1
|
Li Z, Wang J, Chang Q, Chen Z, Guo X, Wang H, Fang Y. Core genes and immune dysregulation in primary open-angle glaucoma: A molecular insight. Technol Health Care 2025; 33:1396-1407. [PMID: 40077931 DOI: 10.1177/09287329241292914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
BackgroundPrimary open-angle glaucoma (POAG) is a chronic, progressive and irreversible eye disease. Currently, there is no effective way to prevent optic nerve damage.ObjectiveThis study explored POAG gene markers to identify high-risk groups at an early stage and to find new effective therapeutic targets.MethodsThe mRNA and clinical information of POAG patients and normal samples were downloaded from the Gene Expression Omnibus (GEO) database. Through Weighted correlation network analysis (WGCNA) and generalized linear models (GLM), random forests (RF), support vector machines (SVM), and extreme gradient boosting (xGB) models, key risk genes were identified and an early diagnosis model was established. Functional enrichment analysis and CIBERSORT algorithm were used to further reveal the changes in the POAG immune environment and find emerging therapeutic targets.ResultsHERPUD1, IQCK, MRPL40, SRSF7 and TMEM243 were identified as risk genes, and the prediction model and nomogram constructed based on them had good early prediction efficiency. At the mechanistic level, the heterogeneity of T cell subsets seems to be a key factor affecting the progression of POAG and has potential therapeutic value.Conclusions: HERPUD1, IQCK, MRPL40, SRSF7, and TMEM243 are of great significance for the early prediction and disease progression of POAG and have the potential value of becoming therapeutic targets.
Collapse
Affiliation(s)
- Zhongmin Li
- Department of Ophthalmology, The Affiliated First Hospital of Fuyang Normal University, Fuyang Normal University, Fuyang, Anhui Province, China
| | - Jing Wang
- Department of Ophthalmology, The Affiliated First Hospital of Fuyang Normal University, Fuyang Normal University, Fuyang, Anhui Province, China
| | - Qing Chang
- Department of Ophthalmology, The Affiliated First Hospital of Fuyang Normal University, Fuyang Normal University, Fuyang, Anhui Province, China
| | - Zufeng Chen
- Department of Ophthalmology, The Affiliated First Hospital of Fuyang Normal University, Fuyang Normal University, Fuyang, Anhui Province, China
| | - Xiaohui Guo
- Department of Ophthalmology, The Affiliated First Hospital of Fuyang Normal University, Fuyang Normal University, Fuyang, Anhui Province, China
| | - Houhong Wang
- Department of General Surgery, The Affiliated First Hospital of Fuyang Normal University, Fuyang Normal University, Fuyang, Anhui Province, China
| | - Yan Fang
- Institute of Ophthalmology, Anhui University of Science and Technology, Huainan, Anhui Province, China
| |
Collapse
|
2
|
Garibaldi N, Besio R, Pirota V, Albini B, Colombo G, Galinetto P, Doria F, Carriero A, Forlino A. A novel chemical chaperone ameliorates osteoblast homeostasis and extracellular matrix in osteogenesis imperfecta. Life Sci 2025; 361:123320. [PMID: 39706289 DOI: 10.1016/j.lfs.2024.123320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
AIMS Osteogenesis imperfecta (OI) is a collagen I-related heritable family of skeletal diseases associated to extreme bone fragility and deformity. Its classical forms are caused by dominant mutations in COL1A1 and COL1A2, which encode for the protein α chains, and are characterized by impairment in collagen I structure, folding, and secretion. Mutant collagen I assembles in an altered extracellular matrix affecting mineralization and bone properties and partially accumulating inside the cells, leading to impaired trafficking and cellular stress. Recently, the chemical chaperone 4-phenylbutyrate (4-PBA) has been proposed as an innovative drug for OI based on its ability to restore intracellular homeostasis, stimulate secretion, and ameliorate collagen-producing cell functions, positively affecting bone properties. However, the limited half-life of the molecule represents a serious hurdle for its use. MATERIALS AND METHODS To efficiently target cellular stress as OI treatment, two new compounds were designed by molecular modelling based on the 4-PBA structure to increase its stability and its ability to implement protein secretion. The short butyryl fatty acid chain of 4-PBA was substituted with a nitro functional group or with a glycine, respectively. The latter, N-benzyl glycine (N-BG), showed the best docking score, less toxicity, and higher stability than 4-PBA. KEY FINDINGS N-BG improved extracellular matrix quality and mineral content together with ameliorating OI cells' homeostasis by increasing ER-associated degradation pathway, reducing apoptosis, and stimulating protein secretion, thus facilitating intracellular clearance from accumulated misfolded proteins. SIGNIFICANCE In conclusion, N-BG represents a novel potential available compound to target altered homeostasis in OI with the aim to ameliorate the disease phenotype.
Collapse
Affiliation(s)
- Nadia Garibaldi
- Department of Biomedical Engineering, The City College of New York, New York, USA; Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy.
| | - Roberta Besio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy.
| | | | | | | | | | - Filippo Doria
- Department of Chemistry, University of Pavia, Pavia, Italy.
| | - Alessandra Carriero
- Department of Biomedical Engineering, The City College of New York, New York, USA.
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy.
| |
Collapse
|
3
|
Guan L, Ge R, Ma S. Newsights of endoplasmic reticulum in hypoxia. Biomed Pharmacother 2024; 175:116812. [PMID: 38781866 DOI: 10.1016/j.biopha.2024.116812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
The endoplasmic reticulum (ER) is important to cells because of its essential functions, including synthesizing three major nutrients and ion transport. When cellular homeostasis is disrupted, ER quality control (ERQC) system is activated effectively to remove misfolded and unfolded proteins through ER-phagy, ER-related degradation (ERAD), and molecular chaperones. When unfolded protein response (UPR) and ER stress are activated, the cell may be suffering a huge blow, and the most probable consequence is apoptosis. The membrane contact points between the ER and sub-organelles contribute to communication between the organelles. The decrease in oxygen concentration affects the morphology and structure of the ER, thereby affecting its function and further disrupting the stable state of cells, leading to the occurrence of disease. In this study, we describe the functions of ER-, ERQC-, and ER-related membrane contact points and their changes under hypoxia, which will help us further understand ER and treat ER-related diseases.
Collapse
Affiliation(s)
- Lu Guan
- Qinghai University, Xining, Qinghai, China
| | - Rili Ge
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai, China; Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining, Qinghai, China; Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, Qinghai, China
| | - Shuang Ma
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai, China; Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining, Qinghai, China; Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, Qinghai, China.
| |
Collapse
|
4
|
Xie W, Shan Y, Wu Z, Liu N, Yang J, Zhang H, Sun S, Chi J, Feng W, Lin H, Guo H. Herpud1 deficiency alleviates homocysteine-induced aortic valve calcification. Cell Biol Toxicol 2023; 39:2665-2684. [PMID: 36746840 DOI: 10.1007/s10565-023-09794-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 01/21/2023] [Indexed: 02/08/2023]
Abstract
OBJECTIVES To evaluate the role and therapeutic value of homocysteine (hcy)-inducible endoplasmic reticulum stress (ERS) protein with ubiquitin like domain 1 (Herpud1) in hcy-induced calcific aortic valve disease (CAVD). BACKGROUND The morbidity and mortality rates of calcific aortic valve disease (CAVD) remain high while treatment options are limited. METHODS In vivo, we use the low-density lipoprotein receptor (LDLR) and Herpud1 double knockout (LDLR-/-/Herpud1-/-) mice and used high methionine diet (HMD) to assess of aortic valve calcification lesions, ERS activation, autophagy, and osteogenic differentiation of aortic valve interstitial cells (AVICs). In vitro, the role of Herpud1 in the Hcy-related osteogenic differentiation of AVICs was investigated by manipulating of Herpud1 expression. RESULTS Herpud1 was highly expressed in calcified human and mouse aortic valves as well as primary aortic valve interstitial cells (AVICs). Hcy increased Herpud1 expression through the ERS pathway and promoted CAVD progression. Herpud1 deficiency inhibited hcy-induced CAVD in vitro and in vivo. Herpud1 silencing activated cell autophagy, which subsequently inhibited hcy-induced osteogenic differentiation of AVICs. ERS inhibitor 4-phenyl butyric acid (4-PBA) significantly attenuated aortic valve calcification in HMD-fed low-density lipoprotein receptor-/- (LDLR-/-) mice by suppressing ERS and subsequent Herpud1 biosynthesis. CONCLUSIONS These findings identify a previously unknown mechanism of Herpud1 upregulation in Hcy-related CAVD, suggesting that Herpud1 silencing or inhibition is a viable therapeutic strategy for arresting CAVD progression. HIGHLIGHTS • Herpud1 is upregulated in the leaflets of Hcy-treated mice and patients with CAVD. • In mice, global knockout of Herpud1 alleviates aortic valve calcification and Herpud1 silencing activates cell autophagy, inhibiting osteogenic differentiation of AVICs induced by Hcy. • 4-PBA suppressed Herpud1 expression to alleviate AVIC calcification in Hcy treated AVICs and to mitigate aortic valve calcification in mice.
Collapse
Affiliation(s)
- Wenqing Xie
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang, China
| | - Yue Shan
- Department of Anesthesiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang, China
| | - Zhuonan Wu
- College of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Nan Liu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang, China
| | - Jinjin Yang
- Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Hanlin Zhang
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Shiming Sun
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Jufang Chi
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang, China
- Shaoxing Key Laboratory of Cardio-cerebral Vascular Disease Rehabilitation Technology Innovation and Application, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China
| | - Weizhong Feng
- Department of Cardiovascular Surgery, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang, China
| | - Hui Lin
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang, China.
- Shaoxing Key Laboratory of Cardio-cerebral Vascular Disease Rehabilitation Technology Innovation and Application, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China.
| | - Hangyuan Guo
- College of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang, China.
- Shaoxing Key Laboratory of Cardio-cerebral Vascular Disease Rehabilitation Technology Innovation and Application, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China.
| |
Collapse
|
5
|
Su R, Yin J, Ruan X, Chen Y, Wan P, Luo Z. Featured interactome of homocysteine-inducible endoplasmic reticulum protein uncovers novel binding partners in response to ER stress. Comput Struct Biotechnol J 2023; 21:4478-4487. [PMID: 37736299 PMCID: PMC10510068 DOI: 10.1016/j.csbj.2023.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023] Open
Abstract
Homocysteine-inducible endoplasmic reticulum protein (HERP) is an endoplasmic reticulum (ER)-resident protein and important for the adaptation of cellular protein homeostasis by ER-associated degradation (ERAD) system. HERP interactors are critical for cellular viability and the reaction to ER stress. To explore the exact mechanisms by which HERP performed the biological functions, we conducted an interaction analysis of HERP protein in HeLa cells by co-immunoprecipitation (Co-IP) and liquid chromatography-mass spectrometer (LC-MS)/MS coupled with label-free quantification (LFQ). Among the interactome results, 123 proteins significantly interacted with HERP, which leads to numerous biological processes including protein import into nucleus, ubiquitin-dependent ERAD pathway, negative regulation of apoptotic process, and protein transport from ER, along with multiple pathways including several diseases, protein processing in ER, fatty acid metabolism, and steroid biosynthesis. Furthermore, we selected several prey proteins from the interactome data and confirmed that HERP interacted with ancient ubiquitous protein 1 (AUP1), Fas-associated factor family member 2 (FAF2), tripartite motif containing 47 (TRIM47), acyl-CoA synthetase long-chain family member 3 (ACSL3), sequestosome 1 (SQSTM1), and poly(rC) binding protein 2 (PCBP2) by Co-IP and confocal microscopy experiments, respectively. Moreover, the expression and location of several interacted proteins were obviously altered in response to ER stress induced by Thapsigargin stimulation and Enterovirus 71 infection. In conclusion, our findings revealed that the vital proteins interacted with HERP to mediate signaling transduction, thus providing novel clues for the mechanisms of HERP associated with ERAD and metabolism in response to ER stress under physiological and pathological conditions.
Collapse
Affiliation(s)
- Rui Su
- Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang 453003, China
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Jialing Yin
- Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
| | - Xiaolan Ruan
- Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
| | - Yanxi Chen
- Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
| | - Pin Wan
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430072, China
- Foshan Institute of Medical Microbiology, Foshan 528315, China
| | - Zhen Luo
- Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
- Foshan Institute of Medical Microbiology, Foshan 528315, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
| |
Collapse
|
6
|
MicroRNA-370 as a negative regulator of signaling pathways in tumor cells. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
7
|
Nie X, Liu D, Zheng M, Li X, Liu O, Guo Q, Zhu L, Lin B. HERPUD1 promotes ovarian cancer cell survival by sustaining autophagy and inhibit apoptosis via PI3K/AKT/mTOR and p38 MAPK signaling pathways. BMC Cancer 2022; 22:1338. [PMID: 36544104 PMCID: PMC9769045 DOI: 10.1186/s12885-022-10248-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/29/2022] [Indexed: 12/24/2022] Open
Abstract
HERPUD1 is an important early marker of endoplasmic reticulum stress (ERS) and is involved in the ubiquitination and degradation of several unfolded proteins. However, its role in tumorigenesis is seldom studied, and its role in ovarian cancer is unclear. Lewis y antigen is a tumor-associated sugar antigen that acts as an 'antenna' on the cell surface to receive signals from both inside and outside the cell. We previously reported that Lewis y can promote ovarian cancer by promoting autophagy and inhibiting apoptosis. In this study, we detect the expression of HERPUD1 and Lewis y antigens in 119 different ovarian cancer tissues, determine their relationship with clinicopathological parameters, analyze the correlation between these two proteins, and explore the related cancer-promoting mechanisms through MTT, flow cytometry, western blotting, and bioinformatics. HERPUD1 is highly expressed in ovarian cancer, especially in the early stage, and the expression of HERPUD1 and Lewis y antigen was positively correlated. After overexpression of Lewis y antigen, the expression level of HERPUD1 increased. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathways (KEGG) analysis showed that HERPUD1 and its related genes are enriched in regulating immunity, endoplasmic reticulum stress, ubiquitin-dependent degradation, ERS-induced apoptosis, and other key signaling pathways. We also clarified the HERPUD1 network of kinases, microRNA and transcription factor targets, and the impact of HERPUD1 mutations on prognosis. In addition, HERPUD1 promotes the proliferation of ovarian cancer cells, inhibits apoptosis, affects the cell cycle, promotes the occurrence of autophagy, and inhibits EMT and PI3K/AKT/mTOR and p38MAPK pathways. Overall, HERPUD1, regulated by the expression of tumor-associated protein Lewis y, promotes cell survival in the early stages of tumors, suggesting that HERPUD1 may play an important role in the development of ovarian cancer.
Collapse
Affiliation(s)
- Xin Nie
- grid.412467.20000 0004 1806 3501Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Heping District, Shenyang, 110004 China ,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Dawo Liu
- grid.412467.20000 0004 1806 3501Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Heping District, Shenyang, 110004 China ,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Mingjun Zheng
- grid.411095.80000 0004 0477 2585Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Xiao Li
- grid.412467.20000 0004 1806 3501Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Heping District, Shenyang, 110004 China ,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Ouxuan Liu
- grid.412467.20000 0004 1806 3501Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Heping District, Shenyang, 110004 China ,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Qian Guo
- grid.412467.20000 0004 1806 3501Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Heping District, Shenyang, 110004 China ,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Liancheng Zhu
- grid.412467.20000 0004 1806 3501Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Heping District, Shenyang, 110004 China ,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Bei Lin
- grid.412467.20000 0004 1806 3501Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Heping District, Shenyang, 110004 China ,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| |
Collapse
|
8
|
Liu Q, Zhang P, Yuan X, Ya O, Li Q, Li J, Long Q. Investigate the stemness of adult adipose-derived stromal cells based on single-cell RNA-sequencing. Cell Biol Int 2022; 46:2118-2131. [PMID: 36150081 DOI: 10.1002/cbin.11898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/15/2022] [Accepted: 08/20/2022] [Indexed: 11/06/2022]
Abstract
The cellular heterogeneity and genetic features of stemness of adipose-derived stromal cells (ADSCs) remain unclear. Using single-cell RNA sequencing (scRNA-seq), we investigated the genomic features of the stemness gene in ADSCs with genetic variability. We cultured the ADSCs isolated from the fat waste of a healthy adult volunteers undergoing cosmetic plastic surgery to the third generation, used the BD Rhapsody platform to perform scRNA-seq, then used Monocle2 to analyze the growth and development trajectory of ADSCs, Cellular Trajectory Reconstruction Analysis Using Gene Counts and Expression (CytoTRACE) to evaluate the stemness gene characteristics in ADSCs clusters, and Beam to analyze the expression change characteristics of the main stemness related genes of ADSCs. According to the scRNA-seq data of 5325 ADSCs, they could be classified into nine cell clusters. According to CytoTRACE analysis, Cluster 3 of ADSCs had the highest stemness, whereas Cluster 8 had the lowest stemness. Pseudotime analysis revealed that Cluster 3 of ADSCs was primarily dispersed in the middle part of the growth and development trajectory, whereas Cluster 8 was primarily distributed at the end. We summarized the stemness of Cluster 3 in ADSCs with high expression of TPM1 and CCND1 genes in the metaphase of growth and development is the strongest, whereas the stemness of Cluster 8 with high expression of FICD, CREBRF, SDF2L1, HERPUD1, and HYOU1 genes in the telophase of growth and development is the weakest, providing a theoretical basis for screening and improving the therapeutic effect of ADSCs in cell transplantation research.
Collapse
Affiliation(s)
- Qing Liu
- Department of Neurology, Kailuan General Hospital, Affiliated North China University of Science and Technology, Tangshan
| | - Pingshu Zhang
- Department of Neurology, Kailuan General Hospital, Affiliated North China University of Science and Technology, Tangshan
| | - Xiaodong Yuan
- Department of Neurology, Kailuan General Hospital, Affiliated North China University of Science and Technology, Tangshan
| | - Ou Ya
- Department of Neurology, Kailuan General Hospital, Affiliated North China University of Science and Technology, Tangshan
| | - Qi Li
- Hebei Provincial Key Laboratory of Neurobiological Function, Tangshan, China
| | - Jing Li
- Radiology Department, Tangshan Maternal and Child Health Hospital, Tangshan, China
| | - Qingxi Long
- Department of Neurology, Kailuan General Hospital, Affiliated North China University of Science and Technology, Tangshan
| |
Collapse
|
9
|
Peng Y, Li N, Tang F, Qian C, Jia T, Liu J, Xu Y. Corosolic acid sensitizes ferroptosis by upregulating HERPUD1 in liver cancer cells. Cell Death Dis 2022; 8:376. [PMID: 36038536 PMCID: PMC9424261 DOI: 10.1038/s41420-022-01169-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 11/09/2022]
Abstract
Primary liver cancer is the third leading cause of cancer death in the world, and the lack of effective treatments is the main reason for the high mortality. Corosolic acid (CA) has been proved to have antitumor activity. In this study, we found that CA can sensitize liver cancer cells to ferroptosis, which is a regulated form of cell death characterized by iron-dependent lipid peroxides reaching lethal levels. Here, we revealed that CA can inhibit glutathione (GSH) synthesis via HERPUD1, decreasing the cellular GSH level and causing liver cancer cells to become more sensitive to ferroptosis. Mechanistically, further studies found that HERPUD1 reduced the ubiquitination of the GSS-associated E3 ubiquitin ligase MDM2, which promoted ubiquitination of GSS, thereby inhibiting GSH synthesis to increase ferroptosis susceptibility. Importantly, a mouse xenograft model also demonstrated that CA inhibits tumor growth via HERPUD1. Collectively, our findings suggesting that CA is a candidate component for the development of treatments against liver cancer.
Collapse
Affiliation(s)
- Yingxiu Peng
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 200071, Shanghai, China
| | - Ning Li
- Central Laboratory, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 200071, Shanghai, China
| | - Feifeng Tang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 200071, Shanghai, China
| | - Chunmei Qian
- Central Laboratory, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 200071, Shanghai, China
| | - Tingting Jia
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 200071, Shanghai, China
| | - Jingjin Liu
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 200071, Shanghai, China
| | - Yanfeng Xu
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 200071, Shanghai, China.
| |
Collapse
|
10
|
Osteogenic Commitment of Human Periodontal Ligament Cells Is Predetermined by Methylation, Chromatin Accessibility and Expression of Key Transcription Factors. Cells 2022; 11:cells11071126. [PMID: 35406691 PMCID: PMC8997528 DOI: 10.3390/cells11071126] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
Periodontal ligament stem cells (PDLCs) can be used as a valuable source in cell therapies to regenerate bone tissue. However, the potential therapeutic outcomes are unpredictable due to PDLCs’ heterogeneity regarding the capacity for osteoblast differentiation and mineral nodules production. Here, we identify epigenetic (DNA (hydroxy)methylation), chromatin (ATAC-seq) and transcriptional (RNA-seq) differences between PDLCs presenting with low (l) and high (h) osteogenic potential. The primary cell populations were investigated at basal state (cultured in DMEM) and after 10 days of osteogenic stimulation (OM). At a basal state, the expression of transcription factors (TFs) and the presence of gene regulatory regions related to osteogenesis were detected in h-PDLCs in contrast to neuronal differentiation prevalent in l-PDLCs. These differences were also observed under stimulated conditions, with genes and biological processes associated with osteoblast phenotype activated more in h-PDLCs. Importantly, even after the induction, l-PDLCs showed hypermethylation and low expression of genes related to bone development. Furthermore, the analysis of TFs motifs combined with TFs expression suggested the relevance of SP1, SP7 and DLX4 regulation in h-PDLCs, while motifs for SIX and OLIG2 TFs were uniquely enriched in l-PDLCs. Additional analysis including a second l-PDLC population indicated that the high expression of OCT4, SIX3 and PPARG TFs could be predictive of low osteogenic commitment. In summary, several biological processes related to osteoblast commitment were activated in h-PDLCs from the onset, while l-PDLCs showed delay in the activation of the osteoblastic program, restricted by the persistent methylation of gene related to bone development. These processes are pre-determined by distinguishable epigenetic and transcriptional patterns, the recognition of which could help in selection of PDLCs with pre-osteoblastic phenotype.
Collapse
|
11
|
Zhou N, Qiao H, Zeng M, Yang L, Zhou Y, Guan Q. RETRACTED ARTICLE: Circ_002117 binds to microRNA-370 and promotes endoplasmic reticulum stress-induced apoptosis in gastric cancer. Cancer Cell Int 2020; 20:465. [PMID: 36514105 PMCID: PMC7519507 DOI: 10.1186/s12935-020-01493-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/29/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Mounting evidence implicates circular RNAs (circRNAs) in various biological processes during cancer progression. Gastric cancer is a main cause of cancer-related deaths worldwide. Herein, we aimed at investigating whether circ_002117 mediates gastric cancer progression through endoplasmic reticulum (ER) stress. METHODS Bioinformatics analysis detected differentially expressed circRNAs and their target miRNA candidates, and RT-qPCR was performed to detect expression of circ_002117, microRNA (miRNA)-370 and HERPUD1 in gastric cancer tissues and cells. Gastric cancer cells were transfected with plasmids and their proliferative ability and apoptosis were detected with gain- and loss-of-function assay. The ER of treated cells was observed under a transmission electron microscope. Dual-luciferase reporter gene assay and RIP were performed to detect the interaction between HEPRUD1, miR-370 and circ_002117-treated cells were injected into mice to establish xenograft tumor model. RESULTS Circ_002117 and HEPRUD1 were poorly expressed whereas miR-370 was highly expressed in clinical cancer tissues and cells. Circ_002117 was indicated to target and suppress miR-370 expression, while HERPUD1 was directly targeted by miR-370. Circ_002117 overexpression or miR-370 deficiency promoted ER stress-induced apoptosis and decreased proliferation of gastric cancer cells, which was reversed by silencing of HEPRUD1. Circ_002117 overexpression or miR-370 depletion significantly suppressed gastric cancer tumorigenesis in vivo. CONCLUSIONS Taken altogether, circ_002117 facilitated ER stress-induced apoptosis in gastric cancer by upregulating HERPUD1 through miR-370 inhibition.
Collapse
Affiliation(s)
- Nan Zhou
- grid.32566.340000 0000 8571 0482Department of the First Clinical Medical College, Lanzhou University, Lanzhou, 730000 People’s Republic of China
| | - Hui Qiao
- grid.412643.6Department of Medical Oncology, The First Hospital of Lanzhou University, Lanzhou, 730000 People’s Republic of China
| | - Miaomiao Zeng
- grid.412643.6Department of Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000 People’s Republic of China
| | - Lei Yang
- grid.412643.6Department of Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000 People’s Republic of China
| | - Yongning Zhou
- grid.412643.6Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000 People’s Republic of China ,grid.412643.6Key Laboratory for Gastrointestinal Disease of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000 People’s Republic of China
| | - Quanlin Guan
- grid.412643.6Key Laboratory for Gastrointestinal Disease of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000 People’s Republic of China ,grid.412643.6Department of Oncology Surgery, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Chengguan District, Lanzhou, 730000 Gansu People’s Republic of China
| |
Collapse
|
12
|
Wu H, Wang J, Cao M, Liang J, Wu D, Gu X, Ke K. Effects of homocysteine-induced endoplasmic reticulum protein on endoplasmic reticulum stress, autophagy, and neuronal apoptosis following intracerebral hemorrhage. IBRO Rep 2020; 9:207-217. [PMID: 32984639 PMCID: PMC7494608 DOI: 10.1016/j.ibror.2020.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is defined as bleeding into the brain parenchyma with a high mortality and morbidity rate. Unfortunately, it remains an unresolved medical problem. Therefore, it is necessary to find ways to reduce cellular apoptosis after ICH. Homocysteine-induced endoplasmic reticulum protein (HERP), a 54 kD transmembrane protein, is an early stress response protein encoded by ubiquitin-like domain member 1 (Herpud1) gene. In the present work, our group investigated the role of HERP after ICH and hemin stimulation, HERP expression was examined in mouse and primary cortical neurons after ICH and hemin stimulation by western blot and Immunofluorescent labeling. Using shRNA-HERP plasmid and recombinant adenovirus, we also investigated how HERP affected neuronal apoptosis after ICH and hemin stimulation. In addition, behavioral evaluation was used to ensure our models' success. In vivo and vitro studies, the expression of HERP was increased following ICH and hemin-exposed primary cortical neurons. HERP depletion activated the endoplasmic reticulum (ER) stress pathway and apoptosis in hemin-exposed primary cortical neurons, but inhibited autophagy in hemin-exposed primary cortical neurons. Overexpression of HERP inhibited the ER stress pathway and apoptosis, but activated autophagy in hemin-exposed primary cortical neurons. Consequently, we confirm that HERP plays a protective role in ICH model.
Collapse
Affiliation(s)
- Hui Wu
- Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Jinglei Wang
- Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Maohong Cao
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Jingjing Liang
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Dan Wu
- Department of Neurology, Tongzhou People's Hospital, Nantong, Jiangsu Province, People's Republic of China
| | - Xingxing Gu
- Jiangsu Key Laboratory of Neuroregeneration, Department of Neuronscience, Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Kaifu Ke
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| |
Collapse
|
13
|
Cao W, Gao W, Zheng P, Sun X, Wang L. Medroxyprogesterone acetate causes the alterations of endoplasmic reticulum related mRNAs and lncRNAs in endometrial cancer cells. BMC Med Genomics 2019; 12:163. [PMID: 31718641 PMCID: PMC6852953 DOI: 10.1186/s12920-019-0601-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 10/11/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Progestin is effective to promote endometrial cancer (EC) cells apoptosis, however, continuous progestin administration causes low level of progestin receptor B (PRB), further resulting in progestin resistance. Here, we performed microarray analysis on Ishikawa cells (PRB+) treated with medroxyprogesterone acetate (MPA) to explore the molecular mechanism underlying the inhibitory influence of MPA on PRB+ EC cells. METHODS Microarray analysis was performed by using Ishikawa cells (PRB+) treated with MPA. Differentially expressed mRNA and long noncoding RNAs (lncRNAs) were identified. Furthermore, the functions of these mRNAs and lncRNAs were predicted by functional enrichment analysis. QRT-PCR was further performed to verify the microarray data. RESULTS A total of 358 differentially expressed genes and 292 lncRNAs were identified in Ishikawa cells (PRB+) treated with MPA. QRT-PCR verified these data. Functional enrichment analysis identified endoplasmic reticulum (ER) stress as the key pathway involved in the inhibitory effect of MPA on EC cells. And the ER stress apoptotic molecule CHOP and ER stress related molecule HERPUD1 were both highly expressed in Ishikawa cells (PRB+) treated with MPA. Co-expression analysis showed lnc-CETP-3 was highly correlated with CHOP and HERPUD1, suggesting it might participate in ER stress pathway-related EC cell apoptosis caused by MPA. In addition, compared with untreated cells, lnc-CETP-3, CHOP and HERPUD1 were significantly up-regulated in Ishikawa cells (PRB+) treated with MPA, whereas they have no statistical significance in KLE cells (PRB-). CONCLUSIONS MPA may activate ER stress by progesterone-PRB pathway to up-regulate CHOP expression, which may be one of the molecular mechanisms underlying the inhibitory effect of MPA on EC cells with PRB+. Lnc-CETP-3 might be involved in this process. These findings may provide therapeutic targets for EC patients with PRB-, and resistance-related targets to increase the sensitivity of MPA on EC cells.
Collapse
Affiliation(s)
- Wenjiao Cao
- Department of Obstetrics and Gynecology, the International Peace Maternity & Child Health Hospital of China Welfare Institute (IPMCH), Shanghai Jiaotong University, No.910, Hengshan Road, Xuhui District, Shanghai, 200030, China
| | - Wuyuan Gao
- Department of Obstetrics and Gynecology, the International Peace Maternity & Child Health Hospital of China Welfare Institute (IPMCH), Shanghai Jiaotong University, No.910, Hengshan Road, Xuhui District, Shanghai, 200030, China
| | - Panchan Zheng
- Department of Obstetrics and Gynecology, the International Peace Maternity & Child Health Hospital of China Welfare Institute (IPMCH), Shanghai Jiaotong University, No.910, Hengshan Road, Xuhui District, Shanghai, 200030, China
| | - Xiao Sun
- Department of Obstetrics and Gynecology, the International Peace Maternity & Child Health Hospital of China Welfare Institute (IPMCH), Shanghai Jiaotong University, No.910, Hengshan Road, Xuhui District, Shanghai, 200030, China
| | - Lihua Wang
- Department of Obstetrics and Gynecology, the International Peace Maternity & Child Health Hospital of China Welfare Institute (IPMCH), Shanghai Jiaotong University, No.910, Hengshan Road, Xuhui District, Shanghai, 200030, China. .,The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. .,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China. .,Shanghai Municipal Key Clinical Specialty, Shanghai, China.
| |
Collapse
|
14
|
The emerging role of IMD 0354 on bone homeostasis by suppressing osteoclastogenesis and bone resorption, but without affecting bone formation. Cell Death Dis 2019; 10:654. [PMID: 31506437 PMCID: PMC6737093 DOI: 10.1038/s41419-019-1914-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 08/16/2019] [Accepted: 08/26/2019] [Indexed: 12/20/2022]
Abstract
Osteoporosis is caused by an imbalance between bone formation and bone resorption. Receptor activator of nuclear factor-κB ligand (RANKL) promotes the activity and differentiation of osteoclasts via activating the nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. IMD 0354 is a selective molecular inhibitor of inhibitor of NF-κB kinase subunit beta (IKKβ) and effective for treatment of acute and subacute inflammatory diseases through the suppression of NF-κB activation. However, the effect of IMD 0354 on bone homeostasis is unknown. In this study, we demonstrated that IMD 0354 significantly attenuated ovariectomy-induced bone loss and inhibited osteoclastogenesis in mice, whereas bone formation was not affected. Additionally, IMD 0354 dramatically inhibited osteoclast differentiation and function induced by RANKL and macrophage colony-stimulating factor in bone marrow monocytes as verified by tartrate-resistant acid phosphatase (TRAP) staining as well as bone resorption assay in vitro. Subsequently, we found that activation of NF-κB signaling and the ERK/c-Fos axis were blunted during osteoclast formation induced by RANKL. Transcription factors nuclear factor of activated T cells c1 (NFATc1) and c-Fos were suppressed with the decreased expression of osteoclast-related genes by IMD 0354. Our findings suggest that IMD 0354 could be a potential preventive and therapeutic drug for osteoporosis.
Collapse
|
15
|
Ahmad M, Kroll T, Jakob J, Rauch A, Ploubidou A, Tuckermann J. Cell-based RNAi screening and high-content analysis in primary calvarian osteoblasts applied to identification of osteoblast differentiation regulators. Sci Rep 2018; 8:14045. [PMID: 30232406 PMCID: PMC6145911 DOI: 10.1038/s41598-018-32364-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 09/07/2018] [Indexed: 11/09/2022] Open
Abstract
Osteoblasts are responsible for the maintenance of bone homeostasis. Deregulation of their differentiation is etiologically linked to several bone disorders, making this process an important target for therapeutic intervention. Systemic identification of osteoblast regulators has been hampered by the unavailability of physiologically relevant in vitro systems suitable for efficient RNAi and for differentiation read-outs compatible with fluorescent microscopy-based high-content analysis (HCA). Here, we report a new method for identification of osteoblast differentiation regulators by combining siRNA transfection in physiologically relevant cells with high-throughput screening (HTS). Primary mouse calvarial osteoblasts were seeded in 384-well format and reverse transfected with siRNAs and their cell number and differentiation was assayed by HCA. Automated image acquisition allowed high-throughput analyses and classification of single cell features. The physiological relevance, reproducibility, and sensitivity of the method were validated using known regulators of osteoblast differentiation. The application of HCA to siRNAs against expression of 320 genes led to the identification of five potential suppressors and 60 activators of early osteoblast differentiation. The described method and the associated analysis pipeline are not restricted to RNAi-based screening, but can be adapted to large-scale drug HTS or to small-scale targeted experiments, to identify new critical factors important for early osteoblastogenesis.
Collapse
Affiliation(s)
- Mubashir Ahmad
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Torsten Kroll
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, D-07745, Jena, Germany
| | - Jeanette Jakob
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, D-07745, Jena, Germany
| | - Alexander Rauch
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, D-07745, Jena, Germany
| | - Aspasia Ploubidou
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, D-07745, Jena, Germany
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Helmholtzstrasse 8/1, 89081, Ulm, Germany. .,Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, D-07745, Jena, Germany.
| |
Collapse
|
16
|
Lin H, Ni T, Zhang J, Meng L, Gao F, Pan S, Luo H, Xu F, Ru G, Chi J, Guo H. Knockdown of Herp alleviates hyperhomocysteinemia mediated atherosclerosis through the inhibition of vascular smooth muscle cell phenotype switching. Int J Cardiol 2018; 269:242-249. [PMID: 30017525 DOI: 10.1016/j.ijcard.2018.07.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/29/2018] [Accepted: 07/06/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Phenotypic switching of vascular smooth muscle cells (VSMCs) plays a key role in atherosclerosis. We aimed to investigate whether Homocysteine-responsive endoplasmic reticulum protein (Herp) was involved in VSMC phenotypic switching and affected atheroprogression. METHODS To assess the role of Herp in homocysteine (Hcy)-associated atherosclerosis, Herp-/- and LDLR-/- double knockout mice were generated and fed with a high methionine diet (HMD) to induce Hyperhomocysteinemia (HHcy). Atherosclerotic lesions, cholesterol homeostasis, endoplasmic reticulum (ER) stress activation, and the phenotype of VSMCs were assessed in vivo. We used siRNAs to knockdown Herp in cultured VSMCs to further validate our findings in vitro. RESULTS HMD significantly activated the activating transcription factor 6 (ATF6)/Herp arm of ER stress in LDLR-/- mice, and induced the phenotypic switch of VSMCs, with the loss of contractile proteins (SMA and calponin) and an increase of OPN protein. Herp-/-/LDLR-/- mice developed reduced atherosclerotic lesions in the aortic sinus and the whole aorta when compared with LDLR-/- mice. However, Herp deficiency had no effect on diet-induced HHcy and hyperlipidemia. Inhibition of VSMC phenotypic switching, decreased proliferation and collagen accumulation were observed in Herp-/-/LDLR-/- mice when compared with LDLR-/- mice. In vitro experiments demonstrated that Hcy caused VSMC phenotypic switching, promoted cell proliferation and migration; this was reversed by Herp depletion. We achieved similar results via inhibition of ER stress using 4-phenylbutyric-acid (4-PBA) in Hcy-treated VSMCs. CONCLUSION Herp deficiency inhibits the phenotypic switch of VSMCs and the development of atherosclerosis, thus providing novel insights into the role of Herp in atherogenesis.
Collapse
Affiliation(s)
- Hui Lin
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China; The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Tingjuan Ni
- Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Jie Zhang
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Liping Meng
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Feidan Gao
- Zhejiang Chinese Medical University, Hangzhou 310000, Zhejiang, China
| | - Sunlei Pan
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Hangqi Luo
- Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Fukang Xu
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Guomei Ru
- Medical Research Center, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Jufang Chi
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China; The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| | - Hangyuan Guo
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China; The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| |
Collapse
|