1
|
Balachander GM, Ng IC, Pai RR, Mitra K, Tasnim F, Lim YS, Kwok R, Song Y, Yaw LP, Quah CB, Zhao J, Septiana WL, Kota VG, Teng Y, Zheng K, Xu Y, Lim SH, Ng HH, Yu H. LEADS - a comprehensive human liver-on-a-chip for non-alcoholic steatohepatitis (NASH) drug testing. LAB ON A CHIP 2025. [PMID: 40391591 DOI: 10.1039/d5lc00221d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Metabolic dysfunction associated steatohepatitis (MASH), also known as non-alcoholic steatohepatitis (NASH), is a progressive form of steatotic liver disease (SLD). It is an emerging healthcare threat due its high prevalence, accelerated and non-linear progression, and final culmination as decompensated liver failure and/or hepatocellular carcinoma (HCC). The pathogenesis of NASH is complex with strong ethnic influences and genetic predispositions, underscoring the need for preclinical models that utilize patient-derived cells to enhance our understanding of the disease. Current models face three major limitations: (i) reliance on primary cells with limited reproducibility, high cost, short culture duration and ethical considerations, (ii) failure to recapitulate all key features of NASH, and (iii) inadequate drug testing data and/or data did not correlate with clinical responses. Therefore, there is a pressing need for robust and relevant preclinical models that faithfully recapitulate human NASH, allow generation of patient-specific models and provide quantitative responses for mechanistic studies and drug testing. We have developed a functional liver tissue-on-a-chip by co-culturing human adult liver stem cell (haLSC)-derived hepatobiliary organoids, induced pluripotent stem cell (iPSC)-derived Kupffer cells (iKCs) and iPSC-derived hepatic stellate cells (iHSCs). We simulated the metabolic microenvironment of hyper nutrition and leaky gut by treating the cells with a concoction of free fatty acids (FFAs), fructose, gut-derived lipopolysaccharides (LPS) and a gut-derived metabolite, phenyl acetic acid (PAA). Through optimization of co-culture media and induction regimens, we were able to stably induce steatosis, hepatocellular ballooning, inflammation, and activation of iHSC and fibrosis-all key hallmarks of NASH. Our LEADS (liver-on-a-chip for NASH drug testing) model also recapitulated the pathological types of steatosis and allowed for quantification of the key features via microscopic evaluation and secretome profiling to score for disease severity. Notably, treatment with saroglitazar, pioglitazone, cenicriviroc (CVC), obeticholic acid (OCA) and resmetirom produced responses similar to those observed in clinical trials. Taken together, our LEADS model is the first model developed using patient-derived hepatic stem cells which recapitulated all key features used for comprehensive drug testing, with results matching to clinical responses.
Collapse
Affiliation(s)
- Gowri Manohari Balachander
- School of Biomedical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi-221005, India
- Department of Physiology, The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, MD9-04-11, 2 Medical Drive, Singapore 117593, Singapore
| | - Inn Chuan Ng
- Department of Physiology, The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, MD9-04-11, 2 Medical Drive, Singapore 117593, Singapore
| | - Roopesh R Pai
- Department of Physiology, The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, MD9-04-11, 2 Medical Drive, Singapore 117593, Singapore
- Bioprinting Lab, Department of Dermatology, Dr. D.Y. Patil Medical College, Hospital & Research Centre, Sant Tukaram Nagar, Pimpri, Pune, Maharashtra, India
| | - Kartik Mitra
- Department of Physiology, The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, MD9-04-11, 2 Medical Drive, Singapore 117593, Singapore
| | - Farah Tasnim
- Biomedical Sciences Industry Partnership Office (BMSIPO), A*STAR, 31 Biopolis Way, 138669, Singapore
| | - Yee Siang Lim
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Royston Kwok
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Yoohyun Song
- Department of Physiology, The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, MD9-04-11, 2 Medical Drive, Singapore 117593, Singapore
| | - Lai Ping Yaw
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Clarissa Bernice Quah
- Department of Physiology, The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, MD9-04-11, 2 Medical Drive, Singapore 117593, Singapore
| | - Junzhe Zhao
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Wahyunia L Septiana
- Department of Histology, Faculty of Medicine, Gunadarma University, Depok, Indonesia
| | - Vishnu Goutham Kota
- Department of Physiology, The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, MD9-04-11, 2 Medical Drive, Singapore 117593, Singapore
| | - Yao Teng
- Department of Physiology, The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, MD9-04-11, 2 Medical Drive, Singapore 117593, Singapore
| | - Kexiao Zheng
- Nano-Bio-Chem Centre and Organoid Innovation Center, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou 215123, China
| | - Yan Xu
- Department of Physiology, The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, MD9-04-11, 2 Medical Drive, Singapore 117593, Singapore
| | - Sei Hien Lim
- AIM Biotech Pte. Ltd., 21 Biopolis Road, #01-24 Nucleos, 138567, Singapore
| | - Huck Hui Ng
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Hanry Yu
- Department of Physiology, The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, MD9-04-11, 2 Medical Drive, Singapore 117593, Singapore
- Mechanobiology Institute, National University of Singapore, T-Lab, #05-01, 5A Engineering Drive 1, Singapore 117411, Singapore.
- CAMP, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Level 4 Enterprise Wing, Singapore 138602, Singapore
| |
Collapse
|
2
|
Robea MA, Balmus IM, Girleanu I, Huiban L, Muzica C, Ciobica A, Stanciu C, Cimpoesu CD, Trifan A. Coagulation Dysfunctions in Non-Alcoholic Fatty Liver Disease-Oxidative Stress and Inflammation Relevance. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1614. [PMID: 37763733 PMCID: PMC10535217 DOI: 10.3390/medicina59091614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases. Its incidence is progressively rising and it is possibly becoming a worldwide epidemic. NAFLD encompasses a spectrum of diseases accounting for the chronic accumulation of fat within the hepatocytes due to various causes, excluding excessive alcohol consumption. In this study, we aimed to focus on finding evidence regarding the implications of oxidative stress and inflammatory processes that form the multifaceted pathophysiological tableau in relation to thrombotic events that co-occur in NAFLD and associated chronic liver diseases. Recent evidence on the pathophysiology of NAFLD suggests that a complex pattern of multidirectional components, such as prooxidative, proinflammatory, and prothrombotic components, better explains the multiple factors that promote the mechanisms underlying the fatty acid excess and subsequent processes. As there is extensive evidence on the multi-component nature of NAFLD pathophysiology, further studies could address the complex interactions that underlie the development and progression of the disease. Therefore, this study aimed to describe possible pathophysiological mechanisms connecting the molecular impairments with the various clinical manifestations, focusing especially on the interactions among oxidative stress, inflammation, and coagulation dysfunctions. Thus, we described the possible bidirectional modulation among coagulation homeostasis, oxidative stress, and inflammation that occurs in the various stages of NAFLD.
Collapse
Affiliation(s)
- Madalina Andreea Robea
- CENEMED Platform for Interdisciplinary Research, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.A.R.); (I.-M.B.); (C.D.C.)
| | - Ioana-Miruna Balmus
- CENEMED Platform for Interdisciplinary Research, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.A.R.); (I.-M.B.); (C.D.C.)
- Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University of Iasi, Alexandru Lapusneanu Street, No. 26, 700057 Iasi, Romania
| | - Irina Girleanu
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.G.); (L.H.); (C.M.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Laura Huiban
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.G.); (L.H.); (C.M.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Cristina Muzica
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.G.); (L.H.); (C.M.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, No. 20A, 700505 Iasi, Romania
- Centre of Biomedical Research, Romanian Academy, Carol I Avenue, No. 8, 700506 Iasi, Romania;
- Academy of Romanian Scientists, Splaiul Independentei nr. 54, Sector 5, 050094 Bucuresti, Romania
| | - Carol Stanciu
- Centre of Biomedical Research, Romanian Academy, Carol I Avenue, No. 8, 700506 Iasi, Romania;
| | - Carmen Diana Cimpoesu
- CENEMED Platform for Interdisciplinary Research, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.A.R.); (I.-M.B.); (C.D.C.)
- Department of Emergency Medicine, Emergency County Hospital “Sf. Spiridon”, 700111 Iasi, Romania
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, Blvd. Independentei 1, 700111 Iasi, Romania
| | - Anca Trifan
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.G.); (L.H.); (C.M.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
- Centre of Biomedical Research, Romanian Academy, Carol I Avenue, No. 8, 700506 Iasi, Romania;
| |
Collapse
|
3
|
Devina T, Wong YH, Hsiao CW, Li YJ, Lien CC, Cheng IHJ. Endoplasmic reticulum stress induces Alzheimer's disease-like phenotypes in the neuron derived from the induced pluripotent stem cell with D678H mutation on amyloid precursor protein. J Neurochem 2022; 163:26-39. [PMID: 35943292 DOI: 10.1111/jnc.15687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 07/12/2022] [Accepted: 08/06/2022] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disorder, is mainly caused by the interaction of genetic and environmental factors. The impact of environmental factors on the genetic mutation in the amyloid precursor protein (APP) is not well characterized. We hypothesized that Endoplasmic Reticulum (ER) stress would promote disease for the patient carrying the APP D678H mutation. Therefore, we analyzed the impact of a familial AD mutation on amyloid precursor protein (APP D678H) under ER stress. Induced pluripotent stem cell (iPSC) from APP D678H mutant carrier was differentiated into neurons, which were then analyzed for AD-like changes. Immunocytochemistry and whole-cell patch-clamp recording revealed that the derived neurons on day 28 after differentiation showed neuronal markers and electrophysiological properties similar to those of mature neurons. However, the APP D678H mutant neurons did not have significant alterations in the levels of amyloid-β (Aβ) and phosphorylated tau (pTau) compared to its isogenic wild-type neuron. Only under ER stress, the neurons with the APP D678H mutation had more Aβ and pTau via immune detection assays. The higher level of Aβ in the APP D678H mutant neurons was probably due to the increased level of β-site APP cleaving enzyme (BACE1) and decreased level of Aβ degrading enzymes under ER stress. Increased Aβ and pTau under ER stress reduced the N-methyl-D-aspartate receptor (NMDAR) in Western blot analysis and altered electrophysiological properties in the mutant neurons. Our study provides evidence that the interaction between genetic mutation and ER stress would induce AD-like changes.
Collapse
Affiliation(s)
- Tania Devina
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan.,Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Hui Wong
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Life Science and Institute of Genome Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chiao-Wan Hsiao
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Yu-Jui Li
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Chang Lien
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan.,Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Irene Han-Juo Cheng
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| |
Collapse
|
4
|
Dietary Polyphenols and Non-Alcoholic Fatty Liver Disease. Nutrients 2021; 13:nu13020494. [PMID: 33546130 PMCID: PMC7913263 DOI: 10.3390/nu13020494] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/24/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), which is emerging as a major public health issue worldwide, is characterized by a wide spectrum of liver disorders, ranging from simple fat accumulation in hepatocytes, also known as steatosis, to non-alcoholic steatohepatitis (NASH) and cirrhosis. At present, the pharmacological treatment of NAFLD is still debated and dietary strategies for the prevention and the treatment of this condition are strongly considered. Polyphenols are a group of plant-derived compounds whose anti-inflammatory and antioxidant properties are associated with a low prevalence of metabolic diseases, including obesity, hypertension, and insulin resistance. Since inflammation and oxidative stress are the main risk factors involved in the pathogenesis of NAFLD, recent studies suggest that the consumption of polyphenol-rich diets is involved in the prevention and treatment of NAFLD. However, few clinical trials are available on human subjects with NAFLD. Here, we reviewed the emerging existing evidence on the potential use of polyphenols to treat NAFLD. After introducing the physiopathology of NAFLD, we focused on the most investigated phenolic compounds in the setting of NAFLD and described their potential benefits, starting from basic science studies to animal models and human trials.
Collapse
|