1
|
Natale F, Franzese R, Luisi E, Mollo N, Marotta L, Solimene A, D’Elia S, Golino P, Cimmino G. The Increasing Problem of Resistant Hypertension: We'll Manage till Help Comes! Med Sci (Basel) 2024; 12:53. [PMID: 39449409 PMCID: PMC11503307 DOI: 10.3390/medsci12040053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/19/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
Arterial hypertension remains the major cardiovascular risk worldwide. It is estimated that under 50 years of age one in every three adults is hypertensive while beyond the age of 50 the prevalence is almost 50% globally. The latest World Health Organization (WHO) Global Report on Hypertension indicated that the global number of hypertensive patients almost doubled in the last three decades, with related increasing deaths, disability, and costs annually. Because of this global increase, early diagnosis and timely treatment is of great importance. However, based on the WHO Global Report, it is estimated that up to 46% of individuals were never diagnosed. Of those diagnosed, less than 50% were on treatment, with nearly half among these at target according to the current guidelines. It is also important to note that an increasing number of hypertensive patients, despite the use of three or more drugs, still do not achieve a blood pressure normalization, thus defining the clinical scenario of resistant hypertension (RH). This condition is associated to a higher risk of hypertension-mediated organ damage and hospitalization due to acute cardiovascular events. Current guidelines recommend a triple combination therapy (renin angiotensin system blocking agent + a thiazide or thiazide-like diuretic + a dihydropyridinic calcium-channel blocker) to all patients with RH. Beta-blockers and mineralocorticoid receptor antagonists, alone or in combination, should be also considered based on concomitant conditions and potential contraindications. Finally, the renal denervation is also proposed in patients with preserved kidney function that remain hypertensive despite the use of maximum tolerated medical treatment. However, the failure of this procedure in the long term and the contraindication in patients with kidney failure is a strong call for a new therapeutic approach. In the present review, we will discuss the pharmacological novelties to come for the management of hypertension and RH in the next future.
Collapse
Affiliation(s)
- Francesco Natale
- Vanvitelli Cardiology and Intensive Care Unit, Monaldi Hospital, 80131 Naples, Italy
| | - Rosa Franzese
- Vanvitelli Cardiology and Intensive Care Unit, Monaldi Hospital, 80131 Naples, Italy
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy;
| | - Ettore Luisi
- Vanvitelli Cardiology and Intensive Care Unit, Monaldi Hospital, 80131 Naples, Italy
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy;
| | - Noemi Mollo
- Vanvitelli Cardiology and Intensive Care Unit, Monaldi Hospital, 80131 Naples, Italy
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy;
| | - Luigi Marotta
- Vanvitelli Cardiology and Intensive Care Unit, Monaldi Hospital, 80131 Naples, Italy
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy;
| | - Achille Solimene
- Vanvitelli Cardiology and Intensive Care Unit, Monaldi Hospital, 80131 Naples, Italy
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy;
| | - Saverio D’Elia
- Cardiology Unit, AOU Luigi Vanvitelli, 80138 Naples, Italy
| | - Paolo Golino
- Vanvitelli Cardiology and Intensive Care Unit, Monaldi Hospital, 80131 Naples, Italy
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy;
| | - Giovanni Cimmino
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy;
- Cardiology Unit, AOU Luigi Vanvitelli, 80138 Naples, Italy
| |
Collapse
|
2
|
Gao Q, Ni P, Wang Y, Huo P, Zhang X, Wang S, Xiao F, Li Y, Feng W, Yuan J, Zhang T, Li Q, Fan B, Kan Y, Li Z, Qi Y, Xing J, Yang Z, Cheng H, Gao X, Feng X, Xue M, Liu Y, Luo Y, Lu Z, Zhao Y. DDAH1 promotes neurogenesis and neural repair in cerebral ischemia. Acta Pharm Sin B 2024; 14:2097-2118. [PMID: 38799640 PMCID: PMC11119513 DOI: 10.1016/j.apsb.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/21/2023] [Accepted: 01/22/2024] [Indexed: 05/29/2024] Open
Abstract
Choline acetyltransferase (ChAT)-positive neurons in neural stem cell (NSC) niches can evoke adult neurogenesis (AN) and restore impaired brain function after injury, such as acute ischemic stroke (AIS). However, the relevant mechanism by which ChAT+ neurons develop in NSC niches is poorly understood. Our RNA-seq analysis revealed that dimethylarginine dimethylaminohydrolase 1 (DDAH1), a hydrolase for asymmetric NG,NG-dimethylarginine (ADMA), regulated genes responsible for the synthesis and transportation of acetylcholine (ACh) (Chat, Slc5a7 and Slc18a3) after stroke insult. The dual-luciferase reporter assay further suggested that DDAH1 controlled the activity of ChAT, possibly through hypoxia-inducible factor 1α (HIF-1α). KC7F2, an inhibitor of HIF-1α, abolished DDAH1-induced ChAT expression and suppressed neurogenesis. As expected, DDAH1 was clinically elevated in the blood of AIS patients and was positively correlated with AIS severity. By comparing the results among Ddah1 general knockout (KO) mice, transgenic (TG) mice and wild-type (WT) mice, we discovered that DDAH1 upregulated the proliferation and neural differentiation of NSCs in the subgranular zone (SGZ) under ischemic insult. As a result, DDAH1 may promote cognitive and motor function recovery against stroke impairment, while these neuroprotective effects are dramatically suppressed by NSC conditional knockout of Ddah1 in mice.
Collapse
Affiliation(s)
- Qiming Gao
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Pinfei Ni
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yilin Wang
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Peiyun Huo
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaojie Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Sihan Wang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Fuyao Xiao
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yixuan Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Wei Feng
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juntao Yuan
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Teng Zhang
- Department of Laboratory Animal, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Qiang Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Boyu Fan
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yuhao Kan
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Zhirui Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yimiao Qi
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Junfei Xing
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Zhenghong Yang
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Haixiao Cheng
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xinran Gao
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaoyan Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Ming Xue
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yang Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yumin Luo
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Zhongbing Lu
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuming Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
3
|
Talotta R. Impaired VEGF-A-Mediated Neurovascular Crosstalk Induced by SARS-CoV-2 Spike Protein: A Potential Hypothesis Explaining Long COVID-19 Symptoms and COVID-19 Vaccine Side Effects? Microorganisms 2022; 10:2452. [PMID: 36557705 PMCID: PMC9784975 DOI: 10.3390/microorganisms10122452] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/03/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Long coronavirus disease-19 (COVID-19) is a newly discovered syndrome characterized by multiple organ manifestations that persist for weeks to months, following the recovery from acute disease. Occasionally, neurological and cardiovascular side effects mimicking long COVID-19 have been reported in recipients of COVID-19 vaccines. Hypothetically, the clinical similarity could be due to a shared pathogenic role of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike (S) protein produced by the virus or used for immunization. The S protein can bind to neuropilin (NRP)-1, which normally functions as a coreceptor for the vascular endothelial growth factor (VEGF)-A. By antagonizing the docking of VEGF-A to NRP-1, the S protein could disrupt physiological pathways involved in angiogenesis and nociception. One consequence could be the increase in unbound forms of VEGF-A that could bind to other receptors. SARS-CoV-2-infected individuals may exhibit increased plasma levels of VEGF-A during both acute illness and convalescence, which could be responsible for diffuse microvascular and neurological damage. A few studies suggest that serum VEGF-A may also be a potential biomarker for long COVID-19, whereas evidence for COVID-19 vaccines is lacking and merits further investigation.
Collapse
Affiliation(s)
- Rossella Talotta
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Messina, University Hospital "G. Martino", 98124 Messina, Italy
| |
Collapse
|
4
|
Wang L, Wang L, Xu P, Liu C, Wang S, Luo X, Li M, Liu J, Zhao Z, Lai W, Luo F, Yan J. pH-Responsive Liposomes Loaded with Targeting Procoagulant Proteins as Potential Embolic Agents for Solid Tumor-Targeted Therapy. Mol Pharm 2022; 19:1356-1367. [PMID: 35420039 DOI: 10.1021/acs.molpharmaceut.1c00912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Selectively inducing tumor thrombosis and subsequent necrosis is a novel and promising antitumor strategy. We have previously designed a targeting procoagulant protein, called tTF-EG3287, which is a fusion of a truncated tissue factor (tTF) with EG3287, a short peptide against the neuropilin-1 (NRP1) binding site of vascular endothelial growth factor-A 165 (VEGF-A 165). However, off-target effects and high-dose requirements limit the further use of tTF-EG3287 in antitumor therapy. Therefore, we encapsulated tTF-EG3287 into poly(2-ethyl-2-oxazoline)-distearoyl phosphatidyl ethanolamine (PEOz-DSPE)-modified liposomes to construct pH-responsive liposomes as a novel vascular embolization agent, called tTF-EG3287@Liposomes. The liposomes had an average particle size of about 100 nm and showed considerable drug-loading capacity, encapsulation efficiency, and biocompatibility. Under the stimulation of acidic microenvironments (pH 6.5), the lipid membrane of tTF-EG3287@Liposomes collapsed, and the cumulative drug release rate within 72 h was 83 ± 1.26%. When administered to a mouse model of hepatocellular carcinoma (HCC), tTF-EG3287@Liposomes showed prolonged retention and enhanced accumulation in the tumor as well as a superior antitumor effec, compared with tTF-EG3287. This study demonstrates the potential of tTF-EG3287@Liposomes as a novel embolic agent for solid tumors and provides a new strategy for tumor-targeted infarction therapy.
Collapse
Affiliation(s)
- Li Wang
- Cancer Research Center, Medical College, Xiamen University, Xiamen 361102, China
| | - Lanlan Wang
- Cancer Research Center, Medical College, Xiamen University, Xiamen 361102, China
| | - Peilan Xu
- Cancer Research Center, Medical College, Xiamen University, Xiamen 361102, China
| | - Cong Liu
- Cancer Research Center, Medical College, Xiamen University, Xiamen 361102, China
| | - Shengyu Wang
- Cancer Research Center, Medical College, Xiamen University, Xiamen 361102, China
| | - Xian Luo
- Cancer Research Center, Medical College, Xiamen University, Xiamen 361102, China
| | - Mengqi Li
- Cancer Research Center, Medical College, Xiamen University, Xiamen 361102, China
| | - Jiajing Liu
- Cancer Research Center, Medical College, Xiamen University, Xiamen 361102, China
| | - Zhiyu Zhao
- Cancer Research Center, Medical College, Xiamen University, Xiamen 361102, China
| | - Weisong Lai
- Cancer Research Center, Medical College, Xiamen University, Xiamen 361102, China
| | - Fanghong Luo
- Cancer Research Center, Medical College, Xiamen University, Xiamen 361102, China
| | - Jianghua Yan
- Cancer Research Center, Medical College, Xiamen University, Xiamen 361102, China
| |
Collapse
|
5
|
Cook JR, Ausiello J. Functional ACE2 deficiency leading to angiotensin imbalance in the pathophysiology of COVID-19. Rev Endocr Metab Disord 2022; 23:151-170. [PMID: 34195965 PMCID: PMC8245275 DOI: 10.1007/s11154-021-09663-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2, the virus responsible for COVID-19, uses angiotensin converting enzyme 2 (ACE2) as its primary cell-surface receptor. ACE2 is a key enzyme in the counter-regulatory pathway of the broader renin-angiotensin system (RAS) that has been implicated in a broad array of human pathology. The RAS is composed of two competing pathways that work in opposition to each other: the "conventional" arm involving angiotensin converting enzyme (ACE) generating angiotensin-2 and the more recently identified ACE2 pathway that generates angiotensin (1-7). Following the original SARS pandemic, additional studies suggested that coronaviral binding to ACE2 resulted in downregulation of the membrane-bound enzyme. Given the similarities between the two viruses, many have posited a similar process with SARS-CoV-2. Proponents of this ACE2 deficiency model argue that downregulation of ACE2 limits its enzymatic function, thereby skewing the delicate balance between the two competing arms of the RAS. In this review we critically examine this model. The available data remain incomplete but are consistent with the possibility that the broad multisystem dysfunction of COVID-19 is due in large part to functional ACE2 deficiency leading to angiotensin imbalance with consequent immune dysregulation and endothelial cell dysfunction.
Collapse
Affiliation(s)
- Joshua R Cook
- New York-Presbyterian Hospital and the Columbia University Irving Medical Center, New York, NY, USA
| | - John Ausiello
- New York-Presbyterian Hospital and the Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
6
|
Qiu J, Chen R, Zhao L, Lian C, Liu Z, Zhu X, Cui J, Wang S, Wang M, Huang Y, Wang S, Wang J. Circular RNA circGSE1 promotes angiogenesis in ageing mice by targeting the miR-323-5p/NRP1 axis. Aging (Albany NY) 2022; 14:3049-3069. [PMID: 35366240 PMCID: PMC9037273 DOI: 10.18632/aging.203988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/15/2022] [Indexed: 11/29/2022]
Abstract
Age is an important factor in many cardiovascular diseases, in which endothelial cells (ECs) play an important role. Circular RNAs (circRNAs) have been reported in many cardiovascular diseases, but their role in ageing EC-related angiogenesis is unclear. We aimed to identify a functional circRNA that regulates angiogenesis during ageing and explore its specific mechanism. In this study, we searched for differentially expressed circRNAs in old endothelial cells (OECs) and young endothelial cells (YECs) by circRNA sequencing and found that circGSE1 was significantly downregulated in OECs. Our study showed that circGSE1 could promote the proliferation, migration and tube formation of OECs in vitro. In a mouse model of femoral artery ligation and ischemia, circGSE1 promoted blood flow recovery and angiogenesis in the ischemic limbs of ageing mice. Mechanistically, we found that overexpressing circGSE1 reduced miR-323-5p expression, increased neuropilin-1 (NRP1) expression, and promoted proliferation, migration, and tube formation in OECs, while knocking down circGSE1 increased miR-323-5p expression, reduced NRP1 expression, and inhibited proliferation, migration, and tube formation in YECs. During EC ageing, circGSE1 may act through the miR-323-5p/NRP1 axis and promote endothelial angiogenesis in mice. Finally, the circGSE1/miR-323-5p/NRP1 axis could serve as a potential and promising therapeutic target for angiogenesis during ageing.
Collapse
Affiliation(s)
- Jiacong Qiu
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China.,National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Guangzhou 510080, Guangdong, China.,Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, Guangdong, China
| | - Rencong Chen
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China.,National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Guangzhou 510080, Guangdong, China.,Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, Guangdong, China
| | - Lei Zhao
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China.,National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Guangzhou 510080, Guangdong, China.,Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, Guangdong, China
| | - Chong Lian
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Zhen Liu
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China.,National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Guangzhou 510080, Guangdong, China.,Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, Guangdong, China
| | - Xiaonan Zhu
- Department of Pharmacology Laboratory, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| | - Jin Cui
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China.,National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Guangzhou 510080, Guangdong, China.,Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, Guangdong, China
| | - Siwen Wang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China.,National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Guangzhou 510080, Guangdong, China.,Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, Guangdong, China
| | - Mingshan Wang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China.,National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Guangzhou 510080, Guangdong, China.,Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, Guangdong, China
| | - Yingxiong Huang
- Department of Emergency, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| | - Shenming Wang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China.,National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Guangzhou 510080, Guangdong, China.,Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, Guangdong, China
| | - Jinsong Wang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China.,National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Guangzhou 510080, Guangdong, China.,Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, Guangdong, China
| |
Collapse
|
7
|
Chen D, Xu L, Wu J, Liang H, Liang Y, Liu G. Downregulating miR-96-5p promotes proliferation, migration, and invasion, and inhibits apoptosis in human trophoblast cells via targeting DDAH1. Reprod Biol 2021; 21:100474. [PMID: 33360846 DOI: 10.1016/j.repbio.2020.100474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/12/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023]
Abstract
Several microRNAs (miRs) have been found to have modulating effects on trophoblast functions, yet the biological role and function of miR-96-5p and its interaction with Dimethylarginine Dimethylaminohydrolase 1 (DDAH1) remained poorly understood. After lentivirus transfection, the proliferation, migration, invasion and apoptosis of human trophoblast cells HTR-8/SVneo and SGHPL-4 were determined by Cell Counting Kit-8 (CCK-8) assay, scratch assay, Transwell, and flow cytometry, respectively. Relative expressions of miR-96-5p, DDAH1, and apoptosis-related proteins (B-cell lymphoma 2, Bcl-2; Bcl-2-associated X protein, Bax; cleaved (C) caspase-3) were detected via quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot as needed. The target gene of miR-96-5p and their potential binding sites were predicted using TargetScan V7.2 and confirmed by dual-luciferase reporter assay. MiR-96-5p downregulation promoted proliferation, migration and invasion, suppressed apoptosis, and decreased miR-96-5p expression in trophoblast cells in vitro, while miR-96-5p upregulation had the opposite effects. DDAH1 was recognized as a target gene of miR-96-5p, and silencing DDAH1 reversed the effects of miR-96-5p downregulation on the proliferation, migration, invasion and apoptosis of trophoblast cells as well as the expressions of apoptosis-related proteins. MiR-96-5p downregulation promotes proliferation, migration, and invasion, and suppresses apoptosis in human trophoblast cells in vitro via targeting DDAH1, which provides evidence for the implication of miR-96-5p in the functional modulation of trophoblasts.
Collapse
Affiliation(s)
- Danling Chen
- Department of Obstetrics, Guangdong Women and Children Hospital, China
| | - LinLi Xu
- Department of Obstetrics, Guangdong Women and Children Hospital, China
| | - Jinhua Wu
- Department of Obstetrics, Guangdong Women and Children Hospital, China
| | - Haiying Liang
- Department of Obstetrics, Guangdong Women and Children Hospital, China
| | - Yuemei Liang
- Department of Obstetrics, Guangdong Women and Children Hospital, China
| | - Guocheng Liu
- Department of Obstetrics, Guangdong Women and Children Hospital, China.
| |
Collapse
|
8
|
Moin ASM, Al-Qaissi A, Sathyapalan T, Atkin SL, Butler AE. Soluble Neuropilin-1 Response to Hypoglycemia in Type 2 Diabetes: Increased Risk or Protection in SARS-CoV-2 Infection? Front Endocrinol (Lausanne) 2021; 12:665134. [PMID: 34248841 PMCID: PMC8261232 DOI: 10.3389/fendo.2021.665134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 06/08/2021] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION Neuropilin-1(NRP1) is a cofactor that enhances SARS-CoV-2 coronavirus cell infectivity when co-expressed with angiotensin-converting enzyme 2(ACE2). The Renin-Angiotensin System (RAS) is activated in type 2 diabetes (T2D); therefore, the aim of this study was to determine if hypoglycaemia-induced stress in T2D would potentiate serum NRP1(sNRP1) levels, reflecting an increased risk for SARS-CoV-2 infection. METHODS A case-control study of aged-matched T2D (n = 23) and control (n = 23) subjects who underwent a hyperinsulinemic clamp over 1-hour to hypoglycemia(<40mg/dl) with subsequent timecourse of 4-hours and 24-hours. Slow Off-rate Modified Aptamer (SOMA)-scan plasma protein measurement determined RAS-related proteins: renin (REN), angiotensinogen (AGT), ACE2, soluble NRP1(sNRP1), NRP1 ligands (Vascular endothelial growth factor, VEGF and Class 3 Semaphorins, SEM3A) and NRP1 proteolytic enzyme (A Disintegrin and Metalloproteinase 9, ADAM9). RESULTS Baseline RAS overactivity was present with REN elevated and AGT decreased in T2D (p<0.05); ACE2 was unchanged. Baseline sNRP1, VEGF and ADAM9 did not differ between T2D and controls and remained unchanged in response to hypoglycaemia. However, 4-hours post-hypoglycemia, sNRP1, VEGF and ADAM9 were elevated in T2D(p<0.05). SEMA3A was not different at baseline; at hypoglycemia, SEMA3A decreased in controls only. Post-hypoglycemia, SEMA3A levels were higher in T2D versus controls. sNRP1 did not correlate with ACE2, REN or AGT. T2D subjects stratified according to ACE inhibitor (ACEi) therapies showed no difference in sNRP1 levels at either glucose normalization or hypoglycaemia. CONCLUSION Hypoglycemia potentiated both plasma sNRP1 level elevation and its ligands VEGF and SEMA3A, likely through an ADAM9-mediated mechanism that was not associated with RAS overactivity or ACEi therapy; however, whether this is protective or promotes increased risk for SARS-CoV-2 infection in T2D is unclear. CLINICAL TRIAL REGISTRATION https://clinicaltrials.gov, identifier NCT03102801.
Collapse
Affiliation(s)
- Abu Saleh Md Moin
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Ahmed Al-Qaissi
- Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, Hull, United Kingdom
- Department of Endocrinology, Leeds Medical School, Leeds, United Kingdom
| | - Thozhukat Sathyapalan
- Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, Hull, United Kingdom
| | - Stephen L. Atkin
- Department of Research, Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
| | - Alexandra E. Butler
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- *Correspondence: Alexandra E. Butler, ;
| |
Collapse
|
9
|
Hulin JA, Gubareva EA, Jarzebska N, Rodionov RN, Mangoni AA, Tommasi S. Inhibition of Dimethylarginine Dimethylaminohydrolase (DDAH) Enzymes as an Emerging Therapeutic Strategy to Target Angiogenesis and Vasculogenic Mimicry in Cancer. Front Oncol 2020; 9:1455. [PMID: 31993367 PMCID: PMC6962312 DOI: 10.3389/fonc.2019.01455] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/05/2019] [Indexed: 01/01/2023] Open
Abstract
The small free radical gas nitric oxide (NO) plays a key role in various physiological and pathological processes through enhancement of endothelial cell survival and proliferation. In particular, NO has emerged as a molecule of interest in carcinogenesis and tumor progression due to its crucial role in various cancer-related events including cell invasion, metastasis, and angiogenesis. The dimethylarginine dimethylaminohydrolase (DDAH) family of enzymes metabolize the endogenous nitric oxide synthase (NOS) inhibitors, asymmetric dimethylarginine (ADMA) and monomethyl arginine (L-NMMA), and are thus key for maintaining homeostatic control of NO. Dysregulation of the DDAH/ADMA/NO pathway resulting in increased local NO availability often promotes tumor growth, angiogenesis, and vasculogenic mimicry. Recent literature has demonstrated increased DDAH expression in tumors of different origins and has also suggested a potential ADMA-independent role for DDAH enzymes in addition to their well-studied ADMA-mediated influence on NO. Inhibition of DDAH expression and/or activity in cell culture models and in vivo studies has indicated the potential therapeutic benefit of this pathway through inhibition of both angiogenesis and vasculogenic mimicry, and strategies for manipulating DDAH function in cancer are currently being actively pursued by several research groups. This review will thus provide a timely discussion on the expression, regulation, and function of DDAH enzymes in regard to angiogenesis and vasculogenic mimicry, and will offer insight into the therapeutic potential of DDAH inhibition in cancer based on preclinical studies.
Collapse
Affiliation(s)
- Julie-Ann Hulin
- Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Ekaterina A Gubareva
- N.N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| | - Natalia Jarzebska
- Division of Angiology, Department of Internal Medicine III, University Center for Vascular Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Department of Anesthesiology and Intensive Care Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Roman N Rodionov
- Division of Angiology, Department of Internal Medicine III, University Center for Vascular Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Arduino A Mangoni
- Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Sara Tommasi
- Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
10
|
Hu R, Peng GQ, Ban DY, Zhang C, Zhang XQ, Li YP. High-Expression of Neuropilin 1 Correlates to Estrogen-Induced Epithelial-Mesenchymal Transition of Endometrial Cells in Adenomyosis. Reprod Sci 2020; 27:395-403. [PMID: 32046395 DOI: 10.1007/s43032-019-00035-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 05/06/2019] [Indexed: 12/22/2022]
Abstract
Epithelial-mesenchymal transition (EMT) induced by estrogen contributes to the development of adenomyosis. However, the exact underlying mechanism remains mostly obscure. We hypothesized that a transmembrane glycoprotein neuropilin 1 (NRP1) was critical in the EMT induced by estrogen, accelerating the development of adenomyosis. We firstly investigated the expression pattern of NRP1 in endometrium samples from women with adenomyosis. We found that NRP1 expression was significantly increased in the endometrium of uterine adenomyosis, especially in the ectopic endometrium. To determine the role of NRP1 in the EMT in endometrial cells, we used an NRP1 overexpression retrovirus to up-regulate the NPR1 expression in human endometrial cells (HEC-1-A). Endometrial cells infected with NRP1 retroviruses showed a high expression of NRP1 and exerted a mesenchymal phenotype, characterized by down-regulation of E-cadherin and Occludin, up-regulation of α-SMA and N-cadherin, and enhanced migration. Then, we found that 17β-estradiol (E2) up-regulated the expression of NRP1 in endometrial cells in a dose-dependent manner, which was eliminated by raloxifene, a selective estrogen receptor inhibitor. Importantly, NRP1 shRNA significantly suppressed the EMT induced by E2 in endometrial cells. And NRP1 shRNA significantly inhibited the phosphorylation of Smad3 and restored the expressions of Slug and Snail1 mRNA. Collectively, these data highlight the possible role of NRP1 in the EMT in the development of adenomyosis and provide a potential therapeutic target for adenomyosis patients.
Collapse
Affiliation(s)
- Rong Hu
- Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Guo-Qing Peng
- Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - De-Ying Ban
- Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Chun Zhang
- Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiao-Qiong Zhang
- Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yan-Ping Li
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
11
|
Angiotensin II inhibits DDAH1-nNOS signaling via AT1R and μOR dimerization to modulate blood pressure control in the central nervous system. Clin Sci (Lond) 2019; 133:2401-2413. [PMID: 31755934 DOI: 10.1042/cs20191005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 12/31/2022]
Abstract
G protein-coupled receptors (GPCRs) are important drug targets. Blocking angiotensin II (Ang II) type 1 receptor signaling alleviates hypertension and improves outcomes in patients with heart failure. Changes in structure and trafficking of GPCR, and desensitization of GPCR signaling induce pathophysiological processes. We investigated whether Ang II, via induction of AT1R and μ-opioid receptor (μOR) dimerization in the nucleus tractus solitarius (NTS), leads to progressive hypertension. Ang II signaling increased μOR and adrenergic receptor α2A (α2A-AR) heterodimer levels and decreased expression of extracellular signal-regulated kinases 1/2T202/Y204, ribosomal protein S6 kinaseT359/S363, and nNOSS1416 phosphorylation. Dimethylarginine dimethylaminohydrolase 1 (DDAH1) expression was abolished in the NTS of adult spontaneously hypertensive rats (SHRs). Endomorphin-2 was overexpressed in NTS of adult SHRs compared with that in 6-week-old Wistar-Kyoto rats (WKY). Administration of μOR agonist into the NTS of WKY increased blood pressure (BP), decreased nitric oxide (NO) production, and decreased DDAH1 activity. μOR agonist significantly reduced the activity of DDAH1 and decreased neuronal NO synthase (nNOS) phosphorylation. The AT1R II inhibitor, losartan, significantly decreased BP and abolished AT1R-induced formation of AT1R and μOR, and α2A-AR and μOR, heterodimers. Losartan also significantly increased the levels of nNOSS1416 phosphorylation and DDAH1 expression. These results show that Ang II may induce expression of endomorphin-2 and abolished DDAH1 activity by enhancing the formation of AT1R and μOR heterodimers in the NTS, leading to progressive hypertension.
Collapse
|
12
|
Zhang HN, Xu QQ, Thakur A, Alfred MO, Chakraborty M, Ghosh A, Yu XB. Endothelial dysfunction in diabetes and hypertension: Role of microRNAs and long non-coding RNAs. Life Sci 2018; 213:258-268. [PMID: 30342074 DOI: 10.1016/j.lfs.2018.10.028] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 10/13/2018] [Accepted: 10/15/2018] [Indexed: 12/11/2022]
Abstract
The vascular endothelium acts as a barrier between the blood flow and the inner lining of the vessel wall, and it functions as a filtering machinery to filter out any unwanted transfer of materials from both sides (i.e. the blood and the surrounding tissues). It is evident that diseases such as diabetes, obesity, and hypertension disturb the normal endothelial functions in humans and lead to endothelial dysfunction, which may further precede to the development of atherosclerosis. Long non-coding RNAs and micro RNAs both are types of non-coding RNAs which, in the recent years, have increasingly been studied in the pathophysiology of many diseases including diabetes, obesity, cardiovascular diseases, neurological diseases, and others. Recent findings have pointed out important aspects on their relevance to endothelial function as well as dysfunction of the system which may arise from presence of diseases such as diabetes and hypertension. Diabetes or hypertension-mediated endothelial dysfunction show characteristics such as reduced nitric oxide synthesis through suppression of endothelial nitric oxide synthase activity in endothelial cells, reduced sensitivity of nitric oxide in smooth muscle cells, and inflammation - all of which have been either shown to be directly caused by gene regulatory mechanisms of non-coding RNAs or shown to be having a correlation with them. In this review, we aim to discuss such findings on the role of these non-coding RNAs in diabetes or hypertension-associated endothelial dysfunction and the related mechanisms that may pave the way for alleviating endothelial dysfunction and its related complications such as atherosclerosis.
Collapse
Affiliation(s)
- Hai-Na Zhang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiao-Qiao Xu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Abhimanyu Thakur
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology Mesra, Ranchi, India
| | - Martin Omondi Alfred
- Institute of Primate Research, Nairobi, Kenya; School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Manas Chakraborty
- Department of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Arunima Ghosh
- Department of Medical Coding Analysis - Emblem Health, Cognizant Technology Solutions India Pvt Ltd., Bangalore, India
| | - Xu-Ben Yu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|