1
|
Chen L, Gao X, Liu X, Zhu Y, Wang D. Translational regulation of PKD1 by evolutionarily conserved upstream open reading frames. RNA Biol 2025; 22:1-12. [PMID: 39757590 PMCID: PMC11810096 DOI: 10.1080/15476286.2024.2448387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/17/2024] [Accepted: 12/24/2024] [Indexed: 01/07/2025] Open
Abstract
Mutations in PKD1 coding sequence and abnormal PKD1 expression levels contribute to the development of autosomal-dominant polycystic kidney disease, the most common genetic disorder. Regulation of PKD1 expression by factors located in the promoter and 3´ UTR have been extensively studied. Less is known about its regulation by 5´ UTR elements. In this study, we investigated the effects of uORFs and uORF-affecting variants by combining bioinformatic analyses, luciferase reporter assays, RT-qPCR and immunoblotting experiments. Our analyses demonstrate that PKD1 mRNA contains two evolutionarily conserved translation-inhibitory uORFs. uORF1 is translatable, and uORF2 is likely not translatable. The 5´ UTR and uORFs do not modulate downstream protein output under endoplasmic reticulum stress and oxidative stress conditions. Some of uORF-perturbing variants in the SNP database are predicted to affect gene translation. Luciferase reporter assays and RT-qPCR results reveal that rs2092942382 and rs1596636969 increase, while rs2092942900 decreases main gene translation without affecting transcription. Antisense oligos targeting the uORFs reduce luciferase protein levels without altering luciferase mRNA levels. Our results establish PKD1 as a novel target of uORF-mediated translational regulation and mutations that perturb uORFs may dysregulate PKD1 protein level.
Collapse
Affiliation(s)
- Lei Chen
- Department of Urology, Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Xia Gao
- Department of Urology, Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Xiangshen Liu
- Department of Urology, Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Ye Zhu
- Department of Nephrology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Dong Wang
- Department of Urology, Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, China
| |
Collapse
|
2
|
Márquez-Nogueras KM, Vuchkovska V, Kuo IY. Calcium signaling in polycystic kidney disease- cell death and survival. Cell Calcium 2023; 112:102733. [PMID: 37023534 PMCID: PMC10348384 DOI: 10.1016/j.ceca.2023.102733] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/20/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Polycystic kidney disease is typified by cysts in the kidney and extra-renal manifestations including hypertension and heart failure. The main genetic underpinning this disease are loss-of function mutations to the two polycystin proteins, polycystin 1 and polycystin 2. Molecularly, the disease is characterized by changes in multiple signaling pathways including down regulation of calcium signaling, which, in part, is contributed by the calcium permeant properties of polycystin 2. These signaling pathways enable the cystic cells to survive and avoid cell death. This review focuses on the studies that have emerged in the past 5 years describing how the structural insights gained from PC-1 and PC-2 inform the calcium dependent molecular pathways of autophagy and the unfolded protein response that are regulated by the polycystin proteins and how it leads to cell survival and/or cell death.
Collapse
Affiliation(s)
- Karla M Márquez-Nogueras
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, 2160 S. First Ave, Maywood, IL, USA
| | - Virdjinija Vuchkovska
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, 2160 S. First Ave, Maywood, IL, USA; Graduate School, Loyola University Chicago, 2160 S. First Ave, Maywood, IL, USA
| | - Ivana Y Kuo
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, 2160 S. First Ave, Maywood, IL, USA.
| |
Collapse
|
3
|
Liu X, Tang J, Chen XZ. Role of PKD2 in the endoplasmic reticulum calcium homeostasis. Front Physiol 2022; 13:962571. [PMID: 36035467 PMCID: PMC9399649 DOI: 10.3389/fphys.2022.962571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in the PKD1 or PKD2 gene which encodes membrane receptor PKD1 and cation channel PKD2, respectively. PKD2, also called transient receptor potential polycystin-2 (TRPP2), is a Ca2+-permeable channel located on the membrane of cell surface, primary cilia, and endoplasmic reticulum (ER). Ca2+ is closely associated with diverse cellular functions. While ER Ca2+ homeostasis depends on different Ca2+ receptors, channels and transporters, the role of PKD2 within the ER remains controversial. Whether and how PKD2-mediated ER Ca2+ leak relates to ADPKD pathogenesis is not well understood. Here, we reviewed current knowledge about the biophysical and physiological properties of PKD2 and how PKD2 contributes to ER Ca2+ homeostasis.
Collapse
Affiliation(s)
- Xiong Liu
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Jingfeng Tang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, HB, China
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Xing-Zhen Chen,
| |
Collapse
|
4
|
Zhou X, Xiong H, Lu Y, Geng M, Lu Y, Zhang L, Zhu X. PKD2 deficiency suppresses amino acid biosynthesis in ADPKD by impairing the PERK-TBL2-eIF2ɑ-ATF4 pathway. Biochem Biophys Res Commun 2021; 561:73-79. [PMID: 34015761 DOI: 10.1016/j.bbrc.2021.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 05/06/2021] [Indexed: 11/26/2022]
Abstract
Metabolic reprogramming is emerging as a key pathological contributor to the progression of autosomal dominant polycystic kidney disease (ADPKD), but the molecular mechanisms underlying dysregulated cellular metabolism remain elusive. Here we report that amino acid biosynthesis is reprogrammed in Pkd2-knockout mouse kidneys via a defective PERK-eIF2ɑ-ATF4 pathway. Transcriptomic analysis revealed that the amino acid biosynthesis pathways such as serine, arginine and cysteine were impaired, and associated critical enzymes were downregulated in Pkd2-knockout mouse kidneys. ATF4 and CHOP, transcription factors downstream of the endoplasmic reticulum (ER) stress sensor PERK, were identified as master regulators of these enzymes' expression. PKD2 deficiency impaired the expression of ATF4 and amino acid synthesis enzymes in RCTEC cells under ER stress. Mechanistically, as an ER-resident protein, PKD2 interacts with TBL2, which functions as an adaptor bridging eIF2ɑ to PERK. PKD2 depletion impaired the recruitment of eIF2ɑ to TBL2, thus impeding activation of the PERK-eIF2ɑ-ATF4 pathway and downstream amino acid biosynthesis. These findings illuminate a molecular mechanism linking the PKD2-mediated PERK-eIF2ɑ-ATF4 pathway and amino acid metabolic reprogramming in ADPKD.
Collapse
Affiliation(s)
- Xingquan Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Hui Xiong
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yi Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Meijuan Geng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yumei Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Lirong Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xu Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
5
|
Wang J, Zhang J, Ma Y, Zeng Y, Lu C, Yang F, Jiang N, Zhang X, Wang Y, Xu Y, Hou H, Jiang S, Zhuang S. WTAP promotes myocardial ischemia/reperfusion injury by increasing endoplasmic reticulum stress via regulating m 6A modification of ATF4 mRNA. Aging (Albany NY) 2021; 13:11135-11149. [PMID: 33819187 PMCID: PMC8109143 DOI: 10.18632/aging.202770] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/03/2021] [Indexed: 12/19/2022]
Abstract
Myocardial infarction (MI) is one of the leading causes of death. Wilms' tumor 1-associating protein (WTAP), one of the components of the m6A methyltransferase complex, has been shown to affect gene expression via regulating mRNA modification. Although WTAP has been implicated in various diseases, its role in MI is unclear. In this study, we found that hypoxia/reoxygenation (H/R) time-dependently increased WTAP expression, which in turn promoted endoplasmic reticulum (ER) stress and apoptosis, in human cardiomyocytes (AC16). H/R effects on ER stress and apoptosis were all blocked by silencing of WTAP, promoted by WTAP overexpression, and ameliorated by administration of ER stress inhibitor, 4-PBA. We then investigated the underlying molecular mechanism and found that WTAP affected m6A methylation of ATF4 mRNA to regulate its expression, and that the inhibitory effects of WTAP on ER stress and apoptosis were ATF4 dependent. Finally, WTAP’s effects on myocardial I/R injury were confirmed in vivo. WTAP promoted myocardial I/R injury through promoting ER stress and cell apoptosis by regulating m6A modification of ATF4 mRNA. These findings highlight the importance of WTAP in I/R injury and provide new insights into therapeutic strategies for MI.
Collapse
Affiliation(s)
- Jiayi Wang
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Jiehan Zhang
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Yan Ma
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Yuxiao Zeng
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Cheng Lu
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Fenghua Yang
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Nianxin Jiang
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Xuan Zhang
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Yuhua Wang
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Yinghui Xu
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Hanjing Hou
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Shengyang Jiang
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Shaowei Zhuang
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| |
Collapse
|
6
|
DJ-1 modulates the unfolded protein response and cell death via upregulation of ATF4 following ER stress. Cell Death Dis 2019; 10:135. [PMID: 30755590 PMCID: PMC6372623 DOI: 10.1038/s41419-019-1354-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 12/17/2018] [Accepted: 01/02/2019] [Indexed: 11/26/2022]
Abstract
The unfolded protein response (UPR) triggered by endoplasmic reticulum (ER) stress is a feature of many neurodegenerative diseases including Alzheimer’s disease, Huntington’s disease and Parkinson’s disease (PD). Although the vast majority of PD is sporadic, mutations in a number of genes including PARK7 which encodes the protein DJ-1 have been linked to early-onset, familial PD. In this regard, both PD of sporadic and genetic origins exhibit markers of ER stress-induced UPR. However, the relationship between pathogenic mutations in PARK7 and ER stress-induced UPR in PD pathogenesis remains unclear. In most contexts, DJ-1 has been shown to protect against neuronal injury. However, we find that DJ-1 deficiency ameliorates death in the context of acute ER stress in vitro and in vivo. DJ-1 loss decreases protein and transcript levels of ATF4, a transcription factor critical to the ER response and reduces the levels of CHOP and BiP, its downstream effectors. The converse is observed with DJ-1 over-expression. Importantly, we find that over-expression of wild-type and PD-associated mutant form of PARK7L166P, enhances ER stress-induced neuronal death by regulating ATF4 transcription and translation. Our results demonstrate a previously unreported role for wild-type and mutant DJ-1 in the regulation of UPR and provides a potential link to PD pathogenesis.
Collapse
|
7
|
Gallazzini M, Pallet N. Endoplasmic reticulum stress and kidney dysfunction. Biol Cell 2018; 110:205-216. [DOI: 10.1111/boc.201800019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/14/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Morgan Gallazzini
- INSERM U1151 - CNRS UMR 8253; Institut Necker Enfants Malades; Paris France
- INSERM U1147; Centre Universitaire des Saints Pères; Paris France
| | - Nicolas Pallet
- INSERM U1151 - CNRS UMR 8253; Institut Necker Enfants Malades; Paris France
- INSERM U1147; Centre Universitaire des Saints Pères; Paris France
- Université Paris Descartes; Paris France
- Service de Néphrologie; Hôpital Européen Georges Pompidou; Paris
- Service de Biochimie; Hôpital Européen Gorges Pompidou; Paris France
| |
Collapse
|
8
|
Moisan S, Levon S, Cornec-Le Gall E, Le Meur Y, Audrézet MP, Dostie J, Férec C. Novel long-range regulatory mechanisms controlling PKD2 gene expression. BMC Genomics 2018; 19:515. [PMID: 29986647 PMCID: PMC6038307 DOI: 10.1186/s12864-018-4892-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 06/20/2018] [Indexed: 02/01/2023] Open
Abstract
Background Cis-regulatory elements control gene expression over large distances through the formation of chromatin loops, which allow contact between enhancers and gene promoters. Alterations in cis-acting regulatory systems could be linked to human genetic diseases. Here, we analyse the spatial organization of a large region spanning the polycystic kidney disease 2 (PKD2) gene, one of the genes responsible of autosomal dominant polycystic kidney disease (ADPKD). Results By using chromosome conformation capture carbon copy (5C) technology in primary human renal cyst epithelial cells, we identify novel contacts of the PKD2 promoter with chromatin regions, which display characteristics of regulatory elements. In parallel, by using functional analysis with a reporter assay, we demonstrate that three DNAse I hypersensitive sites regions are involved in the regulation of PKD2 gene expression. Conclusions Finally, through alignment of CCCTC-binding factor (CTCF) sites, we suggest that these novel enhancer elements are brought to the PKD2 promoter by chromatin looping via the recruitment of CTCF. Electronic supplementary material The online version of this article (10.1186/s12864-018-4892-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stéphanie Moisan
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, Bretagne, France. .,Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale (UBO), Brest, Bretagne, France. .,Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Centre Hospitalier Régional Universitaire (CHRU), Hôpital Morvan, Brest, Bretagne, France.
| | - Stéphanie Levon
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, Bretagne, France.,Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale (UBO), Brest, Bretagne, France
| | - Emilie Cornec-Le Gall
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, Bretagne, France.,Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Centre Hospitalier Régional Universitaire (CHRU), Hôpital Morvan, Brest, Bretagne, France
| | - Yannick Le Meur
- Service de néphrologie, Centre Hospitalier Régional Universitaire (CHRU), Brest, Bretagne, France
| | - Marie-Pierre Audrézet
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, Bretagne, France.,Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Centre Hospitalier Régional Universitaire (CHRU), Hôpital Morvan, Brest, Bretagne, France
| | - Josée Dostie
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
| | - Claude Férec
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, Bretagne, France. .,Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale (UBO), Brest, Bretagne, France. .,Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Centre Hospitalier Régional Universitaire (CHRU), Hôpital Morvan, Brest, Bretagne, France. .,Etablissement Français du sang (EFS), Brest, Bretagne, France.
| |
Collapse
|
9
|
Lu J, Boheler KR, Jiang L, Chan CW, Tse WW, Keung W, Poon EN, Li RA, Yao X. Polycystin-2 Plays an Essential Role in Glucose Starvation-Induced Autophagy in Human Embryonic Stem Cell-Derived Cardiomyocytes. Stem Cells 2018; 36:501-513. [PMID: 29271023 DOI: 10.1002/stem.2764] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 11/08/2017] [Accepted: 12/03/2017] [Indexed: 12/20/2022]
Abstract
Autophagy is a process essential for cell survival under stress condition. The patients with autosomal dominant polycystic kidney disease, which is caused by polycystin-1 or polycystin-2 (PKD2) mutation, display cardiovascular abnormalities and dysregulation in autophagy. However, it is unclear whether PKD2 plays a role in autophagy. In the present study, we explored the functional role of PKD2 in autophagy and apoptosis in human embryonic stem cell-derived cardiomyocytes. HES2 hESC line-derived cardiomyocytes (HES2-CMs) were transduced with adenoviral-based PKD2-shRNAs (Ad-PKD2-shRNAs), and then cultured with normal or glucose-free medium for 3 hours. Autophagy was upregulated in HES2-CMs under glucose starvation, as indicated by increased microtubule-associated protein 1 light chain 3-II level in immunoblots and increased autophagosome and autolysosome formation. Knockdown of PKD2 reduced the autophagic flux and increased apoptosis under glucose starvation. In Ca2+ measurement, Ad-PKD2-shRNAs reduced caffeine-induced cytosolic Ca2+ rise. Co-immunoprecipitation and in situ proximity ligation assay demonstrated an increased physical interaction of PKD2 with ryanodine receptor 2 (RyR2) under glucose starvation condition. Furthermore, Ad-PKD2-shRNAs substantially attenuated the starvation-induced activation of AMP-activated protein kinase (AMPK) and inactivation of mammalian target of rapamycin (mTOR). The present study for the first time demonstrates that PKD2 functions to promote autophagy under glucose starvation, thereby protects cardiomyocytes from apoptotic cell death. The mechanism may involve PKD2 interaction with RyR2 to alter Ca2+ release from sarcoplasmic reticulum, consequently modulating the activity of AMPK and mTOR, resulting in alteration of autophagy and apoptosis. Stem Cells 2018;36:501-513.
Collapse
Affiliation(s)
- Jun Lu
- School of Biomedical Sciences and Li Ka Shing Institute of Health Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, People's Republic of China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China
| | - Kenneth R Boheler
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Liwen Jiang
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Camie W Chan
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Wan Wai Tse
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong Karolinska Institutet Collaboration in Regenerative Medicine, Hong - Kong, People's Republic of China
| | - Wendy Keung
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong Karolinska Institutet Collaboration in Regenerative Medicine, Hong - Kong, People's Republic of China
| | - Ellen Ny Poon
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Ronald A Li
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong Karolinska Institutet Collaboration in Regenerative Medicine, Hong - Kong, People's Republic of China.,Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Sweden
| | - Xiaoqiang Yao
- School of Biomedical Sciences and Li Ka Shing Institute of Health Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, People's Republic of China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China
| |
Collapse
|
10
|
Zheng W, Shen F, Hu R, Roy B, Yang J, Wang Q, Zhang F, King JC, Sergi C, Liu SM, Cordat E, Tang J, Cao Y, Ali D, Chen XZ. Far Upstream Element-Binding Protein 1 Binds the 3' Untranslated Region of PKD2 and Suppresses Its Translation. J Am Soc Nephrol 2016; 27:2645-2657. [PMID: 26839368 PMCID: PMC5004656 DOI: 10.1681/asn.2015070836] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/24/2015] [Indexed: 01/02/2023] Open
Abstract
Autosomal dominant polycystic kidney disease pathogenesis can be recapitulated in animal models by gene mutations in or dosage alterations of polycystic kidney disease 1 (PKD1) or PKD2, demonstrating that too much and too little PKD1/PKD2 are both pathogenic. Gene dosage manipulation has become an appealing approach by which to compensate for loss or gain of gene function, but the mechanisms controlling PKD2 expression remain incompletely characterized. In this study, using cultured mammalian cells and dual-luciferase assays, we found that the 3' untranslated region (3'UTR) of PKD2 mRNA inhibits luciferase protein expression. We then identified nucleotides 691-1044, which we called 3FI, as the 3'UTR fragment necessary for repressing the expression of luciferase or PKD2 in this system. Using a pull-down assay and mass spectrometry we identified far upstream element-binding protein 1 (FUBP1) as a 3FI-binding protein. In vitro overexpression of FUBP1 inhibited the expression of PKD2 protein but not mRNA. In embryonic zebrafish, FUBP1 knockdown (KD) by morpholino injection increased PKD2 expression and alleviated fish tail curling caused by morpholino-mediated KD of PKD2. Conversely, FUBP1 overexpression by mRNA injection significantly increased pronephric cyst occurrence and tail curling in zebrafish embryos. Furthermore, FUBP1 binds directly to eukaryotic translation initiation factor 4E-binding protein 1, indicating a link to the translation initiation complex. These results show that FUBP1 binds 3FI in the PKD2 3'UTR to inhibit PKD2 translation, regulating zebrafish disease phenotypes associated with PKD2 KD.
Collapse
Affiliation(s)
- Wang Zheng
- Membrane Protein Disease and Cancer Research Centre, Provincial Innovation Center, Hubei University of Technology, Wuhan, China; Membrane Protein Disease Research Group, Department of Physiology
| | - Fan Shen
- Membrane Protein Disease Research Group, Department of Physiology, Medical Research Center, Zhongnan Hospital, Wuhan University, Wuhan, China; and
| | - Ruikun Hu
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | | | - JungWoo Yang
- Membrane Protein Disease Research Group, Department of Physiology
| | - Qian Wang
- Membrane Protein Disease Research Group, Department of Physiology
| | - Fan Zhang
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jennifer C King
- Membrane Protein Disease Research Group, Department of Physiology
| | - Consolato Sergi
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Song-Mei Liu
- Medical Research Center, Zhongnan Hospital, Wuhan University, Wuhan, China; and
| | | | - Jingfeng Tang
- Membrane Protein Disease and Cancer Research Centre, Provincial Innovation Center, Hubei University of Technology, Wuhan, China
| | - Ying Cao
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | | | - Xing-Zhen Chen
- Membrane Protein Disease and Cancer Research Centre, Provincial Innovation Center, Hubei University of Technology, Wuhan, China; Membrane Protein Disease Research Group, Department of Physiology,
| |
Collapse
|
11
|
Cadar AG, Zhong L, Lin A, Valenzuela MO, Lim CC. Upstream open reading frame in 5'-untranslated region reduces titin mRNA translational efficiency. Biochem Biophys Res Commun 2014; 453:185-91. [PMID: 25264194 DOI: 10.1016/j.bbrc.2014.09.085] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 09/20/2014] [Indexed: 11/18/2022]
Abstract
Titin is the largest known protein and a critical determinant of myofibril elasticity and sarcomere structure in striated muscle. Accumulating evidence that mRNA transcripts are post-transcriptionally regulated by specific motifs located in the flanking untranslated regions (UTRs) led us to consider the role of titin 5'-UTR in regulating its translational efficiency. Titin 5'-UTR is highly homologous between human, mouse, and rat, and sequence analysis revealed the presence of a stem-loop and two upstream AUG codons (uAUGs) converging on a shared in frame stop codon. We generated a mouse titin 5'-UTR luciferase reporter construct and targeted the stem-loop and each uAUG for mutation. The wild-type and mutated constructs were transfected into the cardiac HL-1 cell line and primary neonatal rat ventricular myocytes (NRVM). SV40 driven 5'-UTR luciferase activity was significantly suppressed by wild-type titin 5'-UTR (∼ 70% in HL-1 cells and ∼ 60% in NRVM). Mutating both uAUGs was found to alleviate titin 5'-UTR suppression, while eliminating the stem-loop had no effect. Treatment with various growth stimuli: pacing, PMA or neuregulin had no effect on titin 5'-UTR luciferase activity. Doxorubicin stress stimuli reduced titin 5'-UTR suppression, while H2O2 had no effect. A reported single nucleotide polymorphism (SNP) rs13422986 at position -4 of the uAUG2 was introduced and found to further repress titin 5'-UTR luciferase activity. We conclude that the uAUG motifs in titin 5'-UTR serve as translational repressors in the control of titin gene expression, and that mutations/SNPs of the uAUGs or doxorubicin stress could alter titin translational efficiency.
Collapse
Affiliation(s)
- Adrian G Cadar
- Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States; Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Lin Zhong
- Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Angel Lin
- Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Mauricio O Valenzuela
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Chee C Lim
- Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States; Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States.
| |
Collapse
|