine flushing and biopsy on d 5 (early diestrus), 10 (mid diestrus) or 15 (late diestrus) of the estrous cycle. Flushing and endometrial biopsy were performed in the uterine horn ipsilateral to the corpus luteum. The recovered flushing was used for analyses of lipid composition by liquid chromatography-tandem mass spectrometry and the biopsy was used for investigation of lipid droplet abundance in endometrial cryosections using a neutral lipid fluorescent dye. In addition, blood and milk samples were collected from all cows on d 5, 10, and 15. All blood samples were used to measure the concentration of progesterone in plasma, and all milk samples were used to determine milk composition. Subsamples of blood plasma and milk were also used to evaluate the composition of fatty acids and oxylipins using the same methodology used for uterine flushing samples. The abundance of lipid droplets in the endometrium increased 1.9-fold from d 5 to 10, and 2-fold from d 10 to 15. Concentration of long-chain fatty acids and oxylipins in uterine flushing were, on average, 2.2 and 2.5 times greater in samples collected on d 15 compared with those collected on d 5 and 10. These differences were not observed in blood and milk, suggesting that accumulation of fatty acids and oxylipins in the uterus is regulated locally. In addition to concentration, the profile of individual fatty acids and oxylipins in uterine lumen changed substantially during diestrus. The main categories with increased abundance at late diestrus were mono- and polyunsaturated fatty acids, and oxylipins derived from arachidonic acid, dihomo-γ-linolenic acid, and docosahexaenoic acid. In conclusion, fatty acids and oxylipins accumulate in the uterine lumen during diestrus and might work as a mechanism to supply these lipids to the developing conceptus at late diestrus, when the onset of elongation occurs and substantial synthesis of biomass and cell signaling by lipid mediators are required.
Collapse
Affiliation(s)
- K King
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - E Ticiani
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada, N1G 2W1; Animal Sciences Research Program, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil, 91540-000
| | - J F W Sprícigo
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - M R Carvalho
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - B Mion
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - M Bertolini
- Animal Sciences Research Program, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil, 91540-000
| | - G A Contreras
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, 48824
| | - E S Ribeiro
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada, N1G 2W1.
| |
Collapse
|
43
|
Simintiras CA, Sánchez JM, McDonald M, Lonergan P. The biochemistry surrounding bovine conceptus elongation†. Biol Reprod 2020; 101:328-337. [PMID: 31181571 DOI: 10.1093/biolre/ioz101] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/10/2019] [Accepted: 06/07/2019] [Indexed: 12/29/2022] Open
Abstract
Conceptus elongation is a fundamental developmental event coinciding with a period of significant pregnancy loss in cattle. The process has yet to be recapitulated in vitro, whereas in vivo it is directly driven by uterine secretions and indirectly influenced by systemic progesterone. To better understand the environment facilitating this critical reproductive phenomenon, we interrogated the biochemical composition of uterine luminal fluid from heifers with high vs physiological circulating progesterone on days 12-14 of the estrous cycle-the window of conceptus elongation-initiation-by high-throughput untargeted ultrahigh-performance liquid chromatography tandem mass spectroscopy. A total of 233 biochemicals were identified, clustering within 8 superpathways [amino acids (33.9%), lipids (32.2%), carbohydrates (8.6%), nucleotides (8.2%), xenobiotics (6.4%), cofactors and vitamins (5.2%), energy substrates (4.7%), and peptides (0.9%)] and spanning 66 metabolic subpathways. Lipids dominated total progesterone (39.1%) and day (57.1%) effects; however, amino acids (48.5%) and nucleotides (14.8%) accounted for most day by progesterone interactions. Corresponding pathways over-represented in response to day and progesterone include (i) methionine, cysteine, s-adenosylmethionine, and taurine (9.3%); (ii) phospholipid (7.4%); and (iii) (hypo)xanthine and inosine purine metabolism (5.6%). Moreover, under physiological conditions, the uterine lumen undergoes a metabolic shift after day 12, and progesterone supplementation increases total uterine luminal biochemical abundance at a linear rate of 0.41-fold day-1-resulting in a difference (P ≤ 0.0001) by day 14. This global metabolic analysis of uterine fluid during the initiation of conceptus elongation offers new insights into the biochemistry of maternal-embryo communication, with implications for improving ruminant fertility.
Collapse
Affiliation(s)
| | - José M Sánchez
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Michael McDonald
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
44
|
Mazzoni G, Pedersen HS, Rabaglino MB, Hyttel P, Callesen H, Kadarmideen HN. Characterization of the endometrial transcriptome in early diestrus influencing pregnancy status in dairy cattle after transfer of in vitro-produced embryos. Physiol Genomics 2020; 52:269-279. [PMID: 32508252 DOI: 10.1152/physiolgenomics.00027.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Modifications of the endometrial transcriptome at day 7 of the estrus cycle are crucial to maintain gestation after transfer of in vitro-produced (IVP) embryos, although these changes are still largely unknown. The aim of this study was to identify genes, and their related biological mechanisms, important for pregnancy establishment based on the endometrial transcriptome of recipient lactating dairy cows that become pregnant in the subsequent estrus cycle, upon transfer of IVP embryos. Endometrial biopsies were taken from Holstein Friesian cows on day 6-8 of the estrus cycle followed by embryo transfer in the following cycle. Animals were classified retrospectively as pregnant (PR, n = 8) or nonpregnant (non-PR, n = 11) cows, according to pregnancy status at 26-47 days. Extracted mRNAs from endometrial samples were sequenced with an Illumina platform to determine differentially expressed genes (DEG) between the endometrial transcriptome from PR and non-PR cows. There were 111 DEG (false discovery rate < 0.05), which were mainly related to extracellular matrix interaction, histotroph metabolic composition, prostaglandin synthesis, transforming growth factor-β signaling as well as inflammation and leukocyte activation. Comparison of these DEG with DEG identified in two public external data sets confirmed the more fertile endometrial molecular profile of PR cows. In conclusion, this study provides insights into the key early endometrial mechanisms for pregnancy establishment, after IVP embryo transfer in dairy cows.
Collapse
Affiliation(s)
- Gianluca Mazzoni
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.,Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Maria B Rabaglino
- Quantitative Genetics, Bioinformatics and Computational Biology Group, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Poul Hyttel
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Henrik Callesen
- Department of Animal Science, Aarhus University, Tjele, Denmark
| | - Haja N Kadarmideen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.,Quantitative Genetics, Bioinformatics and Computational Biology Group, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
45
|
Simintiras CA, Sánchez JM, McDonald M, Martins T, Binelli M, Lonergan P. Biochemical characterization of progesterone-induced alterations in bovine uterine fluid amino acid and carbohydrate composition during the conceptus elongation window†. Biol Reprod 2020; 100:672-685. [PMID: 30388203 DOI: 10.1093/biolre/ioy234] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/17/2018] [Accepted: 10/30/2018] [Indexed: 12/15/2022] Open
Abstract
Pregnancy establishment in cattle is contingent on conceptus elongation-a fundamental developmental event coinciding with the time during which most pregnancies fail. Elongation in vivo is directly driven by uterine secretions, indirectly influenced by systemic progesterone concentrations, and has yet to be recapitulated in vitro. To better understand the microenvironment evolved to facilitate this phenomenon, the amino acid and carbohydrate composition of uterine fluid was interrogated using high-throughput metabolomics on days 12, 13, and 14 of the estrous cycle from heifers with normal and high circulating progesterone. A total of 99 biochemicals (79 amino acids and 20 carbohydrates) were consistently identified, of which 31 showed a day by progesterone interaction. Fructose and mannitol/sorbitol did not exhibit a day by progesterone interaction, but displayed the greatest individual fluctuations (P ≤ 0.05) with respective fold increases of 18.39 and 28.53 in high vs normal progesterone heifers on day 12, and increases by 10.70-fold and 14.85-fold in the uterine fluid of normal progesterone animals on day 14 vs day 12. Moreover, enrichment analyses revealed that the phenylalanine, glutathione, polyamine, and arginine metabolic pathways were among the most affected by day and progesterone. In conclusion, progesterone had a largely stabilizing effect on amino acid flux, and identified biochemicals of likely importance to conceptus elongation initiation include arginine, fructose, glutamate, and mannitol/sorbitol.
Collapse
Affiliation(s)
| | - José M Sánchez
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Michael McDonald
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Thiago Martins
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA.,Department of Animal Reproduction, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Mario Binelli
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA
| | - Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
46
|
Dickson MJ, Piersanti RL, Ramirez-Hernandez R, de Oliveira EB, Bishop JV, Hansen TR, Ma Z, Jeong KCC, Santos JEP, Sheldon MI, Block J, Bromfield JJ. Experimentally Induced Endometritis Impairs the Developmental Capacity of Bovine Oocytes†. Biol Reprod 2020; 103:508-520. [PMID: 32401311 DOI: 10.1093/biolre/ioaa069] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/01/2020] [Accepted: 05/11/2020] [Indexed: 01/17/2023] Open
Abstract
Uterine infection is associated with infertility in women and dairy cows, even after the resolution of infection. However, the mechanisms causing this persistent infertility are unclear. Here, we hypothesized that induced endometritis in non-lactating dairy cows would reduce the developmental competence of oocytes. Non-lactating Holstein cows received an intrauterine infusion of endometrial pathogenic bacteria (Escherichia coli and Trueperella pyogenes; n = 12) or vehicle control (n = 11) on day 2 of the estrous cycle. Bacterial infusion increased expression of endometrial inflammatory mediators, and a mucopurulent discharge in the vagina confirmed the establishment of endometritis. Oocytes were collected by transvaginal ultrasound-guided ovum pickup on days 2, 24, 45, and 66 following infusion and subjected to in vitro fertilization and embryo culture. Bacterial infusion resulted in fewer cleaved oocytes developing to morulae compared to vehicle-infused controls (30.7 versus 45.0%), with the greatest effect observed in oocytes collected on day 24. Development to morula was inversely correlated with endometrial expression of IL6 on day 6. The expression of genes associated with embryo quality did not differ significantly between morulae from bacteria-infused and control cows. Artificial insemination 130 days after intrauterine infusion resulted in normal, filamentous embryos that produced interferon tau 16 days after conception in both infusion groups. This model of experimentally induced uterine infection successfully resulted in endometritis and a reduction in the proportion of oocytes that developed to morulae following in vitro fertilization. In conclusion, endometritis reduced the capacity of oocytes to develop to morulae.
Collapse
Affiliation(s)
- Mackenzie J Dickson
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville FL, USA
| | - Rachel L Piersanti
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville FL, USA
| | | | | | - Jeanette V Bishop
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Thomas R Hansen
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Zhengxin Ma
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville FL, USA
| | - Kwang Cheol C Jeong
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville FL, USA
| | - Jose E P Santos
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville FL, USA
| | - Martin I Sheldon
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, UK
| | | | - John J Bromfield
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville FL, USA
| |
Collapse
|
47
|
Mateo-Otero Y, Sánchez JM, Recuero S, Bagés-Arnal S, McDonald M, Kenny DA, Yeste M, Lonergan P, Fernandez-Fuertes B. Effect of Exposure to Seminal Plasma Through Natural Mating in Cattle on Conceptus Length and Gene Expression. Front Cell Dev Biol 2020; 8:341. [PMID: 32478076 PMCID: PMC7235327 DOI: 10.3389/fcell.2020.00341] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/20/2020] [Indexed: 12/20/2022] Open
Abstract
A growing body of evidence suggests that paternal factors have an impact on offspring development. These studies have been mainly carried out in mice, where seminal plasma (SP) has been shown to regulate endometrial gene expression and impact embryo development and subsequent offspring health. In cattle, infusion of SP into the uterus also induces changes in endometrial gene expression, however, evidence for an effect of SP on early embryo development is lacking. In addition, during natural mating, the bull ejaculates in the vagina; hence, it is not clear whether any SP reaches the uterus in this species. Thus, the aim of the present study was to determine whether SP exposure leads to improved early embryo survival and developmental rates in cattle. To this end, Day 7 in vitro produced blastocysts were transferred to heifers (12-15 per heifer) previously mated to vasectomized bulls (n = 13 heifers) or left unmated (n = 12 heifers; control). At Day 14, heifers were slaughtered, and conceptuses were recovered to assess size, morphology and expression of candidate genes involved in different developmental pathways. Additionally, CL volume at Day 7, and weight and volume of CL at Day 14 were recorded. No effect of SP on CL volume and weight not on conceptus recovery rate was observed. However, filamentous conceptuses recovered from SP-exposed heifers were longer in comparison to the control group and differed in expression of CALM1, CITED1, DLD, HNRNPDL, PTGS2, and TGFB3. In conclusion, data indicate that female exposure to SP during natural mating can affect conceptus development in cattle. This is probably achieved through modulation of the female reproductive environment at the time of mating.
Collapse
Affiliation(s)
- Yentel Mateo-Otero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - José María Sánchez
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Sandra Recuero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Sandra Bagés-Arnal
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Michael McDonald
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - David A. Kenny
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc Grange, Dunsany, Ireland
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Beatriz Fernandez-Fuertes
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| |
Collapse
|
48
|
Peroxisome proliferator-activated receptor β/δ and γ agonists differentially affect prostaglandin E2 and cytokine synthesis and nutrient transporter expression in porcine trophoblast cells during implantation. Theriogenology 2020; 152:36-46. [PMID: 32361305 DOI: 10.1016/j.theriogenology.2020.04.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/24/2020] [Accepted: 04/18/2020] [Indexed: 01/09/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear receptor family of ligand-dependent transcription factors. PPARs have been shown to be important regulators of female reproductive functions, including conceptus development and placenta formation. This study examines the effect of PPARβ/δ and PPARγ agonists and antagonists on (1) the synthesis of prostaglandin (PG) E2, interleukin (IL) 6, interferon (IFN) γ, and tumor necrosis factor (TNF) α and (2) the mRNA expression of genes encoding nutrient transporters and/or binding proteins in Day 15 conceptus trophoblast cells. The study also examines whether PPAR agonist-modulated IL6, IFNγ, and TNFα secretion is mediated via mitogen-activated protein kinase (MAPK) pathways. Trophoblast cells were exposed to L-165,041 (a PPARβ/δ agonist) or rosiglitazone (a PPARγ agonist) in the presence or absence of GSK3787 (a PPARβ/δ antagonist) or GW9662 (a PPARγ antagonist) or in the presence or absence of U0126 (a MAPK inhibitor). Rosiglitazone stimulated PGE synthase and IFNG mRNA expression in trophoblast cells and enhanced PGE2 concentrations in the incubation medium. Moreover, cells treated with rosiglitazone exhibited increased abundance of the solute carrier organic anion transporter family member 2A1 (SLCO2A1, a PG transporter) and of fatty acid binding protein (FABP) 5 transcripts. All these effects were abolished by the addition of GW9662, which indicates that the action of rosiglitazone is PPARγ-dependent in the studied cells. L-165,041 inhibited TNFα synthesis and decreased the mRNA expression of FABP3 and IL6 in trophoblast cells. However, this effect was not abolished by the addition of GSK3787 into the incubation medium, suggesting that L-165,041 action is independent of PPARβ/δ. The inhibitory effect of L-165,041 on TNFα concentration and the stimulatory effect of rosiglitazone on IFNγ accumulation in the medium were not observed in the presence of the MAPK inhibitor, suggesting that the action of both agonists may be mediated by MAPKs. In conclusion, PPARβ/δ and PPARγ agonists are differentially involved in the trophoblast expression of genes related to conceptus development and implantation in pigs. Furthermore, L-165,041 and rosiglitazone may have PPAR-dependent and -independent effects in conceptus trophoblast cells.
Collapse
|
49
|
Moraes JGN, Behura SK, Bishop JV, Hansen TR, Geary TW, Spencer TE. Analysis of the uterine lumen in fertility-classified heifers: II. Proteins and metabolites†. Biol Reprod 2020; 102:571-587. [PMID: 31616912 PMCID: PMC7331878 DOI: 10.1093/biolre/ioz197] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/09/2019] [Accepted: 10/02/2019] [Indexed: 02/06/2023] Open
Abstract
Survival and growth of the bovine conceptus is dependent on endometrial secretions or histotroph. Previously, serial blastocyst transfer was used to classify heifers as high fertile (HF), subfertile (SF), or infertile (IF). Here, we investigated specific histotroph components (proteins and metabolites) in the uterine lumen of day 17 fertility-classified heifers. Interferon tau (IFNT) was more abundant in uterine lumenal fluid (ULF) of pregnant HF than SF animals as the conceptus was longer in HF heifers. However, no differences in endometrial expression of selected classical and nonclassical interferon-stimulated genes (ISGs) were observed, suggesting that IFNT signaling in the endometrium of pregnant HF and SF heifers was similar. Pregnancy significantly increased the abundance of several proteins in ULF. Based on functional annotation, the abundance of a number of proteins involved in energy metabolism, oxidative stress, amino acid metabolism, and cell proliferation and differentiation were greater in the ULF of pregnant HF than SF heifers. Metabolomics analysis found that pregnancy only changed the metabolome composition of ULF from HF heifers. The majority of the metabolites that increased in the ULF of pregnant HF as compared to SF heifers were associated with energy and amino acid metabolism. The observed differences in ULF proteome and metabolome are hypothesized to influence uterine receptivity with consequences on conceptus development and survival in fertility-classified heifers.
Collapse
Affiliation(s)
- Joao G N Moraes
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Jeanette V Bishop
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA and
| | - Thomas R Hansen
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA and
| | - Thomas W Geary
- USDA-ARS, Fort Keogh Livestock and Range Research Laboratory, Miles City, Montana, USA
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
50
|
Long term dietary supplementation with microalgae increases plasma docosahexaenoic acid in milk and plasma but does not affect plasma 13,14-dihydro-15-keto PGF 2α concentration in dairy cows. J DAIRY RES 2020; 87:14-22. [PMID: 32046806 DOI: 10.1017/s002202991900102x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The aims of the study were to determine the long-term effects of dietary supplementation with microalgae (SCIM) on milk and blood fatty acid (FA) composition and reproductive hormones in early lactation dairy cows. Sixty Holstein-Friesian dairy cows (30 per treatment) were unsupplemented (Control) or supplemented with 100 g of SCIM (Schizochytrium limacinum sp.) per cow per day from 25 ± 0.5 d post-partum for 98 d. Intake and milk yield were recorded daily, with milk samples collected at weeks 0, 1, 2, 4, 8 and 14, and blood samples collected from 12 representative pairs per treatment at weeks 0, 2, 4, 8, and 14 for subsequent analysis of FA, β-hydroxybutyrate, non-esterified fatty acids and glucose. At 33 ± 0.9 d postpartum the oestrus cycle of 24 cows (12 per treatment) were synchronized and plasma 13,14-dihydro-15-keto PGF2α (PGFM) concentrations determined following an oxytocin challenge. Data were analysed by repeated measures analysis of variance. There was no effect of treatment on dry matter intake, milk yield or milk fat content, with mean values across treatments of 22.1 and 40.6, and 37.2 g/kg respectively. Milk fat concentration of C22:6 n-3 increased rapidly in cows receiving SCIM, reaching a maximum of 0.38 g/100 g FA by week 14. Similarly, blood concentration of C22:6 n-3 increased to 1.6 g/100 g FA by week 14 in cows fed SCIM. There was no effect of treatment on plasma metabolites, but plasma glucose was lower in cows fed SCIM compared to the Control at week 2, and higher in week 8. There was no effect of treatment on peak plasma PGFM concentration or area under the curve. It is concluded that feeding SCIM rapidly increases blood and milk concentrations of C22:6 n-3 which are maintained over time, but does not improve plasma PGFM in dairy cows.
Collapse
|