1
|
Degens H, Paudyal A, Kwakkel G, Slevin M, Maas H. Stroke-induced excess in capillarization relative to oxidative capacity in rats is muscle specific. Physiol Rep 2024; 12:e16153. [PMID: 39016169 PMCID: PMC11253024 DOI: 10.14814/phy2.16153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
Stroke is not only associated with muscle weakness, but also associated with reduced muscle fatigue resistance and reduced desaturation during exercise that may be caused by a reduced oxidative capacity and/or microvasculature. Therefore, the objective of the present study was to determine the effects of stroke on muscle mass, fiber size and shape, capillarization and oxidative capacity of the rat m. extensor carpi radialis (ECR) and m. flexor carpi ulnaris (FCU) after a photothrombotic stroke in the forelimb region of the primary sensorimotor cortex. The main observation of the present study was that 4 weeks after induction of stroke there were no significant changes in muscle fiber size and shape. Although there was no significant capillary rarefaction, there was some evidence for remodeling of the capillary bed as reflected by a reduced heterogeneity of capillary spacing (p = 0.006) that may result in improved muscle oxygenation. In the ECR, but not in the FCU, this was accompanied by reduction in muscle fiber oxidative capacity as reflected by reduced optical density of sections stained for succinate dehydrogenase (p = 0.013). The reduced oxidative capacity and absence of significant capillary rarefaction resulted in a capillary to fiber ratio per unit of oxidative capacity that was higher after stroke in the ECR (p = 0.01), but not in the FCU. This suggests that at least during the early stages, stroke is not necessarily accompanied by muscle fiber atrophy, and that stroke-induced reductions in oxidative capacity resulting in relative excess of capillarization are muscle specific.
Collapse
Affiliation(s)
- Hans Degens
- Department of Life SciencesManchester Metropolitan UniversityManchesterUK
- Institute of Sport Science and InnovationsLithuanian Sports UniversityKaunasLithuania
| | - Arjun Paudyal
- Department of Life SciencesManchester Metropolitan UniversityManchesterUK
- Department of Human Movement Sciences, Faculty of Behavioural and Movement SciencesAmsterdam Movement Sciences, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Gert Kwakkel
- Department of Rehabilitation MedicineAmsterdam Movement Sciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
- Department of NeurorehabilitationAmsterdam Rehabilitation Research CentreAmsterdamThe Netherlands
| | - Mark Slevin
- Department of Life SciencesManchester Metropolitan UniversityManchesterUK
- The George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu MuresTargu MuresTransylvaniaRomania
| | - Huub Maas
- Department of Human Movement Sciences, Faculty of Behavioural and Movement SciencesAmsterdam Movement Sciences, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
2
|
Hosoda R, Nakashima R, Yano M, Iwahara N, Asakura S, Nojima I, Saga Y, Kunimoto R, Horio Y, Kuno A. Resveratrol, a SIRT1 activator, attenuates aging-associated alterations in skeletal muscle and heart in mice. J Pharmacol Sci 2023; 152:112-122. [PMID: 37169475 DOI: 10.1016/j.jphs.2023.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
Aging is associated with impairment of multiple organs, including skeletal muscle and heart. In this study, we investigated whether resveratrol, an activator of an NAD+-dependent protein deacetylase Sirtuin-1 (SIRT1), attenuates age-related sarcopenia and cardiomyocyte hypertrophy in mice. Treatment of mice with resveratrol (0.4 g/kg diet) from 28 weeks of age for 32 weeks prevented aging-associated shortening of rotarod riding time. In the tibialis anterior (TA) muscle, histogram analysis showed that the atrophic muscle was increased in 60-week-old (wo) mice compared with 20-wo mice, which was attenuated by resveratrol. In the heart, resveratrol attenuated an aging-associated increase in the cardiomyocyte diameter. Acetylated proteins were increased and autophagic activity was reduced in the TA muscle of 60-wo mice compared with those of 20-wo mice. Resveratrol treatment reduced levels of acetylated proteins and restored autophagic activity in the TA muscle. Aging-related reduction in myocardial autophagy was also suppressed by resveratrol. Skeletal muscle-specific SIRT1 knockout mice showed increases in acetylated proteins and atrophic muscle fibers and reduced autophagic activity in the TA muscle. These results suggest that activation of SIRT1 by treatment with resveratrol suppresses sarcopenia and cardiomyocyte hypertrophy by restoration of autophagy in mice.
Collapse
Affiliation(s)
- Ryusuke Hosoda
- Department of Pharmacology, Sapporo Medical University School of Medicine, Japan
| | - Ryuta Nakashima
- Department of Pharmacology, Sapporo Medical University School of Medicine, Japan
| | - Masaki Yano
- Department of Pharmacology, Sapporo Medical University School of Medicine, Japan
| | - Naotoshi Iwahara
- Department of Pharmacology, Sapporo Medical University School of Medicine, Japan
| | - Seidai Asakura
- Department of Pharmacology, Sapporo Medical University School of Medicine, Japan
| | - Iyori Nojima
- Department of Pharmacology, Sapporo Medical University School of Medicine, Japan
| | - Yukika Saga
- Department of Pharmacology, Sapporo Medical University School of Medicine, Japan
| | - Risa Kunimoto
- Department of Pharmacology, Sapporo Medical University School of Medicine, Japan
| | - Yoshiyuki Horio
- Department of Pharmacology, Sapporo Medical University School of Medicine, Japan
| | - Atsushi Kuno
- Department of Pharmacology, Sapporo Medical University School of Medicine, Japan.
| |
Collapse
|
3
|
Ticinesi A, Nouvenne A, Cerundolo N, Parise A, Meschi T. Accounting Gut Microbiota as the Mediator of Beneficial Effects of Dietary (Poly)phenols on Skeletal Muscle in Aging. Nutrients 2023; 15:nu15102367. [PMID: 37242251 DOI: 10.3390/nu15102367] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Sarcopenia, the age-related loss of muscle mass and function increasing the risk of disability and adverse outcomes in older people, is substantially influenced by dietary habits. Several studies from animal models of aging and muscle wasting indicate that the intake of specific polyphenol compounds can be associated with myoprotective effects, and improvements in muscle strength and performance. Such findings have also been confirmed in a smaller number of human studies. However, in the gut lumen, dietary polyphenols undergo extensive biotransformation by gut microbiota into a wide range of bioactive compounds, which substantially contribute to bioactivity on skeletal muscle. Thus, the beneficial effects of polyphenols may consistently vary across individuals, depending on the composition and metabolic functionality of gut bacterial communities. The understanding of such variability has recently been improved. For example, resveratrol and urolithin interaction with the microbiota can produce different biological effects according to the microbiota metabotype. In older individuals, the gut microbiota is frequently characterized by dysbiosis, overrepresentation of opportunistic pathogens, and increased inter-individual variability, which may contribute to increasing the variability of biological actions of phenolic compounds at the skeletal muscle level. These interactions should be taken into great consideration for designing effective nutritional strategies to counteract sarcopenia.
Collapse
Affiliation(s)
- Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11/1, 43124 Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| | - Antonio Nouvenne
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11/1, 43124 Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| | - Nicoletta Cerundolo
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| | - Alberto Parise
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| | - Tiziana Meschi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11/1, 43124 Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| |
Collapse
|
4
|
Azzollini V, Dalise S, Chisari C. How Does Stroke Affect Skeletal Muscle? State of the Art and Rehabilitation Perspective. Front Neurol 2022; 12:797559. [PMID: 35002937 PMCID: PMC8733480 DOI: 10.3389/fneur.2021.797559] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/29/2021] [Indexed: 12/25/2022] Open
Abstract
Long-term disability caused by stroke is largely due to an impairment of motor function. The functional consequences after stroke are caused by central nervous system adaptations and modifications, but also by the peripheral skeletal muscle changes. The nervous and muscular systems work together and are strictly dependent in their structure and function, through afferent and efferent communication pathways with a reciprocal “modulation.” Knowing how altered interaction between these two important systems can modify the intrinsic properties of muscle tissue is essential in finding the best rehabilitative therapeutic approach. Traditionally, the rehabilitation effort has been oriented toward the treatment of the central nervous system damage with a central approach, overlooking the muscle tissue. However, to ensure greater effectiveness of treatments, it should not be forgotten that muscle can also be a target in the rehabilitation process. The purpose of this review is to summarize the current knowledge about the skeletal muscle changes, directly or indirectly induced by stroke, focusing on the changes induced by the treatments most applied in stroke rehabilitation. The results of this review highlight changes in several muscular features, suggesting specific treatments based on biological knowledge; on the other hand, in standard rehabilitative practice, a realist muscle function evaluation is rarely carried out. We provide some recommendations to improve a comprehensive muscle investigation, a specific rehabilitation approach, and to draw research protocol to solve the remaining conflicting data. Even if a complete multilevel muscular evaluation requires a great effort by a multidisciplinary team to optimize motor recovery after stroke.
Collapse
Affiliation(s)
- Valentina Azzollini
- Department of Translational Research and New Technologies in Medicine and Surgery, DS Neurorehabilitation, University of Pisa, Pisa, Italy
| | - Stefania Dalise
- Department of Neurorehabilitation, Pisa University Hospital - Azienda Ospedaliera Universitaria Pisana (AOUP), Pisa, Italy
| | - Carmelo Chisari
- Department of Translational Research and New Technologies in Medicine and Surgery, DS Neurorehabilitation, University of Pisa, Pisa, Italy
| |
Collapse
|
5
|
McDonald MW, Jeffers MS, Issa L, Carter A, Ripley A, Kuhl LM, Morse C, Comin CH, Jasmin BJ, Lacoste B, Corbett D. An Exercise Mimetic Approach to Reduce Poststroke Deconditioning and Enhance Stroke Recovery. Neurorehabil Neural Repair 2021; 35:471-485. [PMID: 33825581 PMCID: PMC8135250 DOI: 10.1177/15459683211005019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Evidence supports early rehabilitation after stroke to limit disability. However, stroke survivors are typically sedentary and experience significant cardiovascular and muscular deconditioning. Despite growing consensus that preclinical and clinical stroke recovery research should be aligned, there have been few attempts to incorporate cardiovascular and skeletal muscle deconditioning into animal models of stroke. Here, we demonstrate in rats that a hindlimb sensorimotor cortex stroke results in both cardiovascular and skeletal muscle deconditioning and impairments in gait akin to those observed in humans. To reduce poststroke behavioral, cardiovascular, and skeletal muscle perturbations, we then used a combinatorial intervention consisting of aerobic and resistance exercise in conjunction with administration of resveratrol (RESV), a drug with exercise mimetic properties. A combination of aerobic and resistance exercise mitigated decreases in cardiovascular fitness and attenuated skeletal muscle abnormalities. RESV, beginning 24 hours poststroke, reduced acute hindlimb impairments, improved recovery in hindlimb function, increased vascular density in the perilesional cortex, and attenuated skeletal muscle fiber changes. Early RESV treatment and aerobic and resistance exercise independently provided poststroke benefits, at a time when individuals are rapidly becoming deconditioned as a result of inactivity. Although no additive effects were observed in these experiments, this approach represents a promising strategy to reduce poststroke behavioral impairments and minimize deconditioning. As such, this treatment regime has potential for enabling patients to engage in more intensive rehabilitation at an earlier time following stroke when mechanisms of neuroplasticity are most prevalent.
Collapse
Affiliation(s)
- Matthew W McDonald
- University of Ottawa, ON, Canada.,Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada
| | - Matthew S Jeffers
- University of Ottawa, ON, Canada.,Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada
| | | | - Anthony Carter
- Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada.,Ottawa Hospital Research Institute, ON, Canada
| | | | | | | | | | | | - Baptiste Lacoste
- University of Ottawa, ON, Canada.,Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada.,Ottawa Hospital Research Institute, ON, Canada.,University of Ottawa Brain and Mind Research Institute, ON, Canada
| | - Dale Corbett
- University of Ottawa, ON, Canada.,Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada.,University of Ottawa Brain and Mind Research Institute, ON, Canada
| |
Collapse
|