1
|
Cyndari KI, Scorza BM, Zacharias ZR, Pessôa-Pereira D, Strand L, Mahachi K, Oviedo JM, Gibbs L, Butler KL, Ausdal G, Hendricks D, Yahashiri R, Elkins JM, Gulbrandsen T, Peterson AR, Willey MC, Fairfax KC, Petersen CA. Resident synovial macrophages in synovial fluid: Implications for immunoregulation. Clin Immunol 2025; 271:110422. [PMID: 39701169 DOI: 10.1016/j.clim.2024.110422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/08/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024]
Abstract
Resident synovial macrophages (RSMs) are anti-inflammatory, self-renewing macrophages that provide physical immune sequestration of the joint space from the peripheral immune system. Increased permeability of this structure is associated with peripheral immune cells in the synovial fluid (SF). Direct measures of synovial barrier integrity are possible with tissue histology, but after barrier breakdown, if these cells perpetuate or initiate chronic inflammation in SF remains unknown. We sought to identify RSM in human SF as an indirect measure of synovial barrier integrity. To validate findings, we created a novel ex vivo explant model using human synovium. scRNA-seq revealed these SF RSMs upregulated pro-fibrotic and pro-osteoclastic pathways in inflammatory arthritis, but not septic arthritis. Increased frequencies of RSMs in SF was associated with increased sRANKL regardless of underlying pathology. These findings suggest the frequency of RSMs in SF may correlate with synovial barrier damage and in turn, potential damage to joint structures.
Collapse
Affiliation(s)
- Karen I Cyndari
- Department of Emergency Medicine, University of Iowa, Iowa City, IA, United States of America; Center for Emerging Infectious Diseases, United States of America.
| | - Breanna M Scorza
- Center for Emerging Infectious Diseases, United States of America; Department of Epidemiology, University of Iowa, Iowa City, IA, United States of America
| | - Zeb R Zacharias
- Human Immunology Core, University of Iowa, Iowa City, IA, United States of America; Holden Comprehensive Cancer Center, Iowa City, IA, United States of America
| | - Danielle Pessôa-Pereira
- Center for Emerging Infectious Diseases, United States of America; Department of Epidemiology, University of Iowa, Iowa City, IA, United States of America
| | - Leela Strand
- Harvard University, Cambridge, MA, United States of America
| | - Kurayi Mahachi
- Center for Emerging Infectious Diseases, United States of America; Department of Epidemiology, University of Iowa, Iowa City, IA, United States of America
| | - Juan Marcos Oviedo
- Department of Pathology, University of Utah, Salt Lake City, UT, United States of America
| | - Lisa Gibbs
- Department of Pathology, University of Utah, Salt Lake City, UT, United States of America
| | - Katherine L Butler
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States of America
| | - Graham Ausdal
- Center for Emerging Infectious Diseases, United States of America; Department of Epidemiology, University of Iowa, Iowa City, IA, United States of America
| | - Dylan Hendricks
- Center for Emerging Infectious Diseases, United States of America; Department of Epidemiology, University of Iowa, Iowa City, IA, United States of America
| | - Rika Yahashiri
- Williams College, Williamstown, MA, United States of America
| | - Jacob M Elkins
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, United States of America
| | - Trevor Gulbrandsen
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, United States of America
| | - Andrew R Peterson
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, United States of America
| | - Michael C Willey
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, United States of America
| | - Keke C Fairfax
- Department of Pathology, University of Utah, Salt Lake City, UT, United States of America
| | - Christine A Petersen
- College of Veterinary Medicine, Ohio State University, OH, United States of America
| |
Collapse
|
2
|
Pérez-Chacón G, Santamaría PG, Redondo-Pedraza J, González-Suárez E. RANK/RANKL Signaling Pathway in Breast Development and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:309-345. [PMID: 39821032 DOI: 10.1007/978-3-031-70875-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
RANK pathway has attracted increasing interest as a promising target in breast cancer, given the availability of denosumab, an anti-RANKL drug. RANK signaling mediates progesterone-driven regulation of mammary gland development and favors breast cancer initiation by controlling mammary cell proliferation and stem cell fate. RANK activation promotes luminal mammary epithelial cell senescence, acting as an initial barrier to tumorigenesis but ultimately facilitating tumor progression and metastasis. Comprehensive analyses have demonstrated that RANK protein expression is an independent biomarker of poor prognosis in postmenopausal and estrogen receptor-negative breast cancer patients. RANK pathway also has multiple roles in immunity and inflammation, regulating innate and adaptive responses. In the tumor microenvironment, RANK and RANKL are expressed by different immune cell populations and contribute to the regulation of tumor immune surveillance, mainly driving immunosuppressive effects.Herein, we discuss the preventive and therapeutic potential of targeting RANK signaling in breast cancer given its tumor cell intrinsic and extrinsic effects. RANKL inhibition has been shown to induce mammary tumor cell differentiation and an antitumor immune response. Moreover, loss of RANK signaling increases sensitivity of breast cancer cells to chemotherapy, targeted therapies such as HER2 and CDK4/6 inhibitors, and immunotherapy. Finally, we describe clinical trials of denosumab for breast cancer prevention, such as those ongoing in women with high risk of developing breast cancer, large phase III clinical trials where the impact of adjuvant denosumab on disease-free survival has been assessed, and window trials to evaluate the immunomodulatory effects of denosumab in breast cancer and other solid tumors.
Collapse
Affiliation(s)
- Gema Pérez-Chacón
- Molecular Oncology, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | | | - Eva González-Suárez
- Molecular Oncology, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
- Oncobell, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
3
|
Yue Z, Niu X, Yuan Z, Qin Q, Jiang W, He L, Gao J, Ding Y, Liu Y, Xu Z, Li Z, Yang Z, Li R, Xue X, Gao Y, Yue F, Zhang XHF, Hu G, Wang Y, Li Y, Chen G, Siwko S, Gartland A, Wang N, Xiao J, Liu M, Luo J. RSPO2/RANKL-LGR4 signaling regulates osteoclastic pre-metastatic niche formation and bone metastasis. J Clin Invest 2021; 132:144579. [PMID: 34847079 PMCID: PMC8759794 DOI: 10.1172/jci144579] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/24/2021] [Indexed: 11/17/2022] Open
Abstract
Therapeutics targeting osteoclasts are commonly used treatments for bone metastasis; however, whether and how osteoclasts regulate pre-metastatic niche and bone tropism is largely unknown. In this study, we report that osteoclast precursors (OPs) can function as a pre-metastatic niche component that facilitates breast cancer (BCa) bone metastasis at early stages. At the molecular level, unbiased GPCR ligand/agonist screening in BCa cells suggested that R-spondin 2 (RSPO2) and RANKL, through interacting with their receptor LGR4, promoted osteoclastic pre-metastatic niche formation and enhanced BCa bone metastasis. This was achieved by RSPO2/RANKL-LGR4 signal modulating WNT inhibitor DKK1 through Gαq and β-catenin signaling. DKK1 directly facilitated OP recruitment through suppressing its receptor low-density lipoprotein-related receptors 5 (LRP5) but not LRP6, upregulating Rnasek expression via inhibiting canonical WNT signaling. In clinical samples, RSPO2, LGR4 and DKK1 expression showed positive correlation with BCa bone metastasis. Furthermore, soluble LGR4 extracellular domain (ECD) protein, acting as a decoy receptor for RSPO2 and RANKL, significantly alleviated bone metastasis and osteolytic lesions in mouse bone metastasis model. These findings provide unique insights into the functional role of OPs as key components of pre-metastatic niche for BCa bone metastasis, indicate RSPO2/RANKL-LGR4 signaling as a promising target for inhibiting BCa bone metastasis.
Collapse
Affiliation(s)
- Zhiying Yue
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xin Niu
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Zengjin Yuan
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Qin Qin
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Wenhao Jiang
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, China
| | - Liang He
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, China
| | - Jingduo Gao
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yi Ding
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yanxi Liu
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Ziwei Xu
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhenxi Li
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zhengfeng Yang
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Rong Li
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiwen Xue
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yankun Gao
- Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Fei Yue
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, United States of America
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, United States of America
| | - Guohong Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai, China
| | - Yi Wang
- Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Yi Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, United States of America
| | - Geng Chen
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Stefan Siwko
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, United States of America
| | - Alison Gartland
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield, United Kingdom
| | - Ning Wang
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield, United Kingdom
| | - Jianru Xiao
- Department of Orthopaedic Oncology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Mingyao Liu
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jian Luo
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
4
|
Takeshita A, Nishida K, Yoshida A, Nasu Y, Nakahara R, Kaneda D, Ohashi H, Ozaki T. RANKL expression in chondrocytes and its promotion by lymphotoxin-α in the course of cartilage destruction during rheumatoid arthritis. PLoS One 2021; 16:e0254268. [PMID: 34234380 PMCID: PMC8263262 DOI: 10.1371/journal.pone.0254268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 06/23/2021] [Indexed: 11/19/2022] Open
Abstract
We investigated the expression and localization of the receptor activator nuclear factor κB ligand (RANKL) in cartilage from patients with rheumatoid arthritis (RA) of relevance to cartilage degeneration. We also examined the role of exogenous lymphotoxin (LT)-α on RANKL expression in human chondrocytes and its effect on in vitro osteoclast differentiation. Cartilage and synovial fluid samples were obtained from 45 patients undergoing total joint replacement surgery or joint puncture, including 24 patients with osteoarthritis (OA) and 21 patients with RA. RANKL expression in articular cartilage was examined by immunohistochemistry. LT-α concentrations in synovial fluid were measured using an enzyme-linked immunosorbent assay (ELISA). Normal human chondrocytes were stimulated with LT-α, and the relative mRNA levels of RANKL, osteoprotegerin (OPG), matrix metalloproteinase-9, and vascular endothelial growth factor were examined by real-time polymerase chain reaction. Soluble RANKL protein in culture media was measured using ELISA, and membrane-bound RANKL protein in cells was examined by western blotting. Co-cultures of human chondrocytes with peripheral blood mononuclear cells (PBMCs) were stimulated with macrophage-colony stimulating factor and LT-α, and osteoclast differentiation was evaluated by staining for tartrate-resistant acid phosphatase. LT-α concentrations were higher in RA synovial fluid than in OA samples. The population of RANKL-positive chondrocytes of RA cartilage was higher than that of OA cartilage, and correlated with cartilage degeneration. Stimulation of cultured human chondrocytes by LT-α increased RANKL expression, the RANKL/OPG ratio, and angiogenic factors. Membrane-bound RANKL in chondrocytes was up-regulated after stimulation of LT-α, whereas soluble RANKL in culture medium did not increase. Co-cultures of human chondrocytes and PBMCs demonstrated that LT-α stimulated human chondrocytes to produce RANKL and induced osteoclastic differentiation of PBMCs. RANKL produced by chondrocytes may contribute to cartilage destruction during RA and LT-α could promote the expression of RANKL in human chondrocytes.
Collapse
Affiliation(s)
- Ayumu Takeshita
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Keiichiro Nishida
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- * E-mail:
| | - Aki Yoshida
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshihisa Nasu
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ryuichi Nakahara
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Daisuke Kaneda
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hideki Ohashi
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshifumi Ozaki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
5
|
The effects of IL-4 and RANKL on viability of giant cell granuloma patients' monocytes. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Osteoclasts and their circulating precursors in rheumatoid arthritis: Relationships with disease activity and bone erosions. Bone Rep 2020; 12:100282. [PMID: 32478145 PMCID: PMC7251539 DOI: 10.1016/j.bonr.2020.100282] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/01/2020] [Accepted: 05/11/2020] [Indexed: 12/29/2022] Open
Abstract
Patients with rheumatoid arthritis (RA) have very different outcomes, particularly with regard to bone erosions. Since osteoclasts are responsible for bone destruction adjacent to rheumatoid synovium, profiling osteoclasts from circulating precursors in RA could help identify patients at risk for bone destruction. In this study, we sought to determine whether the functional characteristics of osteoclasts generated from their blood precursors were modified by RA activity or were intrinsic to osteoclasts and associated with the RA phenotype (erosive or not). Osteoclasts were generated in vitro from peripheral blood mononuclear cells (PBMCs) of subjects with RA (n = 140), as well as sex- and age-matched healthy controls (n = 101). Osteoclastic parameters were analyzed at baseline and during the follow-up for up to 4 years, with regular assessment of RA activity, bone erosions, and bone mineral density (BMD). As a validation cohort, we examined RA patients from the Early Undifferentiated PolyArthritis (EUPA) study (n = 163). The proportion of CD14+ PBMC was higher in RA than in control subjects, but inversely correlated with the 28-joint disease activity score (DAS28). Also surprisingly, in osteoclast cultures from PBMCs, active RA was associated with lower osteoclastogenic capacity, while in vitro bone resorption per osteoclast and resistance to apoptosis were similar in both active and quiescent RA. In a small subgroup analysis, osteoclasts from subjects with recent RA that had progressed at four years to an erosive RA exhibited at baseline greater resistance to apoptosis than those from patients remaining non-erosive. Our findings establish that when RA is active, circulating monocytes have a reduced potential to generate osteoclasts from PBMCs in vitro. In addition, osteoclasts associated with erosive disease had resistance to apoptosis from the start of RA. Osteoclasts are derived in vitro from circulating monocytes in rheumatoid arthritis. Blood CD14+ monocytes (%) are higher but inversely correlated with disease activity. Active rheumatoid arthritis is associated with reduced osteoclast formation in vitro. Inflammation alters the ability to generate osteoclasts from circulating monocytes. Osteoclast resistance to apoptosis is stable and associated with long-term erosions.
Collapse
|
7
|
Gingipains promote RANKL-induced osteoclastogenesis through the enhancement of integrin β3 in RAW264.7 cells. J Mol Histol 2020; 51:147-159. [PMID: 32193744 DOI: 10.1007/s10735-020-09865-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/10/2020] [Indexed: 01/10/2023]
Abstract
As a crucial virulence factor of Porphyromonas gingivalis, gingipains play an important role in periodontal destruction. This study aimed to investigate the effect of gingipains on osteoclastogenesis. We used RAW264.7 cells as osteoclast precursors in our study. In experimental groups, cells were treated with gingipains and/or receptor activator of nuclear factor-κB ligand (RANKL). Tartrate-resistant acid phosphatase (TRAP) activity staining assay showed osteoclast precursors and RANKL-induced mature osteoclasts were increased in a gingipains dose-dependent manner. Real-time reverse transcription polymerase chain reaction analysis demonstrated that gingipains upregulated osteoclastic genes including the protease cathepsin K (Ctsk), matrix metalloprotein 9 (Mmp9), nuclear factor of activated T cells 1 (Nfatc1) and acid phosphatase 5, tartrate resistant (Acp5) in a time-dependent manner. Western blotting assays presented upregulated expressions of TNF receptor-activating factor 6 (TRAF6) and integrin β3 induced by gingipains and RANKL compared to RANKL alone. Enhanced integrin-related signaling was also demonstrated by elevated phosphorylations of FAK and paxillin compared to control. Moreover, the pit resorption assays showed that gingipains augmented bone resorptive function of osteoclasts induced by RANKL. When we used Cilengitide to block integrin αvβ3, gingipains reversed the reduction of formation and resorptive function in RANKL-induced osteoclasts, as they enhanced integrin αvβ3 levels more than RANKL treatment alone. In conclusion, our data suggest that gingipains augmented the differentiation and function of mature osteoclasts induced by RANKL through the increase in integrin αvβ3.
Collapse
|
8
|
The RANK-RANKL axis: an opportunity for drug repurposing in cancer? Clin Transl Oncol 2019; 21:977-991. [PMID: 30656607 DOI: 10.1007/s12094-018-02023-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
Abstract
Drug repurposing offers advantages over traditional drug development in terms of cost, speed and improved patient outcomes. The receptor activator of nuclear factor kappa B (RANK) ligand (RANKL) inhibitor denosumab is approved for the prevention of skeletal-related events in patients with advanced malignancies involving bone, including solid tumours and multiple myeloma. Following improved understanding of the role of RANK/RANKL in cancer biology, denosumab has already been repurposed as a treatment for giant cell tumour of bone. Here, we review the role of RANK/RANKL in tumourigenesis, including effects on tumour initiation, progression and metastasis and consider the impact of RANK/RANKL on tumour immunology and immune evasion. Finally, we look briefly at ongoing trials and future opportunities for therapeutic synergy when combining denosumab with anti-cancer agents such as immune checkpoint inhibitors.
Collapse
|
9
|
Pitocco D, Scavone G, Di Leo M, Vitiello R, Rizzi A, Tartaglione L, Costantini F, Flex A, Galli M, Caputo S, Ghirlanda G, Pontecorvi A. Charcot Neuroarthropathy: From the Laboratory to the Bedside. Curr Diabetes Rev 2019; 16:62-72. [PMID: 31057120 DOI: 10.2174/1573399815666190502121945] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/26/2019] [Accepted: 04/17/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUND The diabetic Charcot foot syndrome is a serious and potentially limbthreatening lower-extremity complication of diabetes. INTRODUCTION The present review provides a concise account of the advances made over the last twentyfive years in understanding the pathogenesis and management of Charcot neuroarthropathy (CN). METHODS In this study, the widely known pathogenetic mechanisms underpinning CN are brought into focus, particularly the role of RANKL/RANK/OPG system and advanced glycation end production in the pathogenesis of CN. Furthermore, other potential triggering factors, namely nitric oxide, endothelial dysfunction, macro calcifications and body weight that influence CN have also been discussed. RESULTS The wide range of diagnostic tools available to clinicians for accurate staging of this pathology has been examined, particularly radiological and nuclear medicine imaging. Additionally, the difficult differential diagnosis between osteomyelitis and CN is also elucidated. CONCLUSION The review concludes with the comprehensive summary of the major promising therapeutic strategies, including conservative treatment involving orthopedic devices, pharmacological approach, and the most common surgical techniques currently employed in the diagnosis and treatment of this acute disease.
Collapse
Affiliation(s)
- Dario Pitocco
- Diabetes Care Unit, Institute of Endocrinology, Catholic University of Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Giuseppe Scavone
- Diabetes Care Unit, Institute of Endocrinology, Catholic University of Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Mauro Di Leo
- Diabetes Care Unit, Institute of Endocrinology, Catholic University of Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Raffaele Vitiello
- Diabetes Care Unit, Institute of Endocrinology, Catholic University of Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Alessandro Rizzi
- Diabetes Care Unit, Institute of Endocrinology, Catholic University of Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Linda Tartaglione
- Diabetes Care Unit, Institute of Endocrinology, Catholic University of Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Federica Costantini
- Diabetes Care Unit, Institute of Endocrinology, Catholic University of Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Andrea Flex
- Institute of Internal Medicine, Catholic University of Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Marco Galli
- Institute of Orthopedic Surgery, Catholic University of Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Salvatore Caputo
- Diabetes Care Unit, Institute of Endocrinology, Catholic University of Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Giovanni Ghirlanda
- Diabetes Care Unit, Institute of Endocrinology, Catholic University of Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Alfredo Pontecorvi
- Diabetes Care Unit, Institute of Endocrinology, Catholic University of Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| |
Collapse
|
10
|
"Omics" Signatures in Peripheral Monocytes from Women with Low BMD Condition. J Osteoporos 2018; 2018:8726456. [PMID: 29744028 PMCID: PMC5878888 DOI: 10.1155/2018/8726456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 02/12/2018] [Indexed: 01/20/2023] Open
Abstract
Postmenopausal osteoporosis (PMO) is a result of increased bone resorption compared to formation. Osteoclasts are responsible for bone resorption, which are derived from circulating monocytes that undertake a journey from the blood to the bone for the process of osteoclastogenesis. In recent times, the use of high throughput technologies to explore monocytes from women with low versus high bone density has led to the identification of candidate molecules that may be deregulated in PMO. This review provides a list of molecules in monocytes relevant to bone density which have been identified by "omics" studies in the last decade or so. The molecules in monocytes that are deregulated in low BMD condition may contribute to processes such as monocyte survival, migration/chemotaxis, adhesion, transendothelial migration, and differentiation into the osteoclast lineage. Each of these processes may be crucial to the overall route of osteoclastogenesis and an increase in any/all of these processes can lead to increased bone resorption and subsequently low bone density. Whether these molecules are indeed the cause or effect is an arena currently unexplored.
Collapse
|
11
|
Abu El-Asrar AM, Ahmad A, Alam K, Bittoun E, Siddiquei MM, Mohammad G, Mousa A, De Hertogh G, Opdenakker G. Unbalanced Vitreous Levels of Osteoprotegerin, RANKL, RANK, and TRAIL in Proliferative Diabetic Retinopathy. Ocul Immunol Inflamm 2017; 26:1248-1260. [PMID: 28914577 DOI: 10.1080/09273948.2017.1343855] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE We investigated the expression of the proinflammatory and proangiogenic factor osteoprotegerin (OPG) and its ligands, receptor activator of nuclear factor-κB ligand (RANKL), tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), and the receptor RANK in proliferative diabetic retinopathy (PDR). MATERIALS AND METHODS Vitreous samples from PDR and nondiabetic control patients and epiretinal membranes from PDR patients were studied by enzyme-linked immunosorbent assay, immunohistochemistry, and Western blot analysis. RESULTS Vascular endothelial growth factor, OPG, and soluble RANK levels in vitreous samples from PDR patients were significantly higher than that in nondiabetic controls. Soluble TRAIL levels were significantly lower in PDR patients than that in nondiabetic control, whereas soluble RANKL levels did not differ significantly. RANKL, RANK, and TRAIL were expressed in vascular endothelial cells, myofibroblasts, and CD45-expressing leukocytes in PDR epiretinal membranes. CONCLUSIONS Dysregulated expression of OPG/RANKL/RANK pathway and TRAIL might be related to inflammation and angiogenesis in PDR.
Collapse
Affiliation(s)
- Ahmed M Abu El-Asrar
- a Department of Ophthalmology , College of Medicine, King Saud University , Riyadh , Saudi Arabia.,b Dr. Nasser Al-Rashid Research Chair in Ophthalmology, College of Medicine, King Saud University , Riyadh , Saudi Arabia
| | - Ajmal Ahmad
- a Department of Ophthalmology , College of Medicine, King Saud University , Riyadh , Saudi Arabia
| | - Kaiser Alam
- a Department of Ophthalmology , College of Medicine, King Saud University , Riyadh , Saudi Arabia
| | - Emilie Bittoun
- c Laboratory of Histochemistry and Cytochemistry, Department of Pathology, University of Leuven, KU Leuven , Leuven , Belgium
| | | | - Ghulam Mohammad
- a Department of Ophthalmology , College of Medicine, King Saud University , Riyadh , Saudi Arabia
| | - Ahmed Mousa
- a Department of Ophthalmology , College of Medicine, King Saud University , Riyadh , Saudi Arabia
| | - Gert De Hertogh
- c Laboratory of Histochemistry and Cytochemistry, Department of Pathology, University of Leuven, KU Leuven , Leuven , Belgium
| | - Ghislain Opdenakker
- d Rega Institute for Medical Research, Department of Microbiology and Immunology , University of Leuven, KU Leuven , Leuven , Belgium
| |
Collapse
|
12
|
Raaz-Schrauder D, Schrauder MG, Stumpf C, Lewczuk P, Kilian T, Dietel B, Garlichs CD, Schlundt C, Achenbach S, Klinghammer L. Plasma levels of sRANKL and OPG are associated with atherogenic cytokines in patients with intermediate cardiovascular risk. Heart Vessels 2017; 32:1304-1313. [PMID: 28567553 DOI: 10.1007/s00380-017-0998-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/26/2017] [Indexed: 12/29/2022]
Abstract
Osteoprotegerin (OPG) and receptor activator of nuclear factor-κB ligand (RANKL) are regulators of bone remodeling, but are also considered to play important roles in coronary artery disease (CAD). This study evaluated potential associations of soluble (s) RANKL and OPG with atherosclerosis-relevant cytokines. Blood was collected from 414 individuals who presented to our hospital with intermediate likelihood for CAD for further examination. Plasma concentrations of total sRANKL, OPG, and 20 cytokines were measured using sandwich-type enzyme-linked immunoassays (ELISAs; OPG and sRANKL) and Luminex laser-based fluorescence analysis and correlated with each other. The plasma levels of interferon-γ (IFN-γ) and the T-helper cell 2 cytokines interleukin-4 (IL-4) and IL-13 showed a positive correlation with sRANKL. The association with sRANKL levels was negative for IFN-γ-induced protein-10 (IP-10) and monocyte chemotactic protein-1 (MCP-1). The strongest independent association with sRANKL in multivariable analyses was found for IFN-γ (positive) and IP-10 (negative), while IL-13 showed a positive and independent association with OPG plasma levels. OPG and sRANKL plasma levels correlate strongly and independently with specific circulating atherosclerosis-related cytokines in patients with intermediate cardiovascular risk.
Collapse
Affiliation(s)
- Dorette Raaz-Schrauder
- Friedrich-Alexander University Erlangen-Nürnberg (FAU), Department of Cardiology and Angiology, Erlangen University Hospital, Ulmenweg 18, 91054, Erlangen, Germany.
| | - Michael G Schrauder
- Friedrich-Alexander University Erlangen-Nürnberg (FAU), Department of Obstetrics and Gynecology, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Christian Stumpf
- Friedrich-Alexander University Erlangen-Nürnberg (FAU), Department of Cardiology and Angiology, Erlangen University Hospital, Ulmenweg 18, 91054, Erlangen, Germany
| | - Piotr Lewczuk
- Friedrich-Alexander University Erlangen-Nürnberg(FAU), Department of Psychiatry and Psychotherapy, Erlangen, University Hospital, Erlangen, Germany.,Department of Neurodegeneration Diagnostics, Medical University of Białystok, Białystok, Poland.,Department of Biochemical Diagnostics, University Hospital of Białystok, Białystok, Poland
| | - Tobias Kilian
- Friedrich-Alexander University Erlangen-Nürnberg (FAU), Department of Cardiology and Angiology, Erlangen University Hospital, Ulmenweg 18, 91054, Erlangen, Germany
| | - Barbara Dietel
- Friedrich-Alexander University Erlangen-Nürnberg (FAU), Department of Cardiology and Angiology, Erlangen University Hospital, Ulmenweg 18, 91054, Erlangen, Germany
| | | | - Christian Schlundt
- Friedrich-Alexander University Erlangen-Nürnberg (FAU), Department of Cardiology and Angiology, Erlangen University Hospital, Ulmenweg 18, 91054, Erlangen, Germany
| | - Stephan Achenbach
- Friedrich-Alexander University Erlangen-Nürnberg (FAU), Department of Cardiology and Angiology, Erlangen University Hospital, Ulmenweg 18, 91054, Erlangen, Germany
| | - Lutz Klinghammer
- Friedrich-Alexander University Erlangen-Nürnberg (FAU), Department of Cardiology and Angiology, Erlangen University Hospital, Ulmenweg 18, 91054, Erlangen, Germany
| |
Collapse
|
13
|
Lin ME, Chen TM, Wallingford MC, Nguyen NB, Yamada S, Sawangmake C, Zhang J, Speer MY, Giachelli CM. Runx2 deletion in smooth muscle cells inhibits vascular osteochondrogenesis and calcification but not atherosclerotic lesion formation. Cardiovasc Res 2016; 112:606-616. [PMID: 27671804 DOI: 10.1093/cvr/cvw205] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 08/05/2016] [Indexed: 01/23/2023] Open
Abstract
Aims Vascular smooth muscle cells (SMCs) are major precursors contributing to osteochondrogenesis and calcification in atherosclerosis. Runt-related transcription factor-2 (Runx2) has been found essential for SMC differentiation to an osteochondrogenic phenotype and subsequent calcification in vitro. A recent study using a conditional targeting allele that produced a truncated Runx2 protein in SMCs of ApoE-/- mice showed reduced vascular calcification, likely occurring via reduction of receptor activator of nuclear factor-κB ligand (RANKL), macrophage infiltration, and atherosclerotic lesion formation. Using an improved conditional Runx2 knockout mouse model, we have elucidated new roles for SMC-specific Runx2 in arterial intimal calcification (AIC) without effects on atherosclerotic lesion size. Methods and results We used an improved targeting construct to generate LDLr-/- mice with floxed-Runx2 alleles ( LDLr-/- :Runx2 f/f ) such that Cre-mediated recombination ( LDLr-/- :Runx2 ΔSM ) does not produce functional truncated Runx2 protein, thereby avoiding off-target effects. We found that both LDLr-/- :Runx2 f/f and LDLr-/- :Runx2 ΔSM mice fed with a high fat diet developed atherosclerosis. SMC-specific Runx2 deletion did not significantly reduce atherosclerotic lesion size, macrophage number, or expression of RANKL, MCP-1, and CCR2. However, it significantly reduced AIC by 50%. Mechanistically, Sox9 and type II collagen were unaltered in vessels of LDLr-/- :Runx2 ΔSM mice compared to LDLr-/- :Runx2 f/f counterparts, while type X collagen, MMP13 and the osteoblastic marker osteocalcin were significantly reduced. Conclusions SMC autonomous Runx2 is required for SMC differentiation towards osteoblast-like cells, SMC-derived chondrocyte maturation and AIC in atherosclerotic mice. These effects were independent of systemic lipid metabolism, RANKL expression, macrophage infiltration, and atheromatous lesion progression.
Collapse
Affiliation(s)
- Mu-En Lin
- Present address. RevMAb Biosciences, 870 Dubuque Ave, South San Francisco, CA 94080, USA
| | | | | | - Ngoc B Nguyen
- Present address. University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | - Chenphop Sawangmake
- Present address. Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | | |
Collapse
|
14
|
Abstract
Oncogenic events combined with a favourable environment are the two main factors in the oncological process. The tumour microenvironment is composed of a complex, interconnected network of protagonists, including soluble factors such as cytokines, extracellular matrix components, interacting with fibroblasts, endothelial cells, immune cells and various specific cell types depending on the location of the cancer cells (e.g. pulmonary epithelium, osteoblasts). This diversity defines specific "niches" (e.g. vascular, immune, bone niches) involved in tumour growth and the metastatic process. These actors communicate together by direct intercellular communications and/or in an autocrine/paracrine/endocrine manner involving cytokines and growth factors. Among these glycoproteins, RANKL (receptor activator nuclear factor-κB ligand) and its receptor RANK (receptor activator nuclear factor), members of the TNF and TNFR superfamilies, have stimulated the interest of the scientific community. RANK is frequently expressed by cancer cells in contrast with RANKL which is frequently detected in the tumour microenvironment and together they participate in every step in cancer development. Their activities are markedly regulated by osteoprotegerin (OPG, a soluble decoy receptor) and its ligands, and by LGR4, a membrane receptor able to bind RANKL. The aim of the present review is to provide an overview of the functional implication of the RANK/RANKL system in cancer development, and to underline the most recent clinical studies.
Collapse
|
15
|
Golden D, Saria EA, Hansen MF. Regulation of Osteoblast Migration Involving Receptor Activator of Nuclear Factor-kappa B (RANK) Signaling. J Cell Physiol 2015; 230:2951-60. [PMID: 25893522 DOI: 10.1002/jcp.25024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 04/16/2015] [Indexed: 01/12/2023]
Abstract
Bone remodeling requires osteoclast activation, resorption, and reversal, prior to osteoblast migration into the bone pit. The Receptor Activator of NF-κB (RANK) signaling pathway plays an important role in bone remodeling. Two components of the RANK signaling pathway, RANK Ligand (RANKL) and the decoy receptor Osteoprotegerin (OPG), are expressed predominantly on the surface of osteoblasts, while RANK is principally expressed on the surface of osteoclasts. However, RANK has also been reported to be expressed on the surface of osteoblasts and osteosarcoma tumor cells. Treatment with soluble RANKL (sRANKL) of both normal osteoblasts and osteosarcoma tumor cells activated phosphorylation of ERK, p38(MAPK) , Akt, and p65(NF-κB). However, modified Boyden chamber assays and wound repair assays showed differential response to sRANKL-induced chemotactic migration in normal osteoblasts and osteosarcoma tumor cells. In contrast to previously published results, both normal osteoblasts and osteosarcoma tumor cells responded to sRANKL-induced chemotactic migration but the normal osteoblasts did so only in the presence of an ERK pathway inhibitor. For both normal and tumor cells, the chemotactic response could be blocked by inhibiting the PI3K/Akt or p65(NF-κB) pathway. Response to sRANKL in normal and tumor cells suggests a role for RANK/ERK-mediated signaling in normal osteoblasts chemotactic migration during bone remodeling that is altered or lost during osteosarcoma tumorigenesis.
Collapse
Affiliation(s)
- Diana Golden
- Center for Molecular Medicine, University of Connecticut Health Center, Farmington, Connecticut
| | - Elizabeth A Saria
- Center for Molecular Medicine, University of Connecticut Health Center, Farmington, Connecticut
| | - Marc F Hansen
- Center for Molecular Medicine, University of Connecticut Health Center, Farmington, Connecticut
| |
Collapse
|
16
|
Monocyte Proteomics Reveals Involvement of Phosphorylated HSP27 in the Pathogenesis of Osteoporosis. DISEASE MARKERS 2015; 2015:196589. [PMID: 26063949 PMCID: PMC4439496 DOI: 10.1155/2015/196589] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 03/30/2015] [Accepted: 04/07/2015] [Indexed: 01/23/2023]
Abstract
Peripheral monocytes, precursors of osteoclasts, have emerged as important candidates for identifying proteins relevant to osteoporosis, a condition characterized by low Bone Mineral Density (BMD) and increased susceptibility for fractures. We employed 4-plex iTRAQ (isobaric tags for relative and absolute quantification) coupled with LC-MS/MS (liquid chromatography coupled with tandem mass spectrometry) to identify differentially expressed monocyte proteins from premenopausal and postmenopausal women with low versus high BMD. Of 1801 proteins identified, 45 were differentially abundant in low versus high BMD, with heat shock protein 27 (HSP27) distinctly upregulated in low BMD condition in both premenopausal and postmenopausal categories. Validation in individual samples (n = 80) using intracellular ELISA confirmed that total HSP27 (tHSP27) as well as phosphorylated HSP27 (pHSP27) was elevated in low BMD condition in both categories (P < 0.05). Further, using transwell assays, pHSP27, when placed in the upper chamber, could increase monocyte migration (P < 0.0001) and this was additive in combination with RANKL (receptor activator of NFkB ligand) placed in the lower chamber (P = 0.05). Effect of pHSP27 in monocyte migration towards bone milieu can result in increased osteoclast formation and thus contribute to pathogenesis of osteoporosis. Overall, this study reveals for the first time a novel link between monocyte HSP27 and BMD.
Collapse
|
17
|
Mazière C, Salle V, Gomila C, Mazière JC. Oxidized low density lipoprotein increases RANKL level in human vascular cells. Involvement of oxidative stress. Biochem Biophys Res Commun 2013; 440:295-9. [PMID: 24070606 DOI: 10.1016/j.bbrc.2013.09.072] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 09/13/2013] [Indexed: 12/27/2022]
Abstract
Receptor Activator of NFκB Ligand (RANKL) and its decoy receptor osteoprotegerin (OPG) have been shown to play a role not only in bone remodeling but also in inflammation, arterial calcification and atherosclerotic plaque rupture. In human smooth muscle cells, Cu(2+)-oxidized LDL (CuLDL) 10-50 μg/ml increased reactive oxygen species (ROS) and RANKL level in a dose-dependent manner, whereas OPG level was not affected. The lipid extract of CuLDL reproduced the effects of the whole particle. Vivit, an inhibitor of the transcription factor NFAT, reduced the CuLDL-induced increase in RANKL, whereas PKA and NFκB inhibitors were ineffective. LDL oxidized by myeloperoxidase (MPO-LDL), or other pro-oxidant conditions such as ultraviolet A (UVA) irradiation, incubation with H2O2 or with buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis, also induced an oxidative stress and enhanced RANKL level. The increase in RANKL in pro-oxidant conditions was also observed in fibroblasts and endothelial cells. Since RANKL is involved in myocardial inflammation, vascular calcification and plaque rupture, this study highlights a new mechanism whereby OxLDL might, by generation of an oxidative stress, exert a deleterious effect on different cell types of the arterial wall.
Collapse
Affiliation(s)
- Cécile Mazière
- Biochemistry Laboratory, South Hospital University, René Laennec Avenue, Amiens 80000, France.
| | | | | | | |
Collapse
|
18
|
Di Bartolo BA, Cartland SP, Harith HH, Bobryshev YV, Schoppet M, Kavurma MM. TRAIL-deficiency accelerates vascular calcification in atherosclerosis via modulation of RANKL. PLoS One 2013; 8:e74211. [PMID: 24040204 PMCID: PMC3764101 DOI: 10.1371/journal.pone.0074211] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/26/2013] [Indexed: 11/18/2022] Open
Abstract
The osteoprotegerin (OPG) and receptor activator of nuclear factor-κB ligand (RANKL) cytokine system, not only controls bone homeostasis, but has been implicated in regulating vascular calcification. TNF–related apoptosis-inducing ligand (TRAIL) is a second ligand for OPG, and although its effect in vascular calcification in vitro is controversial, its role in vivo is not yet established. This study aimed to investigate the role of TRAIL in vascular calcification in vitro using vascular smooth muscle cells (VSMCs) isolated from TRAIL−/− and wild-type mice, as well as in vivo, in advanced atherosclerotic lesions of TRAIL−/−ApoE−/− mice. The involvement of OPG and RANKL in this process was also examined. TRAIL dose-dependently inhibited calcium-induced calcification of human VSMCs, while TRAIL−/− VSMCs demonstrated accelerated calcification induced by multiple concentrations of calcium compared to wild-type cells. Consistent with this, RANKL mRNA was significantly elevated with 24 h calcium treatment, while OPG and TRAIL expression in human VSMCs was inhibited. Brachiocephalic arteries from TRAIL−/−ApoE−/− and ApoE−/− mice fed a high fat diet for 12 w demonstrated increased chondrocyte-like cells in atherosclerotic plaque, as well as increased aortic collagen II mRNA expression in TRAIL−/−ApoE−/− mice, with significant increases in calcification observed at 20 w. TRAIL−/−ApoE−/− aortas also had significantly elevated RANKL, BMP-2, IL-1β, and PPAR-γ expression at 12 w. Our data provides the first evidence that TRAIL deficiency results in accelerated cartilaginous metaplasia and calcification in atherosclerosis, and that TRAIL plays an important role in the regulation of RANKL and inflammatory markers mediating bone turn over in the vasculature.
Collapse
MESH Headings
- Animals
- Aorta/metabolism
- Aorta/pathology
- Apolipoproteins E/deficiency
- Apolipoproteins E/genetics
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Brachiocephalic Trunk/metabolism
- Brachiocephalic Trunk/pathology
- Calcium/metabolism
- Calcium/pharmacology
- Cells, Cultured
- Chondrocytes/drug effects
- Chondrocytes/metabolism
- Chondrocytes/pathology
- Collagen Type II/genetics
- Collagen Type II/metabolism
- Diet, High-Fat
- Gene Expression Regulation
- Humans
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Osteoprotegerin/genetics
- Osteoprotegerin/metabolism
- Plaque, Atherosclerotic/genetics
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- RANK Ligand/genetics
- RANK Ligand/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Signal Transduction
- TNF-Related Apoptosis-Inducing Ligand/deficiency
- TNF-Related Apoptosis-Inducing Ligand/genetics
- TNF-Related Apoptosis-Inducing Ligand/pharmacology
- Vascular Calcification/genetics
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
Collapse
Affiliation(s)
| | - Siân P. Cartland
- Centre for Vascular Research, University of New South Wales, Sydney, NSW, Australia
| | - Hanis H. Harith
- Centre for Vascular Research, University of New South Wales, Sydney, NSW, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Yuri V. Bobryshev
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Michael Schoppet
- Department of Internal Medicine and Cardiology, Philips University, Marburg, Germany
| | - Mary M. Kavurma
- Centre for Vascular Research, University of New South Wales, Sydney, NSW, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
- * E-mail:
| |
Collapse
|
19
|
Lafantaisie-Favreau CH, Guzmán-Morales J, Sun J, Chen G, Harris A, Smith TD, Carli A, Henderson J, Stanish WD, Hoemann CD. Subchondral pre-solidified chitosan/blood implants elicit reproducible early osteochondral wound-repair responses including neutrophil and stromal cell chemotaxis, bone resorption and repair, enhanced repair tissue integration and delayed matrix deposition. BMC Musculoskelet Disord 2013; 14:27. [PMID: 23324433 PMCID: PMC3602124 DOI: 10.1186/1471-2474-14-27] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 12/23/2012] [Indexed: 12/20/2022] Open
Abstract
Background In this study we evaluated a novel approach to guide the bone marrow-driven articular cartilage repair response in skeletally aged rabbits. We hypothesized that dispersed chitosan particles implanted close to the bone marrow degrade in situ in a molecular mass-dependent manner, and attract more stromal cells to the site in aged rabbits compared to the blood clot in untreated controls. Methods Three microdrill hole defects, 1.4 mm diameter and 2 mm deep, were created in both knee trochlea of 30 month-old New Zealand White rabbits. Each of 3 isotonic chitosan solutions (150, 40, 10 kDa, 80% degree of deaceylation, with fluorescent chitosan tracer) was mixed with autologous rabbit whole blood, clotted with Tissue Factor to form cylindrical implants, and press-fit in drill holes in the left knee while contralateral holes received Tissue Factor or no treatment. At day 1 or day 21 post-operative, defects were analyzed by micro-computed tomography, histomorphometry and stereology for bone and soft tissue repair. Results All 3 implants filled the top of defects at day 1 and were partly degraded in situ at 21 days post-operative. All implants attracted neutrophils, osteoclasts and abundant bone marrow-derived stromal cells, stimulated bone resorption followed by new woven bone repair (bone remodeling) and promoted repair tissue-bone integration. 150 kDa chitosan implant was less degraded, and elicited more apoptotic neutrophils and bone resorption than 10 kDa chitosan implant. Drilled controls elicited a poorly integrated fibrous or fibrocartilaginous tissue. Conclusions Pre-solidified implants elicit stromal cells and vigorous bone plate remodeling through a phase involving neutrophil chemotaxis. Pre-solidified chitosan implants are tunable by molecular mass, and could be beneficial for augmented marrow stimulation therapy if the recruited stromal cells can progress to bone and cartilage repair.
Collapse
|
20
|
Sun Y, Byon CH, Yuan K, Chen J, Mao X, Heath JM, Javed A, Zhang K, Anderson PG, Chen Y. Smooth muscle cell-specific runx2 deficiency inhibits vascular calcification. Circ Res 2012; 111:543-52. [PMID: 22773442 DOI: 10.1161/circresaha.112.267237] [Citation(s) in RCA: 267] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Vascular calcification is a hallmark of atherosclerosis, a major cause of morbidity and mortality in the United States. We have previously reported that the osteogenic transcription factor Runx2 is an essential and sufficient regulator of calcification of vascular smooth muscle cells (VSMC) in vitro. OBJECTIVE To determine the contribution of osteogenic differentiation of VSMC to the pathogenesis of vascular calcification and the function of VSMC-derived Runx2 in regulating calcification in vivo. METHODS AND RESULTS SMC-specific Runx2-deficient mice, generated by breeding SM22α-Cre mice with the Runx2 exon 8 floxed mice, exhibited normal aortic gross anatomy and expression levels of SMC-specific marker genes. Runx2 deficiency did not affect basal SMC markers, but inhibited oxidative stress-reduced expression of SMC markers. High-fat-diet-induced vascular calcification in vivo was markedly inhibited in the Runx2-deficient mice in comparison with their control littermates. Runx2 deficiency inhibited the expression of receptor activator of nuclear factor κB ligand, which was accompanied by decreased macrophage infiltration and formation of osteoclast-like cells in the calcified lesions. Coculture of VSMC with bone marrow-derived macrophages demonstrated that the Runx2-deficient VSMC failed to promote differentiation of macrophages into osteoclast-like cells. CONCLUSIONS These data have determined the importance of osteogenic differentiation of VSMC in the pathogenesis of vascular calcification in mice and defined the functional role of SMC-derived Runx2 in regulating vascular calcification and promoting infiltration of macrophages into the calcified lesion to form osteoclast-like cells. Our studies suggest that the development of vascular calcification is coupled with the formation of osteoclast-like cells, paralleling the bone remodeling process.
Collapse
Affiliation(s)
- Yong Sun
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Riegel A, Maurer T, Prior B, Stegmaier S, Heppert V, Wagner C, Hänsch GM. Human polymorphonuclear neutrophils express RANK and are activated by its ligand, RANKL. Eur J Immunol 2012; 42:975-81. [PMID: 22531921 DOI: 10.1002/eji.201141786] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The receptor activator of NF-κB (RANK) is especially well studied in the context of bone remodeling, and RANK and its ligand, RANKL, are key molecules in the induction of bone resorbing osteoclasts. We now report that polymorphonuclear neutrophils (PMNs) contain preformed RANK, stored in secretory vesicles and in specific granules. Upon stimulation of PMNs in vitro, RANK was translocated to the cell membrane. In patients with persistent bacterial infections, RANK surface expression was enhanced compared with that of healthy individuals. The functional activity of RANK was assessed by determining migration of PMNs toward RANKL. A time- and dose-dependent migration was seen, leading to the conclusion that RANK on PMNs is functional. We presume that regulated RANK expression contributes to the fine tuning of PMN migration, for example, on and through inflamed endothelium that is known to express RANKL.
Collapse
|
22
|
Dougall WC. Molecular pathways: osteoclast-dependent and osteoclast-independent roles of the RANKL/RANK/OPG pathway in tumorigenesis and metastasis. Clin Cancer Res 2011; 18:326-35. [PMID: 22031096 DOI: 10.1158/1078-0432.ccr-10-2507] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Receptor activator of nuclear factor-kappa B ligand (RANKL) is a TNF ligand superfamily member that is essential for the formation, activation, and function of osteoclasts. RANKL functions via its cognate receptor RANK, and it is inhibited by the soluble decoy receptor osteoprotegerin (OPG). In skeletal metastases, the ratio of RANKL to OPG is upregulated, which leads to increased osteoclast-mediated bone destruction. These changes in the bone microenvironment not only compromise the structural integrity of bone, leading to severe clinical morbidities, but have also been implicated in establishment of de novo bone metastasis and the progression of existing skeletal tumors. Evaluation of RANKL inhibitors, including the fully human anti-RANKL antibody denosumab, in patients with cancer has shown reductions in tumor-induced bone resorption activity and successful management of skeletal complications of bone metastases. RANKL also functions as a major paracrine effector of the mitogenic action of progesterone in mouse mammary epithelium, and it has a role in ovarian hormone-dependent expansion and regenerative potential of mammary stem cells. RANKL inhibition attenuates mammary tumorigenesis and pulmonary metastases in mouse models. These data suggest that the contribution of progesterone to increased mammary cancer incidence is mediated, at least in part, by RANKL-dependent changes in the mammary epithelium; RANKL also directly promotes distant metastases. In summary, the antitumor and antimetastatic effects of RANKL inhibition can occur by at least 2 distinct mechanisms, one in the bone via osteoclast-dependent effects, and the second via direct effects on the tumor cells of various origins and/or mammary epithelium.
Collapse
Affiliation(s)
- William C Dougall
- Department of Hematology and Oncology Research, Amgen Inc., Seattle, WA 98119, USA.
| |
Collapse
|
23
|
Zweers MC, de Boer TN, van Roon J, Bijlsma JWJ, Lafeber FPJG, Mastbergen SC. Celecoxib: considerations regarding its potential disease-modifying properties in osteoarthritis. Arthritis Res Ther 2011; 13:239. [PMID: 21955617 PMCID: PMC3308065 DOI: 10.1186/ar3437] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by progressive loss of articular cartilage, subchondral bone sclerosis, osteophyte formation, and synovial inflammation, causing substantial physical disability, impaired quality of life, and significant health care utilization. Traditionally, non-steroidal anti-inflammatory drugs (NSAIDs), including selective cyclooxygenase (COX)-2 inhibitors, have been used to treat pain and inflammation in OA. Besides its anti-inflammatory properties, evidence is accumulating that celecoxib, one of the selective COX-2 inhibitors, has additional disease-modifying effects. Celecoxib was shown to affect all structures involved in OA pathogenesis: cartilage, bone, and synovium. As well as COX-2 inhibition, evidence indicates that celecoxib also modulates COX-2-independent signal transduction pathways. These findings raise the question of whether celecoxib, and potentially other coxibs, is more than just an anti-inflammatory and analgesic drug. Can celecoxib be considered a disease-modifying osteoarthritic drug? In this review, these direct effects of celecoxib on cartilage, bone, and synoviocytes in OA treatment are discussed.
Collapse
Affiliation(s)
- Manon C Zweers
- Rheumatology and Clinical Immunology, University Medical Center Utrecht, F02,127, 3508 GA Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
24
|
Ndip A, Williams A, Jude EB, Serracino-Inglott F, Richardson S, Smyth JV, Boulton AJM, Alexander MY. The RANKL/RANK/OPG signaling pathway mediates medial arterial calcification in diabetic Charcot neuroarthropathy. Diabetes 2011; 60:2187-96. [PMID: 21659498 PMCID: PMC3142088 DOI: 10.2337/db10-1220] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The receptor activator of nuclear factor-κB (RANK), RANK ligand (RANKL), and osteoprotegerin (OPG) signaling pathway (RANKL/RANK/OPG signaling) is implicated in the osteolysis associated with diabetic Charcot neuroarthropathy (CN); however, the links with medial arterial calcification (MAC) seen in people with CN are unclear. This study aimed to investigate the role of RANKL/OPG in MAC in patients with CN. RESEARCH DESIGN AND METHODS Enzyme-linked immunosorbent assay and Bio-plex multiarray technology were used to quantify a range of cytokines, including RANKL and OPG in sera from 10 patients with diabetes, 12 patients with CN, and 5 healthy volunteers. Human tibial artery segments were immunohistochemically stained with Alizarin red and human RANKL antibody. Human vascular smooth muscle cells (VSMCs) were also explanted from arterial segments for in vitro studies. RESULTS We demonstrate colocalization and upregulation of RANKL expression in areas displaying MAC. Systemic levels of RANKL, OPG, and inflammatory cytokines (interleukin-8, granulocyte colony-stimulating factor) were elevated in those with CN compared with diabetic patients and healthy control subjects. Human VSMCs cultured in CN serum showed accelerated osteoblastic differentiation (alkaline phosphatase activity) and mineralization (alizarin red staining) compared with cells treated with diabetic or control serum (P < 0.05). Coincubation with OPG, the decoy receptor for RANKL, attenuated osteogenic differentiation of VSMCs and was independent of a high calcium-phosphate milieu. The accelerated mineralization induced by RANKL and CN serum correlated with nuclear translocation of nuclear factor-κB, a process abrogated by OPG. CONCLUSIONS Our data provide direct evidence that RANKL/RANK/OPG signaling is modulated in patients with CN and plays a role in vascular calcification. This study highlights this pathway as a potential target for intervention.
Collapse
Affiliation(s)
- Agbor Ndip
- Department of Medicine and Diabetes, Manchester Royal Infirmary, Manchester, UK.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Byon CH, Sun Y, Chen J, Yuan K, Mao X, Heath JM, Anderson PG, Tintut Y, Demer LL, Wang D, Chen Y. Runx2-upregulated receptor activator of nuclear factor κB ligand in calcifying smooth muscle cells promotes migration and osteoclastic differentiation of macrophages. Arterioscler Thromb Vasc Biol 2011; 31:1387-96. [PMID: 21454810 PMCID: PMC3098301 DOI: 10.1161/atvbaha.110.222547] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 03/15/2011] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Clinical and experimental studies demonstrate the important roles of vascular smooth muscle cells (VSMC) in the pathogenesis of atherosclerosis. We have previously determined that the osteogenic transcription factor Runx2 is essential for VSMC calcification. The present study characterized Runx2-regulated signals and their potential roles in vascular calcification. METHODS AND RESULTS In vivo studies with atherogenic apolipoprotein E(-/-) mice demonstrated that increased oxidative stress was associated with upregulation of Runx2 and receptor activator of nuclear factor κB ligand (RANKL), which colocalized in the calcified atherosclerotic lesions and were juxtaposed to infiltrated macrophages and osteoclast-like cells that are positively stained for an osteoclast marker, tartrate-resistant acid phosphatase. Mechanistic studies using RNA interference, a luciferase reporter system, chromatin immunoprecipitation, and electrophoretic mobility shift assays indicated that Runx2 regulated the expression of RANKL via a direct binding to the 5'-flanking region of the RANKL. Functional characterization revealed that RANKL did not induce VSMC calcification, nor was RANKL required for oxidative stress-induced VSMC calcification. Using a coculture system, we demonstrated that VSMC-expressed RANKL induced migration as well as differentiation of bone marrow-derived macrophages into multinucleated, tartrate-resistant acid phosphatase-positive osteoclast-like cells. These effects were inhibited by the RANKL antagonist osteoprotegerin and with VSMC deficient in Runx2 or RANKL. CONCLUSION We demonstrate that Runx2 directly binds to the promoter and controls the expression of RANKL, which mediates the crosstalk between calcifying VSMC and migration and differentiation of macrophages into osteoclast-like cells in the atherosclerotic lesions. Our studies provide novel mechanistic insights into the regulation and function of VSMC-derived RANKL in the pathogenesis of atherosclerosis and vascular calcification.
Collapse
Affiliation(s)
- Chang Hyun Byon
- Department of Cell Biology University of Alabama at Birmingham
| | - Yong Sun
- Department of Pathology, University of Alabama at Birmingham
| | - Jianfeng Chen
- Department of Pathology, University of Alabama at Birmingham
| | - Kaiyu Yuan
- Department of Pathology, University of Alabama at Birmingham
| | - Xia Mao
- Department of Pathology, University of Alabama at Birmingham
| | - Jack M Heath
- Department of Pathology, University of Alabama at Birmingham
| | | | - Yin Tintut
- Department of Medicine, University of California at Los Angeles
| | - Linda L Demer
- Department of Medicine, University of California at Los Angeles
| | - Deli Wang
- Biostatistics Unit, University of Alabama at Birmingham
| | - Yabing Chen
- Department of Pathology, University of Alabama at Birmingham
- VA Medical Center, Birmingham, AL
| |
Collapse
|
26
|
Chen G, Sun J, Lascau-Coman V, Chevrier A, Marchand C, Hoemann CD. Acute Osteoclast Activity following Subchondral Drilling Is Promoted by Chitosan and Associated with Improved Cartilage Repair Tissue Integration. Cartilage 2011; 2:173-85. [PMID: 26069578 PMCID: PMC4300782 DOI: 10.1177/1947603510381096] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Cartilage-bone integration is an important functional end point of cartilage repair therapy, but little is known about how to promote integration. We tested the hypothesis that chitosan-stabilized blood clot implant elicits osteoclasts to drilled cartilage defects and promotes repair and cartilage-bone integration. DESIGN Bilateral trochlear defects in 15 skeletally mature rabbit knees were microdrilled and then treated with chitosan-glycerol phosphate (GP)/blood implant with fluorescent chitosan tracer and thrombin to accelerate in situ solidification or with thrombin alone. Chitosan clearance, osteoclast density, and osteochondral repair were evaluated at 1, 2, and 8 weeks at the outside, edge, and through the proximal microdrill holes. RESULTS Chitosan was retained at the top of the drill holes at 1 week as extracellular particles became internalized by granulation tissue cells at 2 weeks and was completely cleared by 8 weeks. Osteoclasts burst-accumulated at microdrill hole edges at 1 week, in new woven bone at the base of the drill holes at 2 weeks, and below endochondral cartilage repair at 8 weeks. Implants elicited 2-fold more osteoclasts relative to controls (P < 0.001), a more complete drill hole bone repair, and improved cartilage-bone integration and histological tissue quality. Treated and control 8-week cartilage repair tissues contained 85% collagen type II. After 8 weeks of repair, subchondral osteoclast density correlated positively with bone-cartilage repair tissue integration (P < 0.0005). CONCLUSIONS Chitosan-GP/blood implant amplified the acute influx of subchondral osteoclasts through indirect mechanisms, leading to significantly improved repair and cartilage-bone integration without inducing net bone resorption. Osteoclasts are cellular mediators of marrow-derived cartilage repair integration.
Collapse
Affiliation(s)
- G. Chen
- Department of Chemical Engineering, Ecole Polytechnique, Montreal, Quebec, Canada
| | - J. Sun
- BioSyntech Canada Inc., Laval, Quebec, Canada,Piramal Healthcare (Canada), Laval, Quebec, Canada Institution where the work reported was done: Ecole Polytechnique, Montreal, Quebec, Canada
| | - V. Lascau-Coman
- Department of Chemical Engineering, Ecole Polytechnique, Montreal, Quebec, Canada
| | - A. Chevrier
- Department of Chemical Engineering, Ecole Polytechnique, Montreal, Quebec, Canada
| | - C. Marchand
- Institute of Biomedical Engineering, Ecole Polytechnique, Montreal, Quebec, Canada
| | - Caroline D. Hoemann
- Department of Chemical Engineering, Ecole Polytechnique, Montreal, Quebec, Canada,Institute of Biomedical Engineering, Ecole Polytechnique, Montreal, Quebec, Canada,Caroline D. Hoemann, Department of Chemical Engineering, Ecole Polytechnique, 2900 Edouard Montpetit, Montreal, QC, Canada H3C 3A7
| |
Collapse
|
27
|
Aukrust P, Sandberg WJ, Otterdal K, Vinge LE, Gullestad L, Yndestad A, Halvorsen B, Ueland T. Tumor necrosis factor superfamily molecules in acute coronary syndromes. Ann Med 2011; 43:90-103. [PMID: 21039303 DOI: 10.3109/07853890.2010.523711] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Accumulating evidence suggests that inflammatory pathways play an essential role in all stages of atherogenesis. Inflammatory processes are not only involved in plaque progression, but seem also to play a critical role in plaque rupture. Members of the tumor necrosis factor (TNF) superfamiliy are potent regulators of inflammation and cell survival and consist of 20 ligands that signal through 29 different receptors. Several lines of evidence suggest that TNF-related molecules are involved in the development of acute coronary syndromes (ACS). Most, convincing evidence exists for CD40 ligand-CD40 interaction, but several other members of the TNF superfamily seem also to be involved in this immune-mediated promotion of plaque instability, including LIGHT, receptor activator of nuclear factor κB ligand, and TNF-α. These plaque destabilization pathways involve the bidirectional interaction between platelets and endothelial cells/monocytes, activation of vascular smooth muscle cells, and co-stimulatory effects on T cells, promoting inflammation, thrombus formation, matrix degradation, and apoptosis. TNF-related pathways could contribute to the non-resolving inflammation that characterizes atherosclerosis, representing pathogenic loops that are operating during plaque rupture and the development of ACS. These TNF-related molecules could also represent attractive new targets for therapy in this disorder.
Collapse
Affiliation(s)
- Pål Aukrust
- Research Institute for Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Nitrogen-containing bisphosphonates have been associated with the development of osteonecrosis of the jaws (ONJ), but the lack of reliable epidemiological data and appropriate animal models has restricted our understanding of ONJ pathophysiology and limited its management. The best available information is from histopathologic findings, which implicate bone necrosis and infection, although it is not clear which is primary. However, there are data suggesting that macrophages could well be the central factor in allowing the infection to develop first, followed by local necrosis, which could also account for the development of ONJ in patients treated with denosumab, a human monoclonal antibody to the receptor activator of nuclear factor-κB ligand. This review examines the evidence that macrophages could play a prominent role in development of ONJ and the proposal that it may be more appropriate to view ONJ as a drug and not only a bisphosphonate-related complication.
Collapse
Affiliation(s)
- Michael Pazianas
- Institute of Musculoskeletal Sciences, University of Oxford, The Botnar Research Centre, Nuffield Orthopaedic Centre, Headington, Oxford, UK.
| |
Collapse
|
29
|
Abstract
Beta-Catenin-dependent canonical Wnt signaling plays an important role in bone metabolism by controlling differentiation of bone-forming osteoblasts and bone-resorbing osteoclasts. To investigate its function in osteocytes, the cell type constituting the majority of bone cells, we generated osteocyte-specific beta-catenin-deficient mice (Ctnnb1(loxP/loxP); Dmp1-Cre). Homozygous mutants were born at normal Mendelian frequency with no obvious morphological abnormalities or detectable differences in size or body weight, but bone mass accrual was strongly impaired due to early-onset, progressive bone loss in the appendicular and axial skeleton with mild growth retardation and premature lethality. Cancellous bone mass was almost completely absent, and cortical bone thickness was dramatically reduced. The low-bone-mass phenotype was associated with increased osteoclast number and activity, whereas osteoblast function and osteocyte density were normal. Cortical bone Wnt/beta-catenin target gene expression was reduced, and of the known regulators of osteoclast differentiation, osteoprotegerin (OPG) expression was significantly downregulated in osteocyte bone fractions of mutant mice. Moreover, the OPG levels expressed by osteocytes were higher than or comparable to the levels expressed by osteoblasts during skeletal growth and at maturity, suggesting that the reduction in osteocytic OPG and the concomitant increase in osteocytic RANKL/OPG ratio contribute to the increased number of osteoclasts and resorption in osteocyte-specific beta-catenin mutants. Together, these results reveal a crucial novel function for osteocyte beta-catenin signaling in controlling bone homeostasis.
Collapse
|
30
|
Moreno-Rubio J, Herrero-Beaumont G, Tardı´o L, álvarez-Soria MÁ, Largo R. Nonsteroidal antiinflammatory drugs and prostaglandin E2modulate the synthesis of osteoprotegerin and RANKL in the cartilage of patients with severe knee osteoarthritis. ACTA ACUST UNITED AC 2010; 62:478-88. [DOI: 10.1002/art.27204] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
31
|
Stolina M, Schett G, Dwyer D, Vonderfecht S, Middleton S, Duryea D, Pacheco E, Van G, Bolon B, Feige U, Zack D, Kostenuik P. RANKL inhibition by osteoprotegerin prevents bone loss without affecting local or systemic inflammation parameters in two rat arthritis models: comparison with anti-TNFalpha or anti-IL-1 therapies. Arthritis Res Ther 2009; 11:R187. [PMID: 20003323 PMCID: PMC3003514 DOI: 10.1186/ar2879] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 11/17/2009] [Accepted: 12/11/2009] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Rat adjuvant-induced arthritis (AIA) and collagen-induced arthritis (CIA) feature bone loss and systemic increases in TNFalpha, IL-1beta, and receptor activator of NF-kappaB ligand (RANKL). Anti-IL-1 or anti-TNFalpha therapies consistently reduce inflammation in these models, but systemic bone loss often persists. RANKL inhibition consistently prevents bone loss in both models without reducing joint inflammation. Effects of these therapies on systemic markers of bone turnover and inflammation have not been directly compared. METHODS Lewis rats with established AIA or CIA were treated for 10 days (from day 4 post onset) with either PBS (Veh), TNFalpha inhibitor (pegsunercept), IL-1 inhibitor (anakinra), or RANKL inhibitor (osteoprotegerin (OPG)-Fc). Local inflammation was evaluated by monitoring hind paw swelling. Bone mineral density (BMD) of paws and lumbar vertebrae was assessed by dual X-ray absorptiometry. Markers and mediators of bone resorption (RANKL, tartrate-resistant acid phosphatase 5b (TRACP 5B)) and inflammation (prostaglandin E2 (PGE2), acute-phase protein alpha-1-acid glycoprotein (alpha1AGP), multiple cytokines) were measured in serum (day 14 post onset). RESULTS Arthritis progression significantly increased paw swelling and ankle and vertebral BMD loss. Anti-TNFalpha reduced paw swelling in both models, and reduced ankle BMD loss in AIA rats. Anti-IL-1 decreased paw swelling in CIA rats, and reduced ankle BMD loss in both models. Anti-TNFalpha and anti-IL-1 failed to prevent vertebral BMD loss in either model. OPG-Fc reduced BMD loss in ankles and vertebrae in both models, but had no effect on paw swelling. Serum RANKL was elevated in AIA-Veh and CIA-Veh rats. While antiTNFalpha and anti-IL-1 partially normalized serum RANKL without any changes in serum TRACP 5B, OPG-Fc treatment reduced serum TRACP 5B by over 90% in both CIA and AIA rats. CIA-Veh and AIA-Veh rats had increased serum alpha1AGP, IL-1beta, IL-8 and chemokine (C-C motif) ligand 2 (CCL2), and AIA-Veh rats also had significantly greater serum PGE2, TNFalpha and IL-17. Anti-TNFalpha reduced systemic alpha1AGP, CCL2 and PGE2 in AIA rats, while anti-IL-1 decreased systemic alpha1AGP, IL-8 and PGE2. In contrast, RANKL inhibition by OPG-Fc did not lessen systemic cytokine levels in either model. CONCLUSIONS Anti-TNFalpha or anti-IL-1 therapy inhibited parameters of local and systemic inflammation, and partially reduced local but not systemic bone loss in AIA and CIA rats. RANKL inhibition prevented local and systemic bone loss without significantly inhibiting local or systemic inflammatory parameters.
Collapse
Affiliation(s)
- Marina Stolina
- Department of Metabolic Disorders, Amgen Inc, One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Thiolloy S, Halpern J, Holt GE, Schwartz HS, Mundy GR, Matrisian LM, Lynch CC. Osteoclast-derived matrix metalloproteinase-7, but not matrix metalloproteinase-9, contributes to tumor-induced osteolysis. Cancer Res 2009; 69:6747-55. [PMID: 19679556 PMCID: PMC2745595 DOI: 10.1158/0008-5472.can-08-3949] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The matrix metalloproteinases MMP-2, MMP-3, MMP-7, MMP-9, and MMP-13 are highly expressed in the tumor-bone microenvironment, and, of these, MMP-7 and MMP-9 were found to be localized to bone-resorbing osteoclasts in human breast-to-bone metastases. In a bid to define the roles of host-derived MMP-7 and MMP-9 in the tumor-bone microenvironment, the tibias of MMP-7 and MMP-9 null mice were injected with osteolytic luciferase-tagged mammary tumor cell lines. Our data show that osteoclast-derived MMP-7 significantly contributes to tumor growth and tumor-induced osteolysis whereas osteoclast-derived MMP-9 had no effect on these processes. MMP-7 is capable of processing a number of nonmatrix molecules to soluble active forms that have profound effects on cell-cell communication, such as RANKL, a crucial mediator of osteoclast precursor recruitment and maturation. Therefore, the ability of osteoclast-derived MMP-7 to promote RANKL solubilization in the tumor-bone microenvironment was explored. Results revealed that levels of soluble RANKL were significantly lower in the MMP-7 null mice compared with wild-type (WT) controls. In keeping with this observation, MMP-7 null mice had significantly fewer osteoclast numbers at the tumor-bone interface compared with the WT controls. In summary, we propose that the solubilization of RANKL by MMP-7 is a potential mechanism through which MMP-7 mediates mammary tumor-induced osteolysis. Our studies indicate that the selective inhibition of MMP-7 in the tumor-bone microenvironment may be of benefit for the treatment of lytic breast-to-bone metastases.
Collapse
Affiliation(s)
- Sophie Thiolloy
- Department of Cancer Biology, Vanderbilt University, Nashville, TN. 37232. USA
| | - Jennifer Halpern
- Department of Orthopaedics and Rehabilitation, Vanderbilt University, Nashville, TN. 37232. USA
| | - Ginger E. Holt
- Department of Orthopaedics and Rehabilitation, Vanderbilt University, Nashville, TN. 37232. USA
| | - Herbert S. Schwartz
- Department of Orthopaedics and Rehabilitation, Vanderbilt University, Nashville, TN. 37232. USA
| | - Gregory R. Mundy
- Department of Vanderbilt Center for Bone Biology, Vanderbilt University, Nashville, TN. 37232. USA
| | - Lynn M. Matrisian
- Department of Orthopaedics and Rehabilitation, Vanderbilt University, Nashville, TN. 37232. USA
| | - Conor C. Lynch
- Department of Cancer Biology, Vanderbilt University, Nashville, TN. 37232. USA
- Department of Orthopaedics and Rehabilitation, Vanderbilt University, Nashville, TN. 37232. USA
| |
Collapse
|
33
|
Boyce BF, Xing L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys 2008; 473:139-46. [PMID: 18395508 PMCID: PMC2413418 DOI: 10.1016/j.abb.2008.03.018] [Citation(s) in RCA: 1261] [Impact Index Per Article: 74.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 03/18/2008] [Accepted: 03/19/2008] [Indexed: 12/11/2022]
Abstract
The discovery of the RANKL/RANK/OPG system in the mid 1990s for the regulation of bone resorption has led to major advances in our understanding of how bone modeling and remodeling are regulated. It had been known for many years before this discovery that osteoblastic stromal cells regulated osteoclast formation, but it had not been anticipated that they would do this through expression of members of the TNF superfamily: receptor activator of NF-kappaB ligand (RANKL) and osteoprotegerin (OPG), or that these cytokines and signaling through receptor activator of NF-kappaB (RANK) would have extensive functions beyond regulation of bone remodeling. RANKL/RANK signaling regulates osteoclast formation, activation and survival in normal bone modeling and remodeling and in a variety of pathologic conditions characterized by increased bone turnover. OPG protects bone from excessive resorption by binding to RANKL and preventing it from binding to RANK. Thus, the relative concentration of RANKL and OPG in bone is a major determinant of bone mass and strength. Here, we review our current understanding of the role of the RANKL/RANK/OPG system in bone modeling and remodeling.
Collapse
Affiliation(s)
- Brendan F Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Box 626, Rochester, NY 14642, USA.
| | | |
Collapse
|
34
|
Usui M, Xing L, Drissi H, Zuscik M, O'Keefe R, Chen D, Boyce BF. Murine and chicken chondrocytes regulate osteoclastogenesis by producing RANKL in response to BMP2. J Bone Miner Res 2008; 23:314-25. [PMID: 17967138 PMCID: PMC2636701 DOI: 10.1359/jbmr.071025] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 08/28/2007] [Accepted: 10/17/2007] [Indexed: 02/07/2023]
Abstract
UNLABELLED Chondrocytes express RANKL, but their role in osteoclastogenesis is not clear. We report that hypertrophic chondrocytes induce osteoclast formation through RANKL production stimulated by BMP2 and Runx2/Smad1 and thus they may regulate resorption of calcified matrix by osteoclasts at growth plates. INTRODUCTION Bone morphogenetic protein (BMP) signaling and Runx2 regulate chondrogenesis during bone development and fracture repair and RANKL expression by osteoblast/stromal cells. Chondrocytes express RANKL, and this expression is stimulated by vitamin D3, but it is not known if chondrocytes directly support osteoclast formation or if BMPs or Runx2 is involved in this potential regulation of osteoclastogenesis. MATERIAL AND METHODS The chondrocyte cell line, ATDC5, primary mouse sternal chondrocytes, and chick sternal chondrocytes were used. Cells were treated with BMP2, and expression of RANKL and chondrocyte marker genes was determined by real-time RT-PCR and Western blot. Chondrocytes and spleen-derived osteoclast precursors +/- BMP2 were co-cultured to examine the effect of chondrocyte-produced RANKL on osteoclast formation. A reporter assay was used to determine whether BMP2-induced RANKL production is through transcriptional regulation of the RANKL promoter and whether it is mediated by Runx2. RESULTS BMP2 significantly increased expression of RANKL mRNA and protein in all three types of chondrocytes, particularly by Col X-expressing and upper sternal chondrocytes. Chondrocytes constitutively induced osteoclast formation. This effect was increased significantly by BMP2 and prevented by RANK:Fc. BMP2 significantly increased luciferase activity of the RANKL-luc reporter, and Smad1 increased this effect. Deletion or mutation of Runx2 binding sites within the RANKL promoter or overexpression of a dominant negative Runx2 abolished BMP2- and Smad1-mediated activation of RANKL promoter activity. CONCLUSIONS Hypertrophic chondrocytes may regulate osteoclastogenesis at growth plates to remove calcified matrix through BMP-induced RANKL expression.
Collapse
Affiliation(s)
- Michihiko Usui
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Hicham Drissi
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Michael Zuscik
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Regis O'Keefe
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Di Chen
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Brendan F Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
35
|
Armstrong AP, Miller RE, Jones JC, Zhang J, Keller ET, Dougall WC. RANKL acts directly on RANK-expressing prostate tumor cells and mediates migration and expression of tumor metastasis genes. Prostate 2008; 68:92-104. [PMID: 18008334 DOI: 10.1002/pros.20678] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Metastases to bone are a frequent complication of human prostate cancer and result in the development of osteoblastic lesions that include an underlying osteoclastic component. Previous studies in rodent models of breast and prostate cancer have established that receptor activator of NF-kappaB ligand (RANKL) inhibition decreases bone lesion development and tumor growth in bone. RANK is essential for osteoclast differentiation, activation, and survival via its expression on osteoclasts and their precursors. RANK expression has also been observed in some tumor cell types such as breast and colon, suggesting that RANKL may play a direct role on tumor cells. METHODS Male CB17 severe combined immunodeficient (SCID) mice were injected with PC3 cells intratibially and treated with either PBS or human osteprotegerin (OPG)-Fc, a RANKL antagonist. The formation of osteolytic lesions was analyzed by X-ray, and local and systemic levels of RANKL and OPG were analyzed. RANK mRNA and protein expression were assessed on multiple prostate cancer cell lines, and events downstream of RANK activation were studied in PC3 cells in vitro. RESULTS OPG-Fc treatment of PC3 tumor-bearing mice decreased lesion formation and tumor burden. Systemic and local levels of RANKL expression were increased in PC3 tumor bearing mice. PC3 cells responded to RANKL by activating multiple signaling pathways which resulted in significant changes in expression of genes involved in osteolysis and migration. RANK activation via RANKL resulted in increased invasion of PC3 cells through a collagen matrix. CONCLUSION These data demonstrate that host stromal RANKL is induced systemically and locally as a result of PC3 prostate tumor growth within the skeleton. RANK is expressed on prostate cancer cells and promotes invasion in a RANKL-dependent manner.
Collapse
|
36
|
Yang J, Shah R, Robling AG, Templeton E, Yang H, Tracey KJ, Bidwell JP. HMGB1 is a bone-active cytokine. J Cell Physiol 2007; 214:730-9. [PMID: 17786958 DOI: 10.1002/jcp.21268] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
High mobility group box 1 (HMGB1) is a chromatin protein that acts as an immunomodulatory cytokine upon active release from myeloid cells. HMGB1 is also an alarmin, an endogenous molecule released by dying cells that acts to initiate tissue repair. We have previously reported that osteoclasts and osteoblasts release HMGB1 and release by the latter is regulated by parathyroid hormone (PTH), an agent of bone remodeling. A recent study suggests that HMGB1 acts as a chemotactic agent to osteoclasts and osteoblasts during endochondral ossification. To explore the potential impact of HMGB1 in the bone microenvironment and its mechanism of release by osseous cells, we characterized the effects of recombinant protein (rHMGB1) on multiple murine bone cell preparations that together exhibit the various cell phenotypes present in bone. We also inquired whether apoptotic bone cells release HMGB1. rHMGB1 enhanced the RANKL/OPG steady state mRNA ratio and dramatically augmented the release of tumor necrosis factor-alpha (TNFalpha) and interleukin-6 (IL6) in osteoblastogenic bone marrow stromal cell (BMSC) cultures but not in the calvarial-derived MC3T3-E1 cells. Interestingly, rHMGB1 promoted GSK-3beta phosphorylation in MC3T3-E1 cells but not in BMSCs. Apoptotic bone cells released HMGB1, including MLO-Y4 osteocyte-like cells. MLO-Y4 release of HMGB1 was coincident with caspase-3 cleavage. Furthermore, the anti-apoptotic action of PTH on MC3T3-E1 cells correlated with the observed decrease in HMGB1 release. Our data suggest that apoptotic bone cells release HMGB1, that within the marrow HMGB1 is a bone resorption signal, and that intramembraneous and endochondral osteoblasts exhibit differential responses to this cytokine.
Collapse
Affiliation(s)
- Jieping Yang
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Rivollier A, Perrin-Cocon L, Luche S, Diemer H, Strub JM, Hanau D, van Dorsselaer A, Lotteau V, Rabourdin-Combe C, Rabilloud T, Servet-Delprat C. High expression of antioxidant proteins in dendritic cells: possible implications in atherosclerosis. Mol Cell Proteomics 2006; 5:726-36. [PMID: 16428241 DOI: 10.1074/mcp.m500262-mcp200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Dendritic cells (DCs) display the unique ability to activate naive T cells and to initiate primary T cell responses revealed in DC-T cell alloreactions. DCs frequently operate under stress conditions. Oxidative stress enhances the production of inflammatory cytokines by DCs. We performed a proteomic analysis to see which major changes occur, at the protein expression level, during DC differentiation and maturation. Comparative two-dimensional gel analysis of the monocyte, immature DC, and mature DC stages was performed. Manganese superoxide dismutase (Mn-SOD) reached 0.7% of the gel-displayed proteins at the mature DC stage. This important amount of Mn-SOD is a primary antioxidant defense system against superoxide radicals, but its product, H(2)O(2), is also deleterious for cells. Peroxiredoxin (Prx) enzymes play an important role in eliminating such peroxide. Prx1 expression level continuously increased during DC differentiation and maturation, whereas Prx6 continuously decreased, and Prx2 peaked at the immature DC stage. As a consequence, DCs were more resistant than monocytes to apoptosis induced by high amounts of oxidized low density lipoproteins containing toxic organic peroxides and hydrogen peroxide. Furthermore DC-stimulated T cells produced high levels of receptor activator of nuclear factor kappaB ligand, a chemotactic and survival factor for monocytes and DCs. This study provides insights into the original ability of DCs to express very high levels of antioxidant enzymes such as Mn-SOD and Prx1, to detoxify oxidized low density lipoproteins, and to induce high levels of receptor activator of nuclear factor kappaB ligand by the T cells they activate and further emphasizes the role that DCs might play in atherosclerosis, a pathology recognized as a chronic inflammatory disorder.
Collapse
Affiliation(s)
- Aymeric Rivollier
- INSERM U503, Université Lyon 1, IFR128-Biosciences Gerland, 21 avenue Tony Garnier, 69 007 Lyon, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Rapid progress has been made in recent years in our understanding of the mechanisms regulating the formation, activation, and survival of osteoclasts, which are derived from precursor cells in the myeloid lineage. In contrast, study of the regulation of osteoclast precursors (OCPs) has been relatively slow, in part because it has been hard to accurately identify them. However, following the discovery of cell-surface markers that facilitated purification of OCPs, recent studies have demonstrated that peripheral blood OCP numbers are increased in tumor necrosis factor (TNF)-mediated arthritis, both in animals and humans, and these numbers correlate with serum TNF levels. The increase can be reversed by anti-TNF therapy. Furthermore, the precursor cells that give rise to osteoclasts can also differentiate into other cell types, including dendritic cells. Receptor activator nuclear factor-kappaB ligand (RANKL) stimulates OCPs to produce pro-inflammatory cytokines and chemokines, and RANKL blockade prevents joint inflammation in a murine model of inflammatory arthritis. These findings suggest that OCPs may serve as a source for both osteoclasts and other effector cells and participate actively in the pathogenesis of diseases. Here, we review our current understanding of the regulation of OCP formation and differentiation and provide a model of a vicious cycle in which pro-inflammatory cytokines produced in inflamed joints feedback on the bone marrow to promote the generation and release of OCPs. The OCPs then home to the inflamed joints to differentiate into mature osteoclasts or to produce more inflammatory factors in the presence of RANKL. Disruption of this cycle could provide a new strategy for the development of drugs to treat inflammatory arthritis and other disorders associated with elevated OCP/myeloid progenitors.
Collapse
Affiliation(s)
- Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | | | | |
Collapse
|
39
|
Figueiredo KA, Mui AL, Nelson CC, Cox ME. Relaxin stimulates leukocyte adhesion and migration through a relaxin receptor LGR7-dependent mechanism. J Biol Chem 2005; 281:3030-9. [PMID: 16303766 DOI: 10.1074/jbc.m506665200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Leukocytes are critical effectors of inflammation and tumor biology. Chemokine-like factors produced by such inflammatory sites are key mediators of tumor growth that activate leukocytic recruitment and tumor infiltration and suppress immune surveillance. Here we report that the endocrine peptide hormone, relaxin, is a regulator of leukocyte biology with properties important in recruitment to sites of inflammation. This study uses the human monocytic cell line THP-1 and normal human peripheral blood mononuclear cells to define a novel role for relaxin in regulation of leukocyte adhesion and migration. Our studies indicate that relaxin promotes adenylate cyclase activation, substrate adhesion, and migratory capacity of mononuclear leukocytes through a relaxin receptor LGR7-dependent mechanism. Relaxin-stimulated cAMP accumulation was observed to occur primarily in non-adherent cells. Relaxin stimulation results in increased substrate adhesion and increased migratory activity of leukocytes. In addition, relaxin-stimulated substrate adhesion resulted in enhanced chemotaxis to monocyte chemoattractant protein-1. These responses in THP-1 and peripheral blood mononuclear cells are relaxin dose-dependent and proportional to cAMP accumulation. We further demonstrate that LGR7 is critical for mediating these biological responses by use of RNA interference lentiviral short hairpin constructs. In summary, we provide evidence that relaxin is a novel leukocyte stimulatory agent with properties affecting adhesion and chemomigration.
Collapse
Affiliation(s)
- Kevin A Figueiredo
- Genetics Program and Department of Surgery, University of British Columbia, Canada
| | | | | | | |
Collapse
|
40
|
Abstract
Vascular calcification often occurs with advancing age, atherosclerosis, various metabolic disorders such as diabetes mellitus and end-stage renal disease, or in rare genetic diseases, leading to serious clinical consequences. Such mineralization can occur at various sites (cardiac valves, arterial intima or media, capillaries), involve localized or diffuse widespread calcification, and result from numerous causes that provoke active inflammatory and osteogenic processes or disordered mineral homeostasis. Although valuable research has defined many key factors and cell types involved, surprising new insights continue to arise that deepen our understanding and suggest novel research directions or strategies for clinical intervention in calcific vasculopathies. One emerging area in vascular biology involves the RANKL/RANK/OPG system, molecules of the tumor necrosis factor-related family recently discovered to be critical regulators of immune and skeletal biology. Evidence is accumulating that such signals may be expressed, regulated, and function in vascular physiology and pathology in unique ways to promote endothelial cell survival, angiogenesis, monocyte or endothelial cell recruitment, and smooth muscle cell osteogenesis and calcification. Concerted research efforts are greatly needed to understand these potential roles, clarify whether RANKL (receptor activator of nuclear factor kappaB ligand) promotes and osteoprotegerin (OPG) protects against vascular calcification, define how OPG genetic polymorphisms relate to cardiovascular disease, and learn whether elevated serum OPG levels reflect endothelial dysfunction in patients. Overall, the RANKL/RANK/OPG system may mediate important and complex links between the vascular, skeletal, and immune systems. Thus, these molecules may play a central role in regulating the development of vascular calcification coincident with declines in skeletal mineralization with age, osteoporosis, or disease.
Collapse
Affiliation(s)
- Patricia Collin-Osdoby
- Department of Biology and Division of Bone and Mineral Research, Washington University, St Louis, Mo 63130, USA.
| |
Collapse
|
41
|
Mosheimer BA, Kaneider NC, Feistritzer C, Sturn DH, Wiedermann CJ. Expression and function of RANK in human monocyte chemotaxis. ACTA ACUST UNITED AC 2004; 50:2309-16. [PMID: 15248232 DOI: 10.1002/art.20352] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE RANKL, a member of the tumor necrosis factor superfamily, is a central regulator of osteoclast recruitment and activation. Whether RANKL affects monocyte locomotion in vitro via RANK and a possible signaling pathway were investigated. METHODS Monocytes were obtained from venous blood of healthy donors. Cell migration was studied by micropore filter assays. The signaling mechanisms required for RANKL-dependent migration were tested using signaling enzyme blockers and Western blot analyses. Expression of RANK messenger RNA (mRNA) in monocytes was demonstrated by reverse transcriptase-polymerase chain reaction, and receptor expression on cell surface was investigated by fluorescence-activated cell sorting analyses. RESULTS RANKL significantly stimulated monocyte chemotaxis via activation of phosphatidylinositol 3-kinase, phosphodiesterase, and Src kinase. The effect on migration was inhibited by osteoprotegerin, which is the decoy receptor for RANKL. Expression of RANK receptor mRNA was shown, and synthesis of RANK in monocytes was suggested by the detection of RANK immunoreactivity on the cell surface. CONCLUSION These data suggest that RANK is expressed by monocytes whose activation by RANKL stimulates directed migration involving phosphatidylinositol 3-kinase, phosphodiesterase, and Src kinases.
Collapse
|