Okano K, Maeda A, Chen Y, Chauhan V, Tang J, Palczewska G, Sakai T, Tsuneoka H, Palczewski K, Maeda T. Retinal cone and rod photoreceptor cells exhibit differential susceptibility to light-induced damage.
J Neurochem 2012;
121:146-56. [PMID:
22220722 DOI:
10.1111/j.1471-4159.2012.07647.x]
[Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
All-trans-retinal and its condensation-products can cause retinal degeneration in a light-dependent manner and contribute to the pathogenesis of human macular diseases such as Stargardt's disease and age-related macular degeneration. Although these toxic retinoid by-products originate from rod and cone photoreceptor cells, the contribution of each cell type to light-induced retinal degeneration is unknown. In this study, the primary objective was to learn whether rods or cones are more susceptible to light-induced, all-trans-retinal-mediated damage. Previously, we reported that mice lacking enzymes that clear all-trans-retinal from the retina, ATP-binding cassette transporter 4 and retinol dehydrogenase 8, manifested light-induced retinal dystrophy. We first examined early-stage age-related macular degeneration patients and found retinal degenerative changes in rod-rich rather than cone-rich regions of the macula. We then evaluated transgenic mice with rod-only and cone-like-only retinas in addition to progenies of such mice inbred with Rdh8(-/-) Abca4(-/-) mice. Of all these strains, Rdh8(-/-) Abca4(-/-) mice with a mixed rod-cone population showed the most severe retinal degeneration under regular cyclic light conditions. Intense light exposure induced acute retinal damage in Rdh8(-/-) Abca4(-/-) and rod-only mice but not cone-like-only mice. These findings suggest that progression of retinal degeneration in Rdh8(-/-) Abca4(-/-) mice is affected by differential vulnerability of rods and cones to light.
Collapse