1
|
Apolipoprotein B and Cardiovascular Disease: Biomarker and Potential Therapeutic Target. Metabolites 2021; 11:metabo11100690. [PMID: 34677405 PMCID: PMC8540246 DOI: 10.3390/metabo11100690] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 12/19/2022] Open
Abstract
Apolipoprotein (apo) B, the critical structural protein of the atherogenic lipoproteins, has two major isoforms: apoB48 and apoB100. ApoB48 is found in chylomicrons and chylomicron remnants with one apoB48 molecule per chylomicron particle. Similarly, a single apoB100 molecule is contained per particle of very-low-density lipoprotein (VLDL), intermediate density lipoprotein, LDL and lipoprotein(a). This unique one apoB per particle ratio makes plasma apoB concentration a direct measure of the number of circulating atherogenic lipoproteins. ApoB levels indicate the atherogenic particle concentration independent of the particle cholesterol content, which is variable. While LDL, the major cholesterol-carrying serum lipoprotein, is the primary therapeutic target for management and prevention of atherosclerotic cardiovascular disease, there is strong evidence that apoB is a more accurate indicator of cardiovascular risk than either total cholesterol or LDL cholesterol. This review examines multiple aspects of apoB structure and function, with a focus on the controversy over use of apoB as a therapeutic target in clinical practice. Ongoing coronary artery disease residual risk, despite lipid-lowering treatment, has left patients and clinicians with unsatisfactory options for monitoring cardiovascular health. At the present time, the substitution of apoB for LDL-C in cardiovascular disease prevention guidelines has been deemed unjustified, but discussions continue.
Collapse
|
2
|
Tung WC, Rizzo B, Dabbagh Y, Saraswat S, Romanczyk M, Codorniu-Hernández E, Rebollido-Rios R, Needs PW, Kroon PA, Rakotomanomana N, Dangles O, Weikel K, Vinson J. Polyphenols bind to low density lipoprotein at biologically relevant concentrations that are protective for heart disease. Arch Biochem Biophys 2020; 694:108589. [PMID: 33010229 DOI: 10.1016/j.abb.2020.108589] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 02/05/2023]
Abstract
There is ample evidence in the epidemiological literature that polyphenols, the major non-vitamin antioxidants in plant foods and beverages, have a beneficial effect on heart disease. Until recently other mechanisms which polyphenols exhibit such as cell signaling and regulating nitric oxide bioavailability have been investigated. The oxidation theory of atherosclerosis implicates LDL oxidation as the beginning step in this process. Nine polyphenols from eight different classes and several of their O-methylether, O-glucuronide and O-sulfate metabolites have been shown in this study to bind to the lipoproteins and protect them from oxidation at lysosomal/inflammatory pH (5.2), and physiological pH (7.4). Polyphenols bind to the apoprotein at pH 7.4 with Kb > 106 M-1 and the number of molecules of polyphenols bound per LDL particle under saturation conditions varied from 0.4 for ferulic acid to 13.1 for quercetin. Competition studies between serum albumin and LDL show that substantial lipoprotein binding occurs even in the presence of a great molar excess of albumin, the major blood protein. These in vitro results are borne out by published human supplementation studies showing that polyphenol metabolites from red wine, olive oil and coffee are found in LDL even after an overnight fast. A single human supplementation with various fruit juices, coffee and tea also produced an ex vivo protection against lipoprotein oxidation under postprandial conditions. This in vivo binding is heart-protective based on published olive oil consumption studies. Relevant to heart disease, we hypothesize that the binding of polyphenols and metabolites to LDL functions as a transport mechanism to carry these antioxidants to the arterial intima, and into endothelial cells and macrophages. Extracellular and intracellular polyphenols and their metabolites are heart-protective by many mechanisms and can also function as potent "intraparticle" and intracellular antioxidants due to their localized concentrations that can reach as high as the micromolar level. Low plasma concentrations make polyphenols and their metabolites poor plasma antioxidants but their concentration in particles such as lipoproteins and cells is high enough for polyphenols to provide cardiovascular protection by direct antioxidant effects and by other mechanisms such as cell signaling.
Collapse
Affiliation(s)
- Wei-Cheng Tung
- Department of Chemistry, Loyola Science Center, University of Scranton, Scranton, PA, 18510, USA
| | - Bryan Rizzo
- Department of Chemistry, Loyola Science Center, University of Scranton, Scranton, PA, 18510, USA
| | - Yusef Dabbagh
- Department of Chemistry, Loyola Science Center, University of Scranton, Scranton, PA, 18510, USA
| | - Suraj Saraswat
- Department of Chemistry, Loyola Science Center, University of Scranton, Scranton, PA, 18510, USA
| | - Mark Romanczyk
- Department of Chemistry, Loyola Science Center, University of Scranton, Scranton, PA, 18510, USA
| | - Edelsys Codorniu-Hernández
- Department of Chemistry, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N1N4, Canada
| | - Rocio Rebollido-Rios
- Research Group Bioinformatics, Faculty of Biology, Center for Medical Biotechnology, University of Duisburg-Essen, Universitätsstrase 1-5, 45141, Essen, Germany; Faculty of Medicine and University Hospital of Cologne, Department of Internal Medicine, University of Cologne, 50937, Cologne, Germany
| | - Paul W Needs
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
| | - Paul A Kroon
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
| | | | - Olivier Dangles
- Avignon University, INRAE, UMR408 SQPOV, 84000, Avignon, France
| | - Karen Weikel
- Department of Chemistry, Loyola Science Center, University of Scranton, Scranton, PA, 18510, USA
| | - Joe Vinson
- Department of Chemistry, Loyola Science Center, University of Scranton, Scranton, PA, 18510, USA.
| |
Collapse
|
3
|
Nguyen SD, Javanainen M, Rissanen S, Zhao H, Huusko J, Kivelä AM, Ylä-Herttuala S, Navab M, Fogelman AM, Vattulainen I, Kovanen PT, Öörni K. Apolipoprotein A-I mimetic peptide 4F blocks sphingomyelinase-induced LDL aggregation. J Lipid Res 2015; 56:1206-21. [PMID: 25861792 DOI: 10.1194/jlr.m059485] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Indexed: 12/23/2022] Open
Abstract
Lipolytic modification of LDL particles by SMase generates LDL aggregates with a strong affinity for human arterial proteoglycans and may so enhance LDL retention in the arterial wall. Here, we evaluated the effects of apoA-I mimetic peptide 4F on structural and functional properties of the SMase-modified LDL particles. LDL particles with and without 4F were incubated with SMase, after which their aggregation, structure, and proteoglycan binding were analyzed. At a molar ratio of L-4F to apoB-100 of 2.5 to 20:1, 4F dose-dependently inhibited SMase-induced LDL aggregation. At a molar ratio of 20:1, SMase-induced aggregation was fully blocked. Binding of 4F to LDL particles inhibited SMase-induced hydrolysis of LDL by 10% and prevented SMase-induced LDL aggregation. In addition, the binding of the SMase-modified LDL particles to human aortic proteoglycans was dose-dependently inhibited by pretreating LDL with 4F. The 4F stabilized apoB-100 conformation and inhibited SMase-induced conformational changes of apoB-100. Molecular dynamic simulations showed that upon binding to protein-free LDL surface, 4F locally alters membrane order and fluidity and induces structural changes to the lipid layer. Collectively, 4F stabilizes LDL particles by preventing the SMase-induced conformational changes in apoB-100 and so blocks SMase-induced LDL aggregation and the resulting increase in LDL retention.
Collapse
Affiliation(s)
- Su Duy Nguyen
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
| | - Matti Javanainen
- Department of Physics, Tampere University of Technology, Tampere, Finland
| | - Sami Rissanen
- Department of Physics, Tampere University of Technology, Tampere, Finland
| | - Hongxia Zhao
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Jenni Huusko
- A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Annukka M Kivelä
- A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio, Finland Science Service Center, Kuopio University Hospital, Kuopio, Finland
| | - Mohamad Navab
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Alan M Fogelman
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology, Tampere, Finland MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark
| | - Petri T Kovanen
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
| | - Katariina Öörni
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Lee AS, Chen WY, Chan HC, Hsu JF, Shen MY, Chang CM, Bair H, Su MJ, Chang KC, Chen CH. Gender disparity in LDL-induced cardiovascular damage and the protective role of estrogens against electronegative LDL. Cardiovasc Diabetol 2014; 13:64. [PMID: 24666525 PMCID: PMC3974745 DOI: 10.1186/1475-2840-13-64] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 02/28/2014] [Indexed: 11/29/2022] Open
Abstract
Background Increased levels of the most electronegative type of LDL, L5, have been observed in the plasma of patients with metabolic syndrome (MetS) and ST-segment elevation myocardial infarction and can induce endothelial dysfunction. Because men have a higher predisposition to developing coronary artery disease than do premenopausal women, we hypothesized that LDL electronegativity is increased in men and promotes endothelial damage. Methods L5 levels were compared between middle-aged men and age-matched, premenopausal women with or without MetS. We further studied the effects of gender-influenced LDL electronegativity on aortic cellular senescence and DNA damage in leptin receptor–deficient (db/db) mice by using senescence-associated–β-galactosidase and γH2AX staining, respectively. We also studied the protective effects of 17β-estradiol and genistein against electronegative LDL–induced senescence in cultured bovine aortic endothelial cells (BAECs). Results L5 levels were higher in MetS patients than in healthy subjects (P < 0.001), particularly in men (P = 0.001). LDL isolated from male db/db mice was more electronegative than that from male or female wild-type mice. In addition, LDL from male db/db mice contained abundantly more apolipoprotein CIII and induced more BAEC senescence than did female db/db or wild-type LDL. In the aortas of db/db mice but not wild-type mice, we observed cellular senescence and DNA damage, and the effect was more significant in male than in female db/db mice. Pretreatment with 17β-estradiol or genistein inhibited BAEC senescence induced by male or female db/db LDL and downregulated the expression of lectin-like oxidized LDL receptor-1 and tumor necrosis factor-alpha protein. Conclusion The gender dichotomy of LDL-induced cardiovascular damage may underlie the increased propensity to coronary artery disease in men.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kuan-Cheng Chang
- Division of Cardiology, China Medical University Hospital, Taichung City, Taiwan.
| | | |
Collapse
|
5
|
Sobansky MR, Hage DS. Identification and analysis of stereoselective drug interactions with low-density lipoprotein by high-performance affinity chromatography. Anal Bioanal Chem 2012; 403:563-71. [PMID: 22354572 DOI: 10.1007/s00216-012-5816-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/21/2012] [Accepted: 01/31/2012] [Indexed: 11/27/2022]
Abstract
Columns containing immobilized low-density lipoprotein (LDL) were prepared for the analysis of drug interactions with this agent by high-performance affinity chromatography (HPAC). R/S-Propranolol was used as a model drug for this study. The LDL columns gave reproducible binding to propranolol over 60 h of continuous use in the presence of pH 7.4 0.067 M potassium phosphate buffer. Experiments conducted with this type of column through frontal analysis indicated that two types of interactions were occurring between R-propranolol and LDL, while only a single type of interaction was observed between S-propranolol and LDL. The first type of interaction, which was seen for both enantiomers, involved non-saturable binding; this interaction had an overall affinity (nK(a)) of 1.9 (±0.1) × 10(5) M(-1) for R-propranolol and 2.7 (±0.2) × 10(5) M(-1) for S-propranolol at 37 °C. The second type of interaction was observed only for R-propranolol and involved saturable binding that had an association equilibrium constant (K(a)) of 5.2 (±2.3) × 10(5) M(-1) at 37 °C. Similar differences in binding behavior were found for the two enantiomers at 20 °C and 27 °C. This is the first known example of stereoselective binding of drugs by LDL or other lipoproteins. This work also illustrates the ability of HPAC to be used as a tool for characterizing mixed-mode interactions that involve LDL and related binding agents.
Collapse
Affiliation(s)
- Matthew R Sobansky
- Chemistry Department, University of Nebraska, Lincoln, NE 68588-0304, USA
| | | |
Collapse
|
6
|
Brunelli R, Balogh G, Costa G, De Spirito M, Greco G, Mei G, Nicolai E, Vigh L, Ursini F, Parasassi T. Estradiol Binding Prevents ApoB-100 Misfolding in Electronegative LDL(−). Biochemistry 2010; 49:7297-302. [DOI: 10.1021/bi100715f] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Roberto Brunelli
- Dipartimento di Ostetricia e Ginecologia, Università di Roma “Sapienza”, Roma, Italy
| | - Gabor Balogh
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Graziella Costa
- Istituto di Neurobiologia e Medicina Molecolare, CNR, Roma, Italy
| | - Marco De Spirito
- Istituto di Fisica, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Giulia Greco
- Istituto di Neurobiologia e Medicina Molecolare, CNR, Roma, Italy
| | - Giampiero Mei
- Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Università di Roma “Tor Vergata”, Roma, Italy
| | - Eleonora Nicolai
- Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Università di Roma “Tor Vergata”, Roma, Italy
| | - Laszlo Vigh
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Fulvio Ursini
- Dipartimento di Chimica Biologica, Università di Padova, Padova, Italy
| | | |
Collapse
|
7
|
Greco G, Balogh G, Brunelli R, Costa G, De Spirito M, Lenzi L, Mei G, Ursini F, Parasassi T. Generation in human plasma of misfolded, aggregation-prone electronegative low density lipoprotein. Biophys J 2009; 97:628-35. [PMID: 19619478 DOI: 10.1016/j.bpj.2009.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 04/14/2009] [Accepted: 05/04/2009] [Indexed: 11/15/2022] Open
Abstract
Human plasma contains small amounts of a low density lipoprotein in which apoprotein is misfolded. Originally identified and isolated by means of anion-exchange chromatography, this component was subsequently described as electronegative low density lipoprotein (LDL)(-), with increased concentrations associated with elevated cardiovascular disease risk. It has been recognized recently as the trigger of LDL amyloidogenesis, which produces aggregates similar to subendothelial droplets observed in vivo in early atherogenesis. Although LDL(-) has been produced in vitro through various manipulations, the mechanisms involved in its generation in vivo remain obscure. By using a more physiological model, we demonstrate spontaneous, sustained and noticeable production of LDL(-) during incubation of unprocessed human plasma at 37 degrees C. In addition to a higher fraction of amyloidogenic LDL(-), LDL purified from incubated plasma contains an increased level of lysophospholipids and free fatty acids; analysis of LDL lipids packing shows their loosening. As a result, during plasma incubation, lipid destabilization and protein misfolding take place, and aggregation-prone particles are generated. All these phenomena can be prevented by inhibiting calcium-dependent secretory phospholipases A2. Our plasma incubation model, without removal of reaction products, effectively shows a lipid-protein interplay in LDL, where lipid destabilization after lipolysis threatens the apoprotein's structure, which misfolds and becomes aggregation-prone.
Collapse
Affiliation(s)
- Giulia Greco
- Istituto di Neurobiologia e Medicina Molecolare, CNR, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
De Spirito M, Brunelli R, Mei G, Bertani FR, Ciasca G, Greco G, Papi M, Arcovito G, Ursini F, Parasassi T. Low density lipoprotein aged in plasma forms clusters resembling subendothelial droplets: aggregation via surface sites. Biophys J 2006; 90:4239-47. [PMID: 16533854 PMCID: PMC1459520 DOI: 10.1529/biophysj.105.075788] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In early phases of atherogenesis, droplets and vesicles accumulate in the subendothelial extracellular space of arterial intima. There is much evidence to suggest that these droplets, ranging between 100 and 400 nm, derive from modified low-density lipoprotein (LDL). In investigations of the formation mechanism of these droplets, LDL fusion was previously induced in vitro by proteolysis, lipolysis, oxidation, and vigorous shaking, but all treatments failed to reproduce the size distribution range of in vivo droplets, mostly resulting, instead, in particles with a diameter intermediate between that of one and two LDL. Our approach was meant to mimic LDL aging in plasma. LDL isolated from plasma that was incubated overnight at 37 degrees C is slightly modified in the secondary structure of its protein component and is primed to form very large aggregates according to a reaction-limited mechanism. This mechanism requires interactions between selected surface sites, whereas massive fusion is ruled out. In the frame of the general theory for colloids, the aggregation of LDL aged in plasma fulfills all the requirements of the reaction-limited mechanism, encompassing 1), exponential growth; 2), fractal structure, with the dimension of elementary constituent still consistent with a single LDL; and 3), extreme polydispersity of aggregates, with shape and dimension very close to that of droplets observed in vivo.
Collapse
Affiliation(s)
- Marco De Spirito
- Istituto di Fisica, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Gago-Dominguez M, Castelao JE, Pike MC, Sevanian A, Haile RW. Role of Lipid Peroxidation in the Epidemiology and Prevention of Breast Cancer. Cancer Epidemiol Biomarkers Prev 2005; 14:2829-39. [PMID: 16364997 DOI: 10.1158/1055-9965.epi-05-0015] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We have recently proposed a common mechanistic pathway by which obesity and hypertension lead to increased renal cell cancer risk. Our hypothesis posits lipid peroxidation, which is a principal mechanism in rodent renal carcinogenesis, as an intermediate step that leads to a final common pathway shared by numerous observed risks (including obesity, hypertension, smoking, oophorectomy/hysterectomy, parity, preeclampsia, diabetes, and analgesics) or protective factors (including oral contraceptive use and alcohol) for renal cell cancer [Cancer Causes Control 2002;13:287-93]. During this exercise, we have noticed how certain risk factors for renal cell carcinoma are protective for breast cancer and how certain protective factors for renal cell carcinoma increase risk for breast cancer. Parity and oophorectomy, for example, are positively associated with renal cell carcinoma but are negatively associated with breast cancer. Similarly, obesity and hypertension are positively associated with renal cell carcinoma, but obesity is negatively associated with breast cancer in premenopausal women and hypertension during pregnancy is negatively associated with breast cancer. Furthermore, alcohol intake, negatively associated with renal cell carcinoma, is also positively associated with breast cancer. We propose here the possibility that lipid peroxidation may represent a protective mechanism in breast cancer. Although this runs counter to the conventional view that lipid peroxidation is a process that is harmful and carcinogenic, we present here the chemical and biological rationale, based on epidemiologic and biochemical data, which may deserve further consideration and investigation.
Collapse
Affiliation(s)
- Manuela Gago-Dominguez
- USC/Norris Comprehensive Cancer Center, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90089-9181, USA.
| | | | | | | | | |
Collapse
|
10
|
Badeau M, Adlercreutz H, Kaihovaara P, Tikkanen MJ. Estrogen A-ring structure and antioxidative effect on lipoproteins. J Steroid Biochem Mol Biol 2005; 96:271-8. [PMID: 15993048 DOI: 10.1016/j.jsbmb.2005.04.034] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Accepted: 04/04/2005] [Indexed: 01/11/2023]
Abstract
The oxidative modification of lipoprotein particles is an important step in atherogenesis. Estrogens are known to be powerful antioxidants independently of their binding to the estrogen receptors and the hormonal functions. We explored the structural determinants for the antioxidant activity of a large number of estrogen derivatives (n=43) in an aqueous lipoprotein solution in vitro by monitoring formation of conjugated dienes. Our results indicate that estrogen derivatives with an unsubstituted A-ring phenolic hydroxyl group with one or two adjacent methoxy groups provide strongest antioxidant protection of low density lipoprotein (LDL) and high density lipoprotein (HDL). The electron donating methoxy groups may enhance the antioxidant effect by weakening the phenolic OH bond and providing stability to the formed phenoxyl radical. With some exceptions, compounds completely lacking unsubstituted hydroxyl groups in the A-ring exhibited no antioxidant effect, e.g. the most hydrophilic "tetrol" compound with three unsubstituted A-ring hydroxyl groups had no antioxidant effect. Moreover, additional hydroxyl groups in the B-, C- or D-ring seemed to weaken the antioxidant effect. Accordingly, both the presence of unsubstituted hydroxyl groups and adjacent substituents, as well as the lipophilicity of the derivatives determine the antioxidant activity of estrogen derivatives in aqueous lipoprotein solutions.
Collapse
Affiliation(s)
- Maija Badeau
- Department of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | | | | | | |
Collapse
|