1
|
The Molecular Composition of Peptide Toxins in the Venom of Spider Lycosa coelestis as Revealed by cDNA Library and Transcriptomic Sequencing. Toxins (Basel) 2023; 15:toxins15020143. [PMID: 36828457 PMCID: PMC9959208 DOI: 10.3390/toxins15020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
In the so-called "struggle for existence" competition, the venomous animals developed a smart and effective strategy, envenomation, for predation and defense. Biochemical analysis revealed that animal venoms are chemical pools of proteinase, peptide toxins, and small organic molecules with various biological activities. Of them, peptide toxins are of great molecular diversity and possess the capacity to modulate the activity of ion channels, the second largest group of drug targets expressed on the cell membrane, which makes them a rich resource for developing peptide drug pioneers. The spider Lycosa coelestis (L. coelestis) commonly found in farmland in China is a dominant natural enemy of agricultural pests; however, its venom composition and activity were never explored. Herein, we conducted cDNA library and transcriptomic sequencing of the venom gland of L. coelestis, which identified 1131 high-quality expressed sequence tags (ESTs), grouped into three categories denoted as toxin-like ESTs (597, 52.79%), cellular component ESTs (357, 31.56%), and non-matched ESTs (177, 15.65%). These toxin-like ESTs encode 98 non-reductant toxins, which are artificially divided into 11 families based on their sequence homology and cysteine frameworks (2-14 cysteines forming 1-7 disulfide bonds to stabilize the toxin structure). Furthermore, RP-HPLC purification combined with off-line MALDI-TOF analysis have detected 147 different peptides physically existing in the venom of L. coelestis. Electrophysiology analysis confirmed that the venom preferably inhibits the voltage-gated calcium channels in rat dorsal root ganglion neurons. Altogether, the present study has added a great lot of new members to the spider toxin superfamily and built the foundation for characterizing novel active peptides in the L. coelestis venom.
Collapse
|
2
|
Mateos DL, Yarov-Yarovoy V. Structural modeling of peptide toxin-ion channel interactions using RosettaDock. Proteins 2023. [PMID: 36729043 DOI: 10.1002/prot.26474] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/09/2022] [Accepted: 01/30/2023] [Indexed: 02/03/2023]
Abstract
Voltage-gated ion channels play essential physiological roles in action potential generation and propagation. Peptidic toxins from animal venoms target ion channels and provide useful scaffolds for the rational design of novel channel modulators with enhanced potency and subtype selectivity. Despite recent progress in obtaining experimental structures of peptide toxin-ion channel complexes, structural determination of peptide toxins bound to ion channels in physiologically important states remains challenging. Here we describe an application of RosettaDock approach to the structural modeling of peptide toxins interactions with ion channels. We tested this approach on 10 structures of peptide toxin-ion channel complexes and demonstrated that it can sample near-native structures in all tested cases. Our approach will be useful for improving the understanding of the molecular mechanism of natural peptide toxin modulation of ion channel gating and for the structural modeling of novel peptide-based ion channel modulators.
Collapse
Affiliation(s)
- Diego Lopez Mateos
- Department of Physiology and Membrane Biology, University of California Davis, Davis, California, USA.,Biophysics Graduate Group, University of California Davis, Davis, California, USA
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California Davis, Davis, California, USA.,Biophysics Graduate Group, University of California Davis, Davis, California, USA.,Department of Anesthesiology and Pain Medicine, University of California Davis, Davis, California, USA
| |
Collapse
|
3
|
Xiao Z, Li Y, Zhao P, Wu X, Luo G, Peng S, Liu H, Tang C, Liu Z. Molecular mechanism of the spider toxin κ-LhTx-I acting on the bacterial voltage-gated sodium channel NaChBac. Front Pharmacol 2022; 13:924661. [PMID: 35991876 PMCID: PMC9386039 DOI: 10.3389/fphar.2022.924661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/27/2022] [Indexed: 12/02/2022] Open
Abstract
The bacterial sodium channel NaChBac is the prokaryotic prototype for the eukaryotic NaV and CaV channels, which could be used as a relatively simple model to study their structure–function relationships. However, few modulators of NaChBac have been reported thus far, and the pharmacology of NaChBac remains to be investigated. In the present study, we show that the spider toxin κ-LhTx-1, an antagonist of the KV4 family potassium channels, potently inhibits NaChBac with an IC50 of 491.0 ± 61.7 nM. Kinetics analysis revealed that κ-LhTx-1 inhibits NaChBac by impeding the voltage-sensor activation. Site-directed mutagenesis confirmed that phenylalanine-103 (F103) in the S3–S4 extracellular loop of NaChBac was critical for interacting with κ-LhTx-1. Molecular docking predicts the binding interface between κ-LhTx-1 and NaChBac and highlights a dominant hydrophobic interaction between W27 in κ-LhTx-1 and F103 in NaChBac that stabilizes the interface. In contrast, κ-LhTx-1 showed weak activity on the mammalian NaV channels, with 10 µM toxin slightly inhibiting the peak currents of NaV1.2–1.9 subtypes. Taken together, our study shows that κ-LhTx-1 inhibits the bacterial sodium channel, NaChBac, using a voltage-sensor trapping mechanism similar to mammalian NaV site 4 toxins. κ-LhTx-1 could be used as a ligand to study the toxin–channel interactions in the native membrane environments, given that the NaChBac structure was successfully resolved in a nanodisc.
Collapse
Affiliation(s)
- Zhen Xiao
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
- Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, China
| | - Yaqi Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Piao Zhao
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiangyue Wu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Guoqing Luo
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shuijiao Peng
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Hongrong Liu
- Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, China
| | - Cheng Tang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
- *Correspondence: Cheng Tang, ; Zhonghua Liu,
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
- *Correspondence: Cheng Tang, ; Zhonghua Liu,
| |
Collapse
|
4
|
Tang D, Yang Y, Xiao Z, Xu J, Yang Q, Dai H, Liang S, Tang C, Dong H, Liu Z. Scorpion toxin inhibits the voltage-gated proton channel using a Zn 2+ -like long-range conformational coupling mechanism. Br J Pharmacol 2020; 177:2351-2364. [PMID: 31975366 DOI: 10.1111/bph.14984] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/27/2019] [Accepted: 12/30/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Blocking the voltage-gated proton channel HV 1 is a promising strategy for the treatment of diseases like ischaemia stroke and cancer. However, few HV 1 channel antagonists have been reported. Here, we have identified a novel HV 1 channel antagonist from scorpion venom and have elucidated its action mechanism. EXPERIMENTAL APPROACH HV 1 and NaV channels were heterologously expressed in mammalian cell lines and their currents recorded using whole-cell patch clamp. Site-directed mutagenesis was used to generate mutants. Toxins were recombinantly produced in Escherichia coli. AGAP/W38F-HV 1 interaction was modelled by molecular dynamics simulations. KEY RESULTS The scorpion toxin AGAP (anti-tumour analgesic peptide) potently inhibited HV 1 currents. One AGAP mutant has reduced NaV channel activity but intact HV 1 activity (AGAP/W38F). AGAP/W38F inhibited HV 1 channel activation by trapping its S4 voltage sensor in a deactivated state and inhibited HV 1 currents with less pH dependence than Zn2+ . Mutation analysis showed that the binding pockets of AGAP/W38F and Zn2+ in HV 1 channel partly overlapped (common sites are His140 and His193). The E153A mutation at the intracellular Coulombic network (ICN) in HV 1 channel markedly reduced AGAP/W38F inhibition, as observed for Zn2+ . Experimental data and MD simulations suggested that AGAP/W38F inhibited HV 1 channel using a Zn2+ -like long-range conformational coupling mechanism. CONCLUSION AND IMPLICATIONS Our results suggest that the Zn2+ binding pocket in HV 1 channel might be a hotspot for modulators and valuable for designing HV 1 channel ligands. Moreover, AGAP/W38F is a useful molecular probe to study HV 1 channel and a lead compound for drug development.
Collapse
Affiliation(s)
- Dongfang Tang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yuqin Yang
- Kuang Yaming Honors School, Nanjing University, Nanjing, China.,Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Zhen Xiao
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jiahui Xu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qiuchu Yang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Han Dai
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Songping Liang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Cheng Tang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Hao Dong
- Kuang Yaming Honors School, Nanjing University, Nanjing, China.,Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
5
|
Hu Z, Chen B, Xiao Z, Zhou X, Liu Z. Transcriptomic Analysis of the Spider Venom Gland Reveals Venom Diversity and Species Consanguinity. Toxins (Basel) 2019; 11:toxins11020068. [PMID: 30682870 PMCID: PMC6409621 DOI: 10.3390/toxins11020068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/09/2019] [Accepted: 01/19/2019] [Indexed: 11/16/2022] Open
Abstract
Selenocosmia jiafu (S. jiafu) has been recently identified as a new species of spider in China. It lives in the same habitat as various other venomous spiders, including Chilobrachys jingzhao (C. jingzhao), Selenocosmia huwena (S. huwena), and Macrothele raveni (M. raveni). The venom from these different species of spiders exhibits some similarities and some differences in terms of their biochemical and electrophysiological properties. With the objective to illustrate the diversity in venom peptide toxins and to establish the evolutionary relationship between different spider species, we first performed transcriptomic analysis on a cDNA library from the venom gland of S. jiafu. We identified 146 novel toxin-like sequences, which were classified into eighteen different superfamilies. This transcriptome was then compared with that of C. jingzhao, which revealed that the putative toxins from both spider venoms may have originated from the same ancestor, although novel toxins evolved independently in the two species. A BLAST search and pharmacological analysis revealed that the two venoms have similar sodium channel modulation activity. This study provides insights into the venom of two closely related species of spider, which will prove useful towards understanding the structure and function of their toxins.
Collapse
Affiliation(s)
- Zhaotun Hu
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua 418008, China.
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Bo Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Zhen Xiao
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Xi Zhou
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
6
|
Zhang J, Tang D, Liu S, Hu H, Liang S, Tang C, Liu Z. Purification and Characterization of JZTx-14, a Potent Antagonist of Mammalian and Prokaryotic Voltage-Gated Sodium Channels. Toxins (Basel) 2018; 10:toxins10100408. [PMID: 30308978 PMCID: PMC6215091 DOI: 10.3390/toxins10100408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/04/2018] [Accepted: 10/06/2018] [Indexed: 12/19/2022] Open
Abstract
Exploring the interaction of ligands with voltage-gated sodium channels (NaVs) has advanced our understanding of their pharmacology. Herein, we report the purification and characterization of a novel non-selective mammalian and bacterial NaVs toxin, JZTx-14, from the venom of the spider Chilobrachys jingzhao. This toxin potently inhibited the peak currents of mammalian NaV1.2–1.8 channels and the bacterial NaChBac channel with low IC50 values (<1 µM), and it mainly inhibited the fast inactivation of the NaV1.9 channel. Analysis of NaV1.5/NaV1.9 chimeric channel showed that the NaV1.5 domain II S3–4 loop is involved in toxin association. Kinetics data obtained from studying toxin–NaV1.2 channel interaction showed that JZTx-14 was a gating modifier that possibly trapped the channel in resting state; however, it differed from site 4 toxin HNTx-III by irreversibly blocking NaV currents and showing state-independent binding with the channel. JZTx-14 might stably bind to a conserved toxin pocket deep within the NaV1.2–1.8 domain II voltage sensor regardless of channel conformation change, and its effect on NaVs requires the toxin to trap the S3–4 loop in its resting state. For the NaChBac channel, JZTx-14 positively shifted its conductance-voltage (G–V) and steady-state inactivation relationships. An alanine scan analysis of the NaChBac S3–4 loop revealed that the 108th phenylalanine (F108) was the key residue determining the JZTx-14–NaChBac interaction. In summary, this study provided JZTx-14 with potent but promiscuous inhibitory activity on both the ancestor bacterial NaVs and the highly evolved descendant mammalian NaVs, and it is a useful probe to understand the pharmacology of NaVs.
Collapse
Affiliation(s)
- Jie Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Dongfang Tang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Shuangyu Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Haoliang Hu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Songping Liang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Cheng Tang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
7
|
Zhou X, Zhang Y, Tang D, Liang S, Chen P, Tang C, Liu Z. A Chimeric NaV1.8 Channel Expression System Based on HEK293T Cell Line. Front Pharmacol 2018; 9:337. [PMID: 29686617 PMCID: PMC5900924 DOI: 10.3389/fphar.2018.00337] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/22/2018] [Indexed: 11/13/2022] Open
Abstract
Among the nine voltage-gated sodium channel (NaV) subtypes, NaV1.8 is an attractive therapeutic target for pain. The heterologous expression of recombinant NaV1.8 currents is of particular importance for its electrophysiological and pharmacological studies. However, NaV1.8 expresses no or low-level functional currents when transiently transfected into non-neuronal cell lines. The present study aims to explore the molecular determinants limiting its functional expression and accordingly establish a functional NaV1.8 expression system. We conducted screening analysis of the NaV1.8 intracellular loops by constructing NaV chimeric channels and confirmed that the NaV1.8 C-terminus was the only limiting factor. Replacing this sequence with that of NaV1.4, NaV1.5, or NaV1.7 constructed functional channels (NaV1.8/1.4L5, NaV1.8/1.5L5, and NaV1.8/1.7L5, respectively), which expressed high-level NaV1.8-like currents in HEK293T cells. The chimeric channel NaV1.8/1.7L5 displayed much faster inactivation of its macroscopic currents than NaV1.8/1.4L5 and NaV1.8/1.5L5, and it was the most similar to wild-type NaV1.8 expressed in ND7/23 cells. Its currents were very stable during repetitive depolarizations, while its repriming kinetic was different from wild-type NaV1.8. Most importantly, NaV1.8/1.7L5 pharmacologically resembled wild-type NaV1.8 as revealed by testing their susceptibility to two NaV1.8 selective antagonists, APETx-2 and MrVIB. NaV chimeras study showed that at least the domain 2 and domain 4 of NaV1.8 were involved in binding with APETx-2. Our study provided new insights into the function of NaV1.8 intracellular loops, as well as a reliable and convenient expression system which could be useful in NaV1.8 studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Cheng Tang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|