1
|
Yang W, Chen H, Ma L, Dong J, Wei M, Xue X, Li Y, Jin Z, Xu W, Ji Z. A comprehensive analysis of the FOX family for predicting kidney renal clear cell carcinoma prognosis and the oncogenic role of FOXG1. Aging (Albany NY) 2022; 14:10107-10124. [PMID: 36585925 PMCID: PMC9831721 DOI: 10.18632/aging.204448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/09/2022] [Indexed: 12/30/2022]
Abstract
Previous studies have confirmed that the forkhead box (FOX) superfamily of transcription factors regulates tumor progression and metastasis in multiple cancer. The purpose of this study was to develop a model based on FOX family genes for predicting kidney renal clear cell carcinom (KIRC) prognosis. We downloaded the transcriptional profiles and clinical data of KIRC patients from the Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) datasets. To build a new prognosis model, we screened prognosis-related FOX family genes using Lasso regression and Multivariate Cox regression analyses. Receiver operating characteristic (ROC) curves were used to evaluate model performance. Additionally, a prognostic nomogram was developed using clinical information and selected genes to improve the accuracy of prognostic prediction. We also investigated whether prognosis-related FOX family genes are related to the immune response in KIRC. Finally, we validated the oncogenic role of FOXG1 in KIRC using an in vitro tumor function assay. Six prognosis-related FOX family genes were screened: FOXO1, FOXM1, FOXK2, FOXG1, FOXA1, and FOXD1. The ROC curves indicated that our model was capable of making accurate predictions for 1-, 3-, and 5-year overall survival (OS). The nomogram further improved the accuracy of prognostic predictions. In addition, compared to those in patients with low-risk scores, high-risk scores predicted a decreased level of immune cell infiltration and a lower immune response rate. Moreover, the results of in vitro studies confirmed that FOXG1 supports the proliferation and invasion of KIRC.
Collapse
Affiliation(s)
- Wenjie Yang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing 100000, China
| | - Hualin Chen
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing 100000, China
| | - Lin Ma
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing 100000, China
| | - Jie Dong
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing 100000, China
| | - Mengchao Wei
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing 100000, China
| | - Xiaoqiang Xue
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing 100000, China
| | - Yingjie Li
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing 100000, China
| | - Zhaoheng Jin
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing 100000, China
| | - Weifeng Xu
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing 100000, China
| | - Zhigang Ji
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing 100000, China
| |
Collapse
|
2
|
The Impact of Modifying Sunitinib Treatment Scheduling on Renal Cancer Tumor Biology and Resistance. J Clin Med 2022; 11:jcm11020369. [PMID: 35054064 PMCID: PMC8779527 DOI: 10.3390/jcm11020369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 11/17/2022] Open
Abstract
With sunitinib treatment of metastatic renal cell carcinoma, most patients end up developing resistance over time. Recent clinical trials have shown that individualizing treatment protocols could delay resistance and result in better outcomes. We developed an in vivo xenograft tumor model and compared tumor growth rate, morphological, and transcriptomic differences between alternative and traditional treatment schedules. Our results show that the alternative treatment regime could delay/postpone cancer progression. Additionally, we identified distinct morphological changes in the tumor with alternative and traditional treatments, likely due to the significantly dysregulated signaling pathways between the protocols. Further investigation of the signaling pathways underlying these morphological changes may lead potential therapeutic targets to be used in a combined treatment with sunitinib, which offers promise in postponing/reversing the resistance of sunitinib.
Collapse
|
3
|
Nesiu A, Cimpean AM, Ceausu RA, Adile A, Ioiart I, Porta C, Mazzanti M, Camerota TC, Raica M. Intracellular Chloride Ion Channel Protein-1 Expression in Clear Cell Renal Cell Carcinoma. Cancer Genomics Proteomics 2019; 16:299-307. [PMID: 31243111 PMCID: PMC6609261 DOI: 10.21873/cgp.20135] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND/AIM Chloride intracellular channel 1 (CLIC1) represents a promising target for personalized therapy. Our aim was to assess CLIC1 expression in clear cell renal cell carcinoma (cc RCC) and identify its possible prognostic role. MATERIALS AND METHODS Fifty cases of cc RCC were evaluated and selected for immunohistochemistry. CLIC1 expression was correlated with tumor grade, invasion and heterogeneity. RESULTS A total of 87.5% of the cases were CLIC1 positive, with either a homogeneous (31.42%) or a heterogeneous (68.57%) pattern. Low, mild and strong CLIC1 expressing tumors were defined based on nuclear (N), cytoplasmic (C), membrane (M) or combinations of them (NC, NM, CM, NCM) in terms of CLIC1 distribution. A significant correlation was found between tumor grade and percent of positive tumor cells (p=0.017). For G3 tumors, CLIC1 cytoplasmic expression was strongly correlated with high expression status (p=0.025) and tumor heterogeneity (p=0.004). CLIC1 expression was also correlated with metastasis (p=0.046). CONCLUSION We defined four cc RCC groups depending on G, CLIC1 expression and pattern: i) G3/NM/low CLIC1+, ii) G2/CM/mild CLIC1+ iii) G1 or G2/NM or CM /high CLIC1+, and iv) G2/M /high CLIC1.
Collapse
Affiliation(s)
- Alexandru Nesiu
- Department of Urology, Vasile Goldis University, Arad, Romania
| | - Anca Maria Cimpean
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Raluca Amalia Ceausu
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Ahmed Adile
- Department of Urology, Vasile Goldis University, Arad, Romania
| | - Ioan Ioiart
- Department of Urology, Vasile Goldis University, Arad, Romania
| | - Camillo Porta
- Department of Internal Medicine, University of Pavia & Division of Translational Oncology, IRCCS ICS Maugeri of Pavia, Pavia, Italy
| | - Michele Mazzanti
- Department of Biosciences, Laboratory of Cellular and Molecular Physiology, University of Milano, Milan, Italy
| | | | - Marius Raica
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| |
Collapse
|