1
|
Sarkar S, Colón‐Roura G, Pearse A, Armitage BA. Targeting a KRAS i-motif forming sequence by unmodified and gamma-modified peptide nucleic acid oligomers. Biopolymers 2023; 114:e23529. [PMID: 36573547 PMCID: PMC10078108 DOI: 10.1002/bip.23529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/28/2022]
Abstract
Growing interest in i-motif DNA as a transcriptional regulatory element motivates development of synthetic molecules capable of targeting these structures. In this study, we designed unmodified peptide nucleic acid (PNA) and gamma-modified PNA (γPNA) oligomers complementary to an i-motif forming sequence derived from the promoter of the KRAS oncogene. Biophysical techniques such as circular dichroism (CD) spectroscopy, CD melting, and fluorescence spectroscopy demonstrated the successful invasion of the i-motif by PNA and γPNA. Both PNA and γPNA showed very strong binding to the target sequence with high thermal stability of the resulting heteroduplexes. Interestingly fluorescence and CD experiments indicated formation of an intermolecular i-motif structure via the overhangs of target-probe heteroduplexes formed by PNA/γPNA invasion of the intramolecular i-motif. Targeting promoter i-motif forming sequences with high-affinity oligonucleotide mimics like γPNAs may represent a new approach for inhibiting KRAS transcription, thereby representing a potentially useful anti-cancer strategy.
Collapse
Affiliation(s)
- Srijani Sarkar
- Department of Chemistry and Center for Nucleic Acids Science and TechnologyCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| | - Gabriela Colón‐Roura
- Department of Chemistry and Center for Nucleic Acids Science and TechnologyCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| | - Alexander Pearse
- Department of Chemistry and Center for Nucleic Acids Science and TechnologyCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| | - Bruce A. Armitage
- Department of Chemistry and Center for Nucleic Acids Science and TechnologyCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| |
Collapse
|
2
|
Abstract
Oligonucleotides (ONs) can interfere with biomolecules representing the entire extended central dogma. Antisense gapmer, steric block, splice-switching ONs, and short interfering RNA drugs have been successfully developed. Moreover, antagomirs (antimicroRNAs), microRNA mimics, aptamers, DNA decoys, DNAzymes, synthetic guide strands for CRISPR/Cas, and innate immunity-stimulating ONs are all in clinical trials. DNA-targeting, triplex-forming ONs and strand-invading ONs have made their mark on drug development research, but not yet as medicines. Both design and synthetic nucleic acid chemistry are crucial for achieving biologically active ONs. The dominating modifications are phosphorothioate linkages, base methylation, and numerous 2'-substitutions in the furanose ring, such as 2'-fluoro, O-methyl, or methoxyethyl. Locked nucleic acid and constrained ethyl, a related variant, are bridged forms where the 2'-oxygen connects to the 4'-carbon in the sugar. Phosphorodiamidate morpholino oligomers, carrying a modified heterocyclic backbone ring, have also been commercialized. Delivery remains a major obstacle, but systemic administration and intrathecal infusion are used for treatment of the liver and brain, respectively.
Collapse
Affiliation(s)
- C I Edvard Smith
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden; .,Stellenbosch Institute for Advanced Study, Wallenberg Research Centre, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Rula Zain
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden; .,Department of Clinical Genetics, Centre for Rare Diseases, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| |
Collapse
|
3
|
Zaghloul EM, Gissberg O, Moreno PMD, Siggens L, Hällbrink M, Jørgensen AS, Ekwall K, Zain R, Wengel J, Lundin KE, Smith CIE. CTG repeat-targeting oligonucleotides for down-regulating Huntingtin expression. Nucleic Acids Res 2017; 45:5153-5169. [PMID: 28334749 PMCID: PMC5435994 DOI: 10.1093/nar/gkx111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/06/2017] [Indexed: 12/12/2022] Open
Abstract
Huntington's disease (HD) is a fatal, neurodegenerative disorder in which patients suffer from mobility, psychological and cognitive impairments. Existing therapeutics are only symptomatic and do not significantly alter the disease progression or increase life expectancy. HD is caused by expansion of the CAG trinucleotide repeat region in exon 1 of the Huntingtin gene (HTT), leading to the formation of mutant HTT transcripts (muHTT). The toxic gain-of-function of muHTT protein is a major cause of the disease. In addition, it has been suggested that the muHTT transcript contributes to the toxicity. Thus, reduction of both muHTT mRNA and protein levels would ideally be the most useful therapeutic option. We herein present a novel strategy for HD treatment using oligonucleotides (ONs) directly targeting the HTT trinucleotide repeat DNA. A partial, but significant and potentially long-term, HTT knock-down of both mRNA and protein was successfully achieved. Diminished phosphorylation of HTT gene-associated RNA-polymerase II is demonstrated, suggestive of reduced transcription downstream the ON-targeted repeat. Different backbone chemistries were found to have a strong impact on the ON efficiency. We also successfully use different delivery vehicles as well as naked uptake of the ONs, demonstrating versatility and possibly providing insights for in vivo applications.
Collapse
Affiliation(s)
- Eman M Zaghloul
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86 Huddinge, Stockholm, Sweden.,Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, El-Khartoum square, Azareeta, 21 521 Alexandria, Egypt
| | - Olof Gissberg
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86 Huddinge, Stockholm, Sweden
| | - Pedro M D Moreno
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86 Huddinge, Stockholm, Sweden.,Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Lee Siggens
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden, SE-141 86, Huddinge, Stockholm, Sweden
| | - Mattias Hällbrink
- Department of Neurochemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Anna S Jørgensen
- Department of Physics and Chemistry, Nucleic Acid Centre University of Southern Denmark, DK-5230 Odense, Denmark
| | - Karl Ekwall
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden, SE-141 86, Huddinge, Stockholm, Sweden
| | - Rula Zain
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86 Huddinge, Stockholm, Sweden.,Department of Clinical Genetics, Centre for Rare Diseases, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Jesper Wengel
- Department of Physics and Chemistry, Nucleic Acid Centre University of Southern Denmark, DK-5230 Odense, Denmark
| | - Karin E Lundin
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86 Huddinge, Stockholm, Sweden
| | - C I Edvard Smith
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86 Huddinge, Stockholm, Sweden
| |
Collapse
|
4
|
Komiyama M, Yoshimoto K, Sisido M, Ariga K. Chemistry Can Make Strict and Fuzzy Controls for Bio-Systems: DNA Nanoarchitectonics and Cell-Macromolecular Nanoarchitectonics. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20170156] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Makoto Komiyama
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8577
| | - Keitaro Yoshimoto
- Department of Life Sciences, Graduate School of Arts and Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902
| | - Masahiko Sisido
- Professor Emeritus, Research Core for Interdisciplinary Sciences, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530
| | - Katsuhiko Ariga
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0827
| |
Collapse
|
5
|
Pabon-Martinez YV, Xu Y, Villa A, Lundin KE, Geny S, Nguyen CH, Pedersen EB, Jørgensen PT, Wengel J, Nilsson L, Smith CIE, Zain R. LNA effects on DNA binding and conformation: from single strand to duplex and triplex structures. Sci Rep 2017; 7:11043. [PMID: 28887512 PMCID: PMC5591256 DOI: 10.1038/s41598-017-09147-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/20/2017] [Indexed: 12/19/2022] Open
Abstract
The anti-gene strategy is based on sequence-specific recognition of double-strand DNA by triplex forming (TFOs) or DNA strand invading oligonucleotides to modulate gene expression. To be efficient, the oligonucleotides (ONs) should target DNA selectively, with high affinity. Here we combined hybridization analysis and electrophoretic mobility shift assay with molecular dynamics (MD) simulations to better understand the underlying structural features of modified ONs in stabilizing duplex- and triplex structures. Particularly, we investigated the role played by the position and number of locked nucleic acid (LNA) substitutions in the ON when targeting a c-MYC or FXN (Frataxin) sequence. We found that LNA-containing single strand TFOs are conformationally pre-organized for major groove binding. Reduced content of LNA at consecutive positions at the 3'-end of a TFO destabilizes the triplex structure, whereas the presence of Twisted Intercalating Nucleic Acid (TINA) at the 3'-end of the TFO increases the rate and extent of triplex formation. A triplex-specific intercalating benzoquinoquinoxaline (BQQ) compound highly stabilizes LNA-containing triplex structures. Moreover, LNA-substitution in the duplex pyrimidine strand alters the double helix structure, affecting x-displacement, slide and twist favoring triplex formation through enhanced TFO major groove accommodation. Collectively, these findings should facilitate the design of potent anti-gene ONs.
Collapse
Affiliation(s)
- Y Vladimir Pabon-Martinez
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86, Huddinge, Stockholm, Sweden
| | - You Xu
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83, Huddinge, Sweden
| | - Alessandra Villa
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83, Huddinge, Sweden
| | - Karin E Lundin
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86, Huddinge, Stockholm, Sweden
| | - Sylvain Geny
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86, Huddinge, Stockholm, Sweden
| | - Chi-Hung Nguyen
- Institut Curie, PSL Research University, UMR 9187-U 1196, CNRS-Institut Curie, INSERM, Centre Universitaire, Orsay, France
| | - Erik B Pedersen
- Department of Physics, Chemistry and Pharmacy, Nucleic Acid Center, University of Southern Denmark, DK-5230, Odense M, Denmark
| | - Per T Jørgensen
- Department of Physics, Chemistry and Pharmacy, Nucleic Acid Center, University of Southern Denmark, DK-5230, Odense M, Denmark
| | - Jesper Wengel
- Department of Physics, Chemistry and Pharmacy, Nucleic Acid Center, University of Southern Denmark, DK-5230, Odense M, Denmark
| | - Lennart Nilsson
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83, Huddinge, Sweden
| | - C I Edvard Smith
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86, Huddinge, Stockholm, Sweden
| | - Rula Zain
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86, Huddinge, Stockholm, Sweden.
- Department of Clinical Genetics, Centre for Rare Diseases, Karolinska University Hospital, SE-171 76, Stockholm, Sweden.
| |
Collapse
|
6
|
Asanuma H, Niwa R, Akahane M, Murayama K, Kashida H, Kamiya Y. Strand-invading linear probe combined with unmodified PNA. Bioorg Med Chem 2016; 24:4129-4137. [PMID: 27394693 DOI: 10.1016/j.bmc.2016.06.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/23/2016] [Accepted: 06/29/2016] [Indexed: 11/19/2022]
Abstract
Efficient strand invasion by a linear probe to fluorescently label double-stranded DNA has been implemented by employing a probe and unmodified PNA. As a fluorophore, we utilized ethynylperylene. Multiple ethynylperylene residues were incorporated into the DNA probe via a d-threoninol scaffold. The ethynylperylene did not significantly disrupt hybridization with complementary DNA. The linear probe self-quenched in the absence of target DNA and did not hybridize with PNA. A gel-shift assay revealed that linear probe and PNA combination invaded the central region of double-stranded DNA upon heat-shock treatment to form a double duplex. To further suppress the background emission and increase the stability of the probe/DNA duplex, a probe containing anthraquinones as well as ethynylperylene was synthesized. This probe and PNA invader pair detected an internal sequence in a double-stranded DNA with high sensitivity when heat shock treatment was used. The probe and PNA pair was able to invade at the terminus of a long double-stranded DNA at 40°C at 100mM NaCl concentration.
Collapse
Affiliation(s)
- Hiroyuki Asanuma
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| | - Rie Niwa
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Mariko Akahane
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Keiji Murayama
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Hiromu Kashida
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yukiko Kamiya
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
7
|
Gissberg O, Zaghloul EM, Lundin KE, Nguyen CH, Landras-Guetta C, Wengel J, Zain R, Smith CIE. Delivery, Effect on Cell Viability, and Plasticity of Modified Aptamer Constructs. Nucleic Acid Ther 2016; 26:183-9. [PMID: 26859550 DOI: 10.1089/nat.2015.0592] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
AS1411 is a g-quadruplex-forming aptamer capable of selectively entering cancer cells by nucleolin receptor-mediated uptake. In this study, we investigated the cell internalization properties and plasticity of AS1411 carrying different locked nucleic acid-containing cargo oligonucleotides (ONs) for delivery into A549 and U2OS cells. We found that internalization efficiency is highly governed by ON cargo chemistry and composition since the inherent antitumor properties of AS1411 were lost when attached to a nontoxic ON, noTox. However, a toxic ON, Tox, demonstrated potent cytotoxicity after aptamer-mediated uptake in A549 cells. We also examined the effect of unlocked nucleic acid (UNA) modifications in the loop region of the aptamer, and how the cargo ONs and UNA incorporation affect the secondary structure of AS1411, in the presence or absence of two novel ellipticine derivatives. These findings add new insights to the design and future applications of aptamer-guided delivery of ON cargo to cancer cells.
Collapse
Affiliation(s)
- Olof Gissberg
- 1 Department of Laboratory Medicine, Karolinska Institutet, and Karolinska University Hospital , Huddinge, Sweden
| | - Eman M Zaghloul
- 1 Department of Laboratory Medicine, Karolinska Institutet, and Karolinska University Hospital , Huddinge, Sweden
| | - Karin E Lundin
- 1 Department of Laboratory Medicine, Karolinska Institutet, and Karolinska University Hospital , Huddinge, Sweden
| | - Chi-Hung Nguyen
- 2 Institut Curie, PSL Research University , UMR 9187-U 1196, CNRS-Institut Curie, INSERM, Centre Universitaire, Orsay, France
| | - Corinne Landras-Guetta
- 2 Institut Curie, PSL Research University , UMR 9187-U 1196, CNRS-Institut Curie, INSERM, Centre Universitaire, Orsay, France
| | - Jesper Wengel
- 3 Department of Physics, Chemistry and Pharmacy, Nucleic Acid Centre, University of Southern Denmark , Odense, Denmark
| | - Rula Zain
- 1 Department of Laboratory Medicine, Karolinska Institutet, and Karolinska University Hospital , Huddinge, Sweden
- 4 Department of Clinical Genetics, Centre for Rare Diseases, Karolinska University Hospital , Stockholm, Sweden
| | - C I Edvard Smith
- 1 Department of Laboratory Medicine, Karolinska Institutet, and Karolinska University Hospital , Huddinge, Sweden
| |
Collapse
|
8
|
Geny S, Moreno PMD, Krzywkowski T, Gissberg O, Andersen NK, Isse AJ, El-Madani AM, Lou C, Pabon YV, Anderson BA, Zaghloul EM, Zain R, Hrdlicka PJ, Jørgensen PT, Nilsson M, Lundin KE, Pedersen EB, Wengel J, Smith CIE. Next-generation bis-locked nucleic acids with stacking linker and 2'-glycylamino-LNA show enhanced DNA invasion into supercoiled duplexes. Nucleic Acids Res 2016; 44:2007-19. [PMID: 26857548 PMCID: PMC4797291 DOI: 10.1093/nar/gkw021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 01/08/2016] [Indexed: 12/17/2022] Open
Abstract
Targeting and invading double-stranded DNA with synthetic oligonucleotides under physiological conditions remain a challenge. Bis-locked nucleic acids (bisLNAs) are clamp-forming oligonucleotides able to invade into supercoiled DNA via combined Hoogsteen and Watson–Crick binding. To improve the bisLNA design, we investigated its mechanism of binding. Our results suggest that bisLNAs bind via Hoogsteen-arm first, followed by Watson–Crick arm invasion, initiated at the tail. Based on this proposed hybridization mechanism, we designed next-generation bisLNAs with a novel linker able to stack to adjacent nucleobases, a new strategy previously not applied for any type of clamp-constructs. Although the Hoogsteen-arm limits the invasion, upon incorporation of the stacking linker, bisLNA invasion is significantly more efficient than for non-clamp, or nucleotide-linker containing LNA-constructs. Further improvements were obtained by substituting LNA with 2′-glycylamino-LNA, contributing a positive charge. For regular bisLNAs a 14-nt tail significantly enhances invasion. However, when two stacking linkers were incorporated, tail-less bisLNAs were able to efficiently invade. Finally, successful targeting of plasmids inside bacteria clearly demonstrates that strand invasion can take place in a biologically relevant context.
Collapse
Affiliation(s)
- Sylvain Geny
- Department of Laboratory Medicine, Karolinska Institutet and Clinical Research Center, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Pedro M D Moreno
- Department of Laboratory Medicine, Karolinska Institutet and Clinical Research Center, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden INEB-Instituto de Engenharia Biomedica, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Tomasz Krzywkowski
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, SE-171 21, Sweden
| | - Olof Gissberg
- Department of Laboratory Medicine, Karolinska Institutet and Clinical Research Center, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Nicolai K Andersen
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, Nucleic Acid Centre, University of Southern Denmark, 5230 Odense, Denmark
| | - Abdirisaq J Isse
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, Nucleic Acid Centre, University of Southern Denmark, 5230 Odense, Denmark
| | - Amro M El-Madani
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, Nucleic Acid Centre, University of Southern Denmark, 5230 Odense, Denmark
| | - Chenguang Lou
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, Nucleic Acid Centre, University of Southern Denmark, 5230 Odense, Denmark
| | - Y Vladimir Pabon
- Department of Laboratory Medicine, Karolinska Institutet and Clinical Research Center, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | | | - Eman M Zaghloul
- Department of Laboratory Medicine, Karolinska Institutet and Clinical Research Center, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Rula Zain
- Department of Laboratory Medicine, Karolinska Institutet and Clinical Research Center, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden Centre for Rare Diseases, Department of Clinical Genetics, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | | | - Per T Jørgensen
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, Nucleic Acid Centre, University of Southern Denmark, 5230 Odense, Denmark
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, SE-171 21, Sweden
| | - Karin E Lundin
- Department of Laboratory Medicine, Karolinska Institutet and Clinical Research Center, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Erik B Pedersen
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, Nucleic Acid Centre, University of Southern Denmark, 5230 Odense, Denmark
| | - Jesper Wengel
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, Nucleic Acid Centre, University of Southern Denmark, 5230 Odense, Denmark
| | - C I Edvard Smith
- Department of Laboratory Medicine, Karolinska Institutet and Clinical Research Center, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| |
Collapse
|
9
|
Lundin KE, Gissberg O, Smith CE. Oligonucleotide Therapies: The Past and the Present. Hum Gene Ther 2015; 26:475-85. [PMID: 26160334 PMCID: PMC4554547 DOI: 10.1089/hum.2015.070] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/04/2015] [Indexed: 12/19/2022] Open
Abstract
In this review we address the development of oligonucleotide (ON) medicines from a historical perspective by listing the landmark discoveries in this field. The various biological processes that have been targeted and the corresponding ON interventions found in the literature are discussed together with brief updates on some of the more recent developments. Most ON therapies act through antisense mechanisms and are directed against various RNA species, as exemplified by gapmers, steric block ONs, antagomirs, small interfering RNAs (siRNAs), micro-RNA mimics, and splice switching ONs. However, ONs binding to Toll-like receptors and those forming aptamers have completely different modes of action. Similar to other novel medicines, the path to success has been lined with numerous failures, where different therapeutic ONs did not stand the test of time. Since the first ON drug was approved for clinical use in 1998, the therapeutic landscape has changed considerably, but many challenges remain until the expectations for this new form of medicine are met. However, there is room for cautious optimism.
Collapse
Affiliation(s)
- Karin E. Lundin
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Olof Gissberg
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - C.I. Edvard Smith
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
10
|
Karmakar S, Guenther DC, Hrdlicka PJ. Recognition of mixed-sequence DNA duplexes: design guidelines for invaders based on 2'-O-(pyren-1-yl)methyl-RNA monomers. J Org Chem 2013; 78:12040-8. [PMID: 24195730 PMCID: PMC3903098 DOI: 10.1021/jo402085v] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The development of agents that recognize mixed-sequence double-stranded DNA (dsDNA) is desirable because of their potential as tools for detection, regulation, and modification of genes. Despite progress with triplex-forming oligonucleotides, peptide nucleic acids, polyamides, and other approaches, recognition of mixed-sequence dsDNA targets remains challenging. Our laboratory studies Invaders as an alternative approach toward this end. These double-stranded oligonucleotide probes are activated for recognition of mixed-sequence dsDNA through modification with +1 interstrand zippers of intercalator-functionalized nucleotides such as 2'-O-(pyren-1-yl)methyl-RNA monomers and have recently been shown to recognize linear dsDNA, DNA hairpins, and chromosomal DNA. In the present work, we systematically studied the influence that the nucleobase moieties of the 2'-O-(pyren-1-yl)methyl-RNA monomers have on the recognition efficiency of Invader duplexes. Results from thermal denaturation, binding energy, and recognition experiments using Invader duplexes with different +1 interstrand zippers of the four canonical 2'-O-(pyren-1-yl)methyl-RNA A/C/G/U monomers show that incorporation of these motifs is a general strategy for activation of probes for recognition of dsDNA. Probe duplexes with interstrand zippers comprising C and/or U monomers result in the most efficient recognition of dsDNA. The insight gained from this study will drive the design of efficient Invaders for applications in molecular biology, nucleic acid diagnostics, and biotechnology.
Collapse
Affiliation(s)
- Saswata Karmakar
- Department of Chemistry, University of Idaho , 875 Perimeter Drive, MS 2343, Moscow, Idaho 83844-2343, United States
| | | | | |
Collapse
|
11
|
Sau SP, Madsen AS, Podbevsek P, Andersen NK, Kumar TS, Andersen S, Rathje RL, Anderson BA, Guenther DC, Karmakar S, Kumar P, Plavec J, Wengel J, Hrdlicka PJ. Identification and characterization of second-generation invader locked nucleic acids (LNAs) for mixed-sequence recognition of double-stranded DNA. J Org Chem 2013; 78:9560-70. [PMID: 24032477 PMCID: PMC3833467 DOI: 10.1021/jo4015936] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The development of synthetic agents that recognize double-stranded DNA (dsDNA) is a long-standing goal that is inspired by the promise for tools that detect, regulate, and modify genes. Progress has been made with triplex-forming oligonucleotides, peptide nucleic acids, and polyamides, but substantial efforts are currently devoted to the development of alternative strategies that overcome the limitations observed with the classic approaches. In 2005, we introduced Invader locked nucleic acids (LNAs), i.e., double-stranded probes that are activated for mixed-sequence recognition of dsDNA through modification with "+1 interstrand zippers" of 2'-N-(pyren-1-yl)methyl-2'-amino-α-l-LNA monomers. Despite promising preliminary results, progress has been slow because of the synthetic complexity of the building blocks. Here we describe a study that led to the identification of two simpler classes of Invader monomers. We compare the thermal denaturation characteristics of double-stranded probes featuring different interstrand zippers of pyrene-functionalized monomers based on 2'-amino-α-l-LNA, 2'-N-methyl-2'-amino-DNA, and RNA scaffolds. Insights from fluorescence spectroscopy, molecular modeling, and NMR spectroscopy are used to elucidate the structural factors that govern probe activation. We demonstrate that probes with +1 zippers of 2'-O-(pyren-1-yl)methyl-RNA or 2'-N-methyl-2'-N-(pyren-1-yl)methyl-2'-amino-DNA monomers recognize DNA hairpins with similar efficiency as original Invader LNAs. Access to synthetically simple monomers will accelerate the use of Invader-mediated dsDNA recognition for applications in molecular biology and nucleic acid diagnostics.
Collapse
Affiliation(s)
- Sujay P. Sau
- Department of Chemistry, University of Idaho, Moscow, ID-83844, USA
| | - Andreas S. Madsen
- Nucleic Acid Center, Department of Physics and Chemistry, University of Southern Denmark, Odense, Denmark
| | | | - Nicolai K. Andersen
- Nucleic Acid Center, Department of Physics and Chemistry, University of Southern Denmark, Odense, Denmark
| | - T. Santhosh Kumar
- Nucleic Acid Center, Department of Physics and Chemistry, University of Southern Denmark, Odense, Denmark
| | - Sanne Andersen
- Department of Chemistry, University of Idaho, Moscow, ID-83844, USA
- Nucleic Acid Center, Department of Physics and Chemistry, University of Southern Denmark, Odense, Denmark
| | - Rie L. Rathje
- Department of Chemistry, University of Idaho, Moscow, ID-83844, USA
- Nucleic Acid Center, Department of Physics and Chemistry, University of Southern Denmark, Odense, Denmark
| | | | - Dale C. Guenther
- Department of Chemistry, University of Idaho, Moscow, ID-83844, USA
| | - Saswata Karmakar
- Department of Chemistry, University of Idaho, Moscow, ID-83844, USA
| | - Pawan Kumar
- Department of Chemistry, University of Idaho, Moscow, ID-83844, USA
| | - Janez Plavec
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Jesper Wengel
- Nucleic Acid Center, Department of Physics and Chemistry, University of Southern Denmark, Odense, Denmark
| | | |
Collapse
|
12
|
Didion BA, Karmakar S, Guenther DC, Sau SP, Verstegen JP, Hrdlicka PJ. Invaders: Recognition of Double-Stranded DNA by Using Duplexes Modified with Interstrand Zippers of 2'-O-(Pyren-1-yl)methyl-ribonucleotides. Chembiochem 2013; 14:1534-1538. [PMID: 24038876 PMCID: PMC3838861 DOI: 10.1002/cbic.201300414] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Indexed: 12/23/2022]
Abstract
The invasion has begun: Invaders are shown to recognize DNA hairpins in cell-free assays and chromosomal DNA during non-denaturing fluorescence in situ hybridization (nd-FISH) experiments. As Invaders are devoid of inherent sequence limitations, many previously inaccessible DNA targets could become accessible to exogenous control with important ramifications for karyotyping, in vivo imaging, and gene regulation.
Collapse
Affiliation(s)
- Bradley A Didion
- Minitube of America, Inc. PO Box 930187, 419 Venture Ct., Verona, WI 53593 (USA)
| | | | | | | | | | | |
Collapse
|
13
|
Moreno PMD, Geny S, Pabon YV, Bergquist H, Zaghloul EM, Rocha CSJ, Oprea II, Bestas B, Andaloussi SE, Jørgensen PT, Pedersen EB, Lundin KE, Zain R, Wengel J, Smith CIE. Development of bis-locked nucleic acid (bisLNA) oligonucleotides for efficient invasion of supercoiled duplex DNA. Nucleic Acids Res 2013; 41:3257-73. [PMID: 23345620 PMCID: PMC3597675 DOI: 10.1093/nar/gkt007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In spite of the many developments in synthetic oligonucleotide (ON) chemistry and design, invasion into double-stranded DNA (DSI) under physiological salt and pH conditions remains a challenge. In this work, we provide a new ON tool based on locked nucleic acids (LNAs), designed for strand invasion into duplex DNA (DSI). We thus report on the development of a clamp type of LNA ON—bisLNA—with capacity to bind and invade into supercoiled double-stranded DNA. The bisLNA links a triplex-forming, Hoogsteen-binding, targeting arm with a strand-invading Watson–Crick binding arm. Optimization was carried out by varying the number and location of LNA nucleotides and the length of the triplex-forming versus strand-invading arms. Single-strand regions in target duplex DNA were mapped using chemical probing. By combining design and increase in LNA content, it was possible to achieve a 100-fold increase in potency with 30% DSI at 450 nM using a bisLNA to plasmid ratio of only 21:1. Although this first conceptual report does not address the utility of bisLNA for the targeting of DNA in a chromosomal context, it shows bisLNA as a promising candidate for interfering also with cellular genes.
Collapse
Affiliation(s)
- Pedro M D Moreno
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, 141 86 Huddinge, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lundin KE, Højland T, Hansen BR, Persson R, Bramsen JB, Kjems J, Koch T, Wengel J, Smith CIE. Biological activity and biotechnological aspects of locked nucleic acids. ADVANCES IN GENETICS 2013; 82:47-107. [PMID: 23721720 DOI: 10.1016/b978-0-12-407676-1.00002-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Locked nucleic acid (LNA) is one of the most promising new nucleic acid analogues that has been produced under the past two decades. In this chapter, we have tried to cover many of the different areas, where this molecule has been used to improve the function of synthetic oligonucleotides (ONs). The use of LNA in antisense ONs, including gapmers, splice-switching ONs, and siLNA, as well as antigene ONs, is reviewed. Pharmacokinetics as well as pharmacodynamics of LNA ONs and a description of selected compounds in, or close to, clinical testing are described. In addition, new LNA modifications and the adaptation of enzymes for LNA incorporation are reviewed. Such enzymes may become important for the development of stabilized LNA-containing aptamers.
Collapse
Affiliation(s)
- Karin E Lundin
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Novum, Huddinge, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Towards artificial metallonucleases for gene therapy: recent advances and new perspectives. Future Med Chem 2011; 3:1935-66. [DOI: 10.4155/fmc.11.139] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The process of DNA targeting or repair of mutated genes within the cell, induced by specifically positioned double-strand cleavage of DNA near the mutated sequence, can be applied for gene therapy of monogenic diseases. For this purpose, highly specific artificial metallonucleases are developed. They are expected to be important future tools of modern genetics. The present state of art and strategies of research are summarized, including protein engineering and artificial ‘chemical’ nucleases. From the results, we learn about the basic role of the metal ions and the various ligands, and about the DNA binding and cleavage mechanism. The results collected provide useful guidance for engineering highly controlled enzymes for use in gene therapy.
Collapse
|
16
|
Ling JQ, Hou A, Hoffman AR. Long-range DNA interactions are specifically altered by locked nucleic acid-targeting of a CTCF binding site. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1809:24-33. [PMID: 21111075 DOI: 10.1016/j.bbagrm.2010.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 11/10/2010] [Accepted: 11/15/2010] [Indexed: 01/21/2023]
Abstract
Long-range DNA interactions play an important role in gene expression. CCCTC-binding factor (CTCF), a ubiquitously expressed and evolutionarily conserved 11-zinc-finger DNA binding protein, is intimately involved in gene regulation, helping to establish and maintain chromatin architecture and long-range DNA interactions. In order to study the effects of manipulating long range chromatin interactions in the regulation of the neurofibromatosis gene NF1, we targeted Zorro locked nucleic acids (Zorro LNA) to a single CTCF binding site at an NF1 locus in human fibroblast cells. Using chromatin immunoprecipitation, we determined that this Zorro LNA altered CTCF and RNA polymerase II binding at three separate and distinct regions in the NF1 gene. This change in protein binding was associated with changes in long-range DNA interactions at the NF1 locus and downregulation of NF1 gene expression. This study describes an efficient and convenient method to manipulate chromatin structure and alter gene expression that is regulated by long-range DNA interactions without changing the DNA sequence. The use of specific Zorro LNA probes may facilitate our efforts to understand the interactions between chromatin architecture and gene expression.
Collapse
Affiliation(s)
- Jian Qun Ling
- Medical Service, VA Palo Alto Health Care System and Department of Medicine, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | | | | |
Collapse
|
17
|
Zaghloul EM, Madsen AS, Moreno PMD, Oprea II, El-Andaloussi S, Bestas B, Gupta P, Pedersen EB, Lundin KE, Wengel J, Smith CIE. Optimizing anti-gene oligonucleotide 'Zorro-LNA' for improved strand invasion into duplex DNA. Nucleic Acids Res 2010; 39:1142-54. [PMID: 20860997 PMCID: PMC3035455 DOI: 10.1093/nar/gkq835] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Zorro-LNA (Zorro) is a newly developed, oligonucleotide (ON)-based, Z-shaped construct with the potential of specific binding to each strand of duplex DNA. The first-generation Zorros are formed by two hybridized LNA/DNA mixmers (2-ON Zorros) and was hypothesized to strand invade. We have now established a method, which conclusively demonstrates that an LNA ON can strand invade into duplex DNA. To make Zorros smaller in size and easier to design, we synthesized 3′–5′–5′–3′ single-stranded Zorro-LNA (ssZorro) by using both 3′- and 5′-phosphoramidites. With ssZorro, a significantly greater extent and rate of double-strand invasion (DSI) was obtained than with conventional 2-ON Zorros. Introducing hydrophilic PEG-linkers connecting the two strands did not significantly change the rate or extent of DSI as compared to ssZorro with a nucleotide-based linker, while the longest alkyl-chain linker tested (36 carbons) resulted in a very slow DSI. The shortest alkyl-chain linker (3 carbons) did not reduce the extent of DSI of ssZorro, but significantly decreased the DSI rate. Collectively, ssZorro is smaller in size, easier to design and more efficient than conventional 2-ON Zorro in inducing DSI. Analysis of the chemical composition of the linker suggests that it could be of importance for future therapeutic considerations.
Collapse
Affiliation(s)
- Eman M Zaghloul
- Department of Laboratory Medicine, Karolinska Institutet, 141 86 Huddinge, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sau SP, Kumar TS, Hrdlicka PJ. Invader LNA: efficient targeting of short double stranded DNA. Org Biomol Chem 2010; 8:2028-36. [PMID: 20401378 DOI: 10.1039/b923465a] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Despite progress with triplex-forming oligonucleotides or helix-invading peptide nucleic acids (PNAs), there remains a need for probes facilitating sequence-unrestricted targeting of double stranded DNA (dsDNA) at physiologically relevant conditions. Invader LNA probes, i.e., DNA duplexes with "+1 interstrand zipper arrangements" of intercalator-functionalized 2'-amino-alpha-l-LNA monomers, are demonstrated herein to recognize short mixed sequence dsDNA targets. This approach, like pseudo-complementary PNA (pcPNA), relies on relative differences in stability between probe duplexes and the corresponding probe:target duplexes for generation of a favourable thermodynamic gradient. Unlike pcPNA, Invader LNA probes take advantage of the "nearest neighbour exclusion principle", i.e., intercalating units of Invader LNA monomers are poorly accommodated in probe duplexes but extraordinarily well tolerated in probe-target duplexes (DeltaT(m)/modification up to +11.5 degrees C). Recognition of isosequential dsDNA-targets occurs: a) at experimental temperatures much lower than the thermal denaturation temperatures (T(m)'s) of Invader LNAs or dsDNA-targets, b) at a wide range of ionic strengths, and c) with good mismatch discrimination. Recognition of dsDNA is monitored in real-time using inherent pyrene-pyrene excimer signals of Invader LNA probes, which provides insights into reaction kinetics and enables rational design of probes. These properties render Invader LNAs as promising probes for biomedical applications entailing sequence-unrestricted recognition of dsDNA.
Collapse
Affiliation(s)
- Sujay P Sau
- Department of Chemistry, University of Idaho, Moscow, ID 83844-2343, USA
| | | | | |
Collapse
|
19
|
Sau SP, Kumar P, Anderson BA, Østergaard ME, Deobald L, Paszczynski A, Sharma PK, Hrdlicka PJ. Optimized DNA-targeting using triplex forming C5-alkynyl functionalized LNA. Chem Commun (Camb) 2009:6756-8. [PMID: 19885469 DOI: 10.1039/b917312a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Triplex forming oligonucleotides (TFOs) modified with C5-alkynyl functionalized LNA (locked nucleic acid) monomers display extraordinary thermal affinity toward double stranded DNA targets, excellent discrimination of Hoogsteen-mismatched targets, and high stability against 3?-exonucleases.
Collapse
Affiliation(s)
- Sujay P Sau
- Dept. of Chemistry, Univ. of Idaho, ID-83844, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Lundin KE, Simonson OE, Moreno PMD, Zaghloul EM, Oprea II, Svahn MG, Smith CIE. Nanotechnology approaches for gene transfer. Genetica 2009; 137:47-56. [PMID: 19488829 DOI: 10.1007/s10709-009-9372-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 05/14/2009] [Indexed: 01/07/2023]
Abstract
In both basic research as well as experimental gene therapy the need to transfer genetic material into a cell is of vital importance. The cellular compartment, which is the target for the genetic material, depends upon application. An siRNA that mediates silencing is preferably delivered to the cytosol while a transgene would need to end up in the nucleus for successful transcription to occur. Furthermore the ability to regulate gene expression has grown substantially since the discovery of RNA interference. In such diverse fields as medical research and agricultural pest control, the capability to alter the genetic output has been a useful tool for pushing the scientific frontiers. This review is focused on nanotechnological approaches to assemble optimised structures of nucleic acid derivatives to facilitate gene delivery as well as promoting down regulation of endogenous genes.
Collapse
Affiliation(s)
- Karin E Lundin
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital, 141 86 Huddinge, Sweden.
| | | | | | | | | | | | | |
Collapse
|
21
|
Simon P, Cannata F, Concordet JP, Giovannangeli C. Targeting DNA with triplex-forming oligonucleotides to modify gene sequence. Biochimie 2008; 90:1109-16. [PMID: 18460344 DOI: 10.1016/j.biochi.2008.04.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Accepted: 04/14/2008] [Indexed: 12/19/2022]
Abstract
Molecules that interact with DNA in a sequence-specific manner are attractive tools for manipulating gene sequence and expression. For example, triplex-forming oligonucleotides (TFOs), which bind to oligopyrimidine.oligopurine sequences via Hoogsteen hydrogen bonds, have been used to inhibit gene expression at the DNA level as well as to induce targeted mutagenesis in model systems. Recent advances in using oligonucleotides and analogs to target DNA in a sequence-specific manner will be discussed. In particular, chemical modification of TFOs has been used to improve binding to chromosomal target sequences in living cells. Various oligonucleotide analogs have also been found to expand the range of sequences amenable to manipulation, including so-called "Zorro" locked nucleic acids (LNAs) and pseudo-complementary peptide nucleic acids (pcPNAs). Finally, we will examine the potential of TFOs for directing targeted gene sequence modification and propose that synthetic nucleases, based on conjugation of sequence-specific DNA ligands to DNA damaging molecules, are a promising alternative to protein-based endonucleases for targeted gene sequence modification.
Collapse
Affiliation(s)
- Philippe Simon
- Laboratoire de Biophysique, Muséum National d'Histoire Naturelle, USM 503, 43 rue Cuvier, 75005 Paris, France
| | | | | | | |
Collapse
|
22
|
Ge R, Svahn MG, Simonson OE, Mohamed AJ, Lundin KE, Smith CIE. Sequence-specific inhibition of RNA polymerase III-dependent transcription using Zorro locked nucleic acid (LNA). J Gene Med 2008; 10:101-9. [PMID: 18023071 DOI: 10.1002/jgm.1124] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND RNA polymerase III (pol III)-dependent transcripts are involved in many fundamental activities in a cell, such as splicing and protein synthesis. They also regulate cell growth and influence tumor formation. During recent years vector-based systems for expression of short hairpin (sh) RNA under the control of a pol III promoter have been developed as gene-based medicines. Therefore, there is an increasing interest in means to regulate pol III-dependent transcription. Recently, we have developed a novel anti-gene molecule 'Zorro LNA (Locked Nucleic Acid)', which simultaneously hybridizes to both strands of super-coiled DNA and potently inhibits RNA polymerase II-derived transcription. We have now applied Zorro LNA in an attempt to also control U6 promoter-driven expression of shRNA. METHODS In this study, we constructed pshluc and pshluc2BS plasmids, in which U6 promoter-driven small hairpin RNA specific for luciferase gene (shluc) was without or with Zorro LNA binding sites, respectively. After hybridization of Zorro LNA to pshluc2BS, the LNA-bound plasmid was cotransfected with pEGFPluc into mammalian cells and into a mouse model. In cellular experiments, cotransfection of unhybridized pshluc2BS, Zorro LNA and pEGFPluc was also performed. RESULTS The results showed that the Zorro LNA construct efficiently inhibited pol III-dependent transcription as an anti-gene reagent in a cellular context, including in vivo in a mouse model. CONCLUSIONS Thus, this new form of gene silencer 'Zorro LNA' could potentially serve as a versatile regulator of pol III-dependent transcription, including various forms of shRNAs.
Collapse
Affiliation(s)
- Rongbin Ge
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|