1
|
Trubetskoy D, Grudzien P, Klopot A, Tsoi LC, Kundu RV, White BEP, Budunova I. Activation of IL1A/IRAK1 axis and downstream proinflammatory signaling in healthy adult and neonatal African American skin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.624144. [PMID: 40236066 PMCID: PMC11996573 DOI: 10.1101/2024.11.18.624144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Differences in prevalence of inflammatory skin diseases including atopic dermatitis and psoriasis in African American (AA) versus White Non-Hispanic (WNH) population are well recognized. However, the underlying mechanisms are largely unknown. We previously observed significant differences in healthy AA skin transcriptome with differentially expressed genes (DEG) enriched for inflammation and cornification processes. Here we analyzed proteome in skin biopsies from healthy AA and WNH volunteers using Olink ® Explore Inflammation 384 biomarker panel. Among proteins with higher expression in AA skin were IRAK1, IL1A, IL4, IL22RA1. IL1A binding to IL1R1 receptor is known to result in recruitment of adapter molecules such as IRAK1, and activation of downstream NF-κB and MAPK signaling. We confirmed NF-κB and ERK1/2 activation in AA skin by Western blot analysis of their phosphorylation at specific activating sites. Importantly, we observed similar differences between AA and WNH neonatal foreskin and between AA and WNH 3D skin organoids. Further analysis of DEG promoters by Gene Transcription Regulation Database (GTRD) pointed to NF-κB and AP1 as key transcription factors involved in AA DEG regulation. Overall, proinflammatory signaling in healthy AA skin starting early in childhood may contribute to the increased risk of certain inflammatory skin diseases within the AA population.
Collapse
|
2
|
Imamura I, Kiyama R. Potential involvement of KANK1 haploinsufficiency in centrosome aberrations. Biochim Biophys Acta Gen Subj 2024; 1868:130648. [PMID: 38830559 DOI: 10.1016/j.bbagen.2024.130648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/04/2024] [Accepted: 05/24/2024] [Indexed: 06/05/2024]
Abstract
KANK1 was found as a tumor suppressor gene based on frequent deletions in renal cell carcinoma and the inhibitory activity of tumor cell proliferation. Previously, we reported that knockdown of KANK1 induced centrosomal amplification, leading to abnormal cell division, through the hyperactivation of RhoA small GTPase. Here, we investigated the loss of KANK1 function by performing CRISPR/Cas9-based genome editing to knockout the gene. After several rounds of genome editing, however, there were no cell lines with complete loss of KANK1, and the less the wild-type KANK1 dosage, the greater the number of cells with abnormal numbers of centrosomes and rates of cell-doubling and apoptosis, suggesting the involvement of KANK1 haploinsufficiency in centrosome aberrations. The rescue of KANK1-knockdown cells with a KANK1-expressing plasmid restored the rates of cells exhibiting centrosomal amplification to the control level. RNA-sequencing analysis of the cells with reduced dosages of functional KANK1 revealed potential involvement of other cell proliferation-related genes, such as EGR1, MDGA2, and BMP3, which have been reported to show haploinsufficiency when they function. When EGR1 protein expression was reduced by siRNA technology, the number of cells exhibiting centrosomal amplification increased, along with the reduction of KANK1 protein expression, suggesting their functional relationship. Thus, KANK1 haploinsufficiency may contribute to centrosome aberrations through the network of haploinsufficiency-related genes.
Collapse
Affiliation(s)
- Ikumi Imamura
- Faculty of Life Science, Kyushu Sangyo University, Japan
| | - Ryoiti Kiyama
- Faculty of Life Science, Kyushu Sangyo University, Japan.
| |
Collapse
|
3
|
Chen B, Zhang Y, Niu Y, Wang Y, Liu Y, Ji H, Han R, Tian Y, Liu X, Kang X, Li Z. RRM2 promotes the proliferation of chicken myoblasts, inhibits their differentiation and muscle regeneration. Poult Sci 2024; 103:103407. [PMID: 38198913 PMCID: PMC10825555 DOI: 10.1016/j.psj.2023.103407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/10/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
During myogenesis and regeneration, the proliferation and differentiation of myoblasts play key regulatory roles and may be regulated by many genes. In this study, we analyzed the transcriptomic data of chicken primary myoblasts at different periods of proliferation and differentiation with protein‒protein interaction network, and the results indicated that there was an interaction between cyclin-dependent kinase 1 (CDK1) and ribonucleotide reductase regulatory subunit M2 (RRM2). Previous studies in mammals have a role for RRM2 in skeletal muscle development as well as cell growth, but the role of RRM2 in chicken is unclear. In this study, we investigated the effects of RRM2 on skeletal muscle development and regeneration in chickens in vitro and in vivo. The interaction between RRM2 and CDK1 was initially identified by co-immunoprecipitation and mass spectrometry. Through a dual luciferase reporter assay and quantitative real-time PCR, we identified the core promoter region of RRM2, which is regulated by the SP1 transcription factor. In this study, through cell counting kit-8 assays, 5-ethynyl-2'-deoxyuridine incorporation assays, flow cytometry, immunofluorescence staining, and Western blot analysis, we demonstrated that RRM2 promoted the proliferation and inhibited the differentiation of myoblasts. In vivo studies showed that RRM2 reduced the diameter of muscle fibers and slowed skeletal muscle regeneration. In conclusion, these data provide preliminary insights into the biological functions of RRM2 in chicken muscle development and skeletal muscle regeneration.
Collapse
Affiliation(s)
- Bingjie Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yushi Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yufang Niu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yanxing Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yang Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Haigang Ji
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China.
| |
Collapse
|
4
|
Peytam F, Emamgholipour Z, Mousavi A, Moradi M, Foroumadi R, Firoozpour L, Divsalar F, Safavi M, Foroumadi A. Imidazopyridine-based kinase inhibitors as potential anticancer agents: A review. Bioorg Chem 2023; 140:106831. [PMID: 37683538 DOI: 10.1016/j.bioorg.2023.106831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/16/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Considering the fundamental role of protein kinases in the mechanism of protein phosphorylation in critical cellular processes, their dysregulation, especially in cancers, has underscored their therapeutic relevance. Imidazopyridines represent versatile scaffolds found in abundant bioactive compounds. Given their structural features, imidazopyridines have possessed pivotal potency to interact with different protein kinases, inspiring researchers to carry out numerous structural variations. In this comprehensive review, we encompass an extensive survey of the design and biological evaluations of imidazopyridine-based small molecules as potential agents targeting diverse kinases for anticancer applications. We describe the structural elements critical to inhibitory potency, elucidating their key structure-activity relationships (SAR) and mode of actions, where available. We classify these compounds into two groups: Serine/threonine and Tyrosine inhibitors. By highlighting the promising role of imidazopyridines in kinase inhibition, we aim to facilitate the design and development of more effective, targeted compounds for cancer treatment.
Collapse
Affiliation(s)
- Fariba Peytam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Emamgholipour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Mousavi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahfam Moradi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Roham Foroumadi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Loghman Firoozpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Divsalar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Shetty K, Yasaswi S, Dutt S, Yadav KS. Multifunctional nanocarriers for delivering siRNA and miRNA in glioblastoma therapy: advances in nanobiotechnology-based cancer therapy. 3 Biotech 2022; 12:301. [PMID: 36276454 PMCID: PMC9525514 DOI: 10.1007/s13205-022-03365-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 09/17/2022] [Indexed: 11/30/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most lethal cancer due to poor diagnosis and rapid resistance developed towards the drug. Genes associated to cancer-related overexpression of proteins, enzymes, and receptors can be suppressed using an RNA silencing technique. This assists in obtaining tumour targetability, resulting in less harm caused to the surrounding healthy cells. RNA interference (RNAi) has scientific basis for providing potential therapeutic applications in improving GBM treatment. However, the therapeutic application of RNAi is challenging due to its poor permeability across blood-brain barrier (BBB). Nanobiotechnology has evolved the use of nanocarriers such as liposomes, polymeric nanoparticles, gold nanoparticles, dendrimers, quantum dots and other nanostructures in encasing the RNAi entities like siRNA and miRNA. The review highlights the role of these carriers in encasing siRNA and miRNA and promising therapy in delivering them to the glioma cells.
Collapse
Affiliation(s)
- Karishma Shetty
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’S NMIMS (Deemed to be University), Mumbai, India
| | - Soma Yasaswi
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’S NMIMS (Deemed to be University), Mumbai, India
| | - Shilpee Dutt
- Shilpee Dutt Laboratory, Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, 410210 India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085 India
| | - Khushwant S. Yadav
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’S NMIMS (Deemed to be University), Mumbai, India
| |
Collapse
|
6
|
Perry ACF, Asami M, Lam BYH, Yeo GSH. The initiation of mammalian embryonic transcription: to begin at the beginning. Trends Cell Biol 2022; 33:365-373. [PMID: 36182534 DOI: 10.1016/j.tcb.2022.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 11/26/2022]
Abstract
Gamete (sperm and oocyte) genomes are transcriptionally silent until embryonic genome activation (EGA) following fertilization. EGA in humans had been thought to occur around the eight-cell stage, but recent findings suggest that it is triggered in one-cell embryos, by fertilization. Phosphorylation and other post-translational modifications during fertilization may instate transcriptionally favorable chromatin and activate oocyte-derived transcription factors (TFs) to initiate EGA. Expressed genes lay on cancer-associated pathways and their identities predict upregulation by MYC and other cancer-associated TFs. One interpretation of this is that the onset of EGA, and the somatic cell trajectory to cancer, are mechanistically related: cancer initiates epigenetically. We describe how fertilization might be linked to the initiation of EGA and involve distinctive processes recapitulated in cancer.
Collapse
Affiliation(s)
- Anthony C F Perry
- Laboratory of Mammalian Molecular Embryology, Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK.
| | - Maki Asami
- Laboratory of Mammalian Molecular Embryology, Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | - Brian Y H Lam
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Giles S H Yeo
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| |
Collapse
|
7
|
Ansari KI, Bhan A, Saotome M, Tyagi A, De Kumar B, Chen C, Takaku M, Jandial R. Autocrine GM-CSF signaling contributes to growth of HER2+ breast leptomeningeal carcinomatosis. Cancer Res 2021; 81:4723-4735. [PMID: 34247146 DOI: 10.1158/0008-5472.can-21-0259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/29/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022]
Abstract
Leptomeningeal carcinomatosis (LC) occurs when tumor cells spread to the cerebrospinal fluid-containing leptomeninges surrounding the brain and spinal cord. LC is an ominous complication of cancer with a dire prognosis. Although any malignancy can spread to the leptomeninges, breast cancer, particularly the HER2+ subtype, is its most common origin. HER2+ breast LC (HER2+ LC) remains incurable, with few treatment options, and the molecular mechanisms underlying proliferation of HER2+ breast cancer cells in the acellular, protein, and cytokine-poor leptomeningeal environment remain elusive. Therefore, we sought to characterize signaling pathways that drive HER2+ LC development as well as those that restrict its growth to leptomeninges. Primary HER2+ LC patient-derived ("Lepto") cell lines in co-culture with various central nervous system (CNS) cell types revealed that oligodendrocyte progenitor cells (OPC), the largest population of dividing cells in the CNS, inhibited HER2+ LC growth in vitro and in vivo, thereby limiting the spread of HER2+ LC beyond the leptomeninges. Cytokine array-based analyses identified Lepto cell-secreted granulocyte-macrophage colony-stimulating factor (GM-CSF) as an oncogenic autocrine driver of HER2+ LC growth. Liquid chromatography-tandem mass spectrometry-based analyses revealed that the OPC-derived protein TPP1 proteolytically degrades GM-CSF, decreasing GM-CSF signaling and leading to suppression of HER2+ LC growth and limiting its spread. Lastly, intrathecal delivery of neutralizing anti-GM-CSF antibodies and a pan-Aurora kinase inhibitor (CCT137690) synergistically inhibited GM-CSF and suppressed activity of GM-CSF effectors, reducing HER2+ LC growth in vivo. Thus, OPC suppress GM-CSF-driven growth of HER2+ LC in the leptomeningeal environment, providing a potential targetable axis.
Collapse
|
8
|
Oliva M, Muñoz-Aguirre M, Kim-Hellmuth S, Wucher V, Gewirtz ADH, Cotter DJ, Parsana P, Kasela S, Balliu B, Viñuela A, Castel SE, Mohammadi P, Aguet F, Zou Y, Khramtsova EA, Skol AD, Garrido-Martín D, Reverter F, Brown A, Evans P, Gamazon ER, Payne A, Bonazzola R, Barbeira AN, Hamel AR, Martinez-Perez A, Soria JM, Pierce BL, Stephens M, Eskin E, Dermitzakis ET, Segrè AV, Im HK, Engelhardt BE, Ardlie KG, Montgomery SB, Battle AJ, Lappalainen T, Guigó R, Stranger BE. The impact of sex on gene expression across human tissues. Science 2020; 369:eaba3066. [PMID: 32913072 PMCID: PMC8136152 DOI: 10.1126/science.aba3066] [Citation(s) in RCA: 390] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 08/03/2020] [Indexed: 12/12/2022]
Abstract
Many complex human phenotypes exhibit sex-differentiated characteristics. However, the molecular mechanisms underlying these differences remain largely unknown. We generated a catalog of sex differences in gene expression and in the genetic regulation of gene expression across 44 human tissue sources surveyed by the Genotype-Tissue Expression project (GTEx, v8 release). We demonstrate that sex influences gene expression levels and cellular composition of tissue samples across the human body. A total of 37% of all genes exhibit sex-biased expression in at least one tissue. We identify cis expression quantitative trait loci (eQTLs) with sex-differentiated effects and characterize their cellular origin. By integrating sex-biased eQTLs with genome-wide association study data, we identify 58 gene-trait associations that are driven by genetic regulation of gene expression in a single sex. These findings provide an extensive characterization of sex differences in the human transcriptome and its genetic regulation.
Collapse
Affiliation(s)
- Meritxell Oliva
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA.
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Manuel Muñoz-Aguirre
- Centre for Genomic Regulation, Barcelona Institute for Science and Technology, Barcelona, Catalonia, Spain
- Department of Statistics and Operations Research, Universitat Politècnica de Catalunya, Barcelona, Catalonia, Spain
| | - Sarah Kim-Hellmuth
- Statistical Genetics, Max Planck Institute of Psychiatry, Munich, Germany
- New York Genome Center, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Valentin Wucher
- Centre for Genomic Regulation, Barcelona Institute for Science and Technology, Barcelona, Catalonia, Spain
| | - Ariel D H Gewirtz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Daniel J Cotter
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Princy Parsana
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Silva Kasela
- New York Genome Center, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Brunilda Balliu
- Department of Computational Medicine, University of California, Los Angeles, CA, USA
| | - Ana Viñuela
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Stephane E Castel
- New York Genome Center, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Pejman Mohammadi
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Scripps Research Translational Institute, La Jolla, CA, USA
| | | | - Yuxin Zou
- Department of Statistics, University of Chicago, Chicago, IL, USA
| | - Ekaterina A Khramtsova
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
- Computational Sciences, Janssen Pharmaceuticals, Spring House, PA, USA
| | - Andrew D Skol
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
- Center for Translational Data Science, University of Chicago, Chicago, IL, USA
- Department of Pathology and Laboratory Medicine, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Diego Garrido-Martín
- Centre for Genomic Regulation, Barcelona Institute for Science and Technology, Barcelona, Catalonia, Spain
| | - Ferran Reverter
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | | | - Patrick Evans
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric R Gamazon
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Clare Hall, University of Cambridge, Cambridge, UK
| | - Anthony Payne
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Rodrigo Bonazzola
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Alvaro N Barbeira
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Andrew R Hamel
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Angel Martinez-Perez
- Genomics of Complex Diseases Group, Research Institute Hospital de la Sant Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain
| | - José Manuel Soria
- Genomics of Complex Diseases Group, Research Institute Hospital de la Sant Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain
| | - Brandon L Pierce
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Matthew Stephens
- Department of Statistics, University of Chicago, Chicago, IL, USA
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Eleazar Eskin
- Departments of Computational Medicine, Computer Science, and Human Genetics, University of California, Los Angeles, CA, USA
| | - Emmanouil T Dermitzakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Ayellet V Segrè
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Hae Kyung Im
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Barbara E Engelhardt
- Department of Computer Science, Center for Statistics and Machine Learning, Princeton University, Princeton, NJ, USA
- Genomics plc, Oxford, UK
| | | | - Stephen B Montgomery
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Alexis J Battle
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Tuuli Lappalainen
- New York Genome Center, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Roderic Guigó
- Centre for Genomic Regulation, Barcelona Institute for Science and Technology, Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Barbara E Stranger
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA.
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
- Center for Translational Data Science, University of Chicago, Chicago, IL, USA
- Center for Genetic Medicine, Department of Pharmacology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
9
|
The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 2020; 369:1318-1330. [PMID: 32913098 PMCID: PMC7737656 DOI: 10.1126/science.aaz1776] [Citation(s) in RCA: 2695] [Impact Index Per Article: 539.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 07/30/2020] [Indexed: 02/06/2023]
Abstract
The Genotype-Tissue Expression (GTEx) project was established to characterize genetic effects on the transcriptome across human tissues and to link these regulatory mechanisms to trait and disease associations. Here, we present analyses of the version 8 data, examining 15,201 RNA-sequencing samples from 49 tissues of 838 postmortem donors. We comprehensively characterize genetic associations for gene expression and splicing in cis and trans, showing that regulatory associations are found for almost all genes, and describe the underlying molecular mechanisms and their contribution to allelic heterogeneity and pleiotropy of complex traits. Leveraging the large diversity of tissues, we provide insights into the tissue specificity of genetic effects and show that cell type composition is a key factor in understanding gene regulatory mechanisms in human tissues.
Collapse
|
10
|
Karthigeyan D, Bose A, Boopathi R, Rao VJ, Shima H, Bharathy N, Igarashi K, Taneja R, Trivedi AK, Kundu TK. Aurora kinase A-mediated phosphorylation of mPOU at a specific site drives skeletal muscle differentiation. J Biochem 2019; 167:195-201. [DOI: 10.1093/jb/mvz088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/15/2019] [Indexed: 12/17/2022] Open
Abstract
Abstract
Aurora kinases are Ser/Thr-directed protein kinases which play pivotal roles in mitosis. Recent evidences highlight the importance of these kinases in multiple biological events including skeletal muscle differentiation. Our earlier study identified the transcription factor POU6F1 (or mPOU) as a novel Aurora kinase (Aurk) A substrate. Here, we report that Aurora kinase A phosphorylates mPOU at Ser197 and inhibit its DNA-binding ability. Delving into mPOU physiology, we find that the phospho-mimic (S197D) mPOU mutant exhibits enhancement, while the wild type or the phospho-deficient mutant shows retardation in C2C12 myoblast differentiation. Interestingly, POU6F1 depletion phenocopies S197D-mPOU overexpression in the differentiation context. Collectively, our results signify mPOU as a negative regulator of skeletal muscle differentiation and strengthen the importance of AurkA in skeletal myogenesis.
Collapse
Affiliation(s)
- Dhanasekan Karthigeyan
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka, India
| | - Arnab Bose
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka, India
| | - Ramachandran Boopathi
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka, India
| | - Vinay Jaya Rao
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka, India
| | - Hiroki Shima
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Aoba-ku, Sendai 980-8575, Japan
| | - Narendra Bharathy
- Department of Physiology, Cellular Differentiation and Apoptosis, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Aoba-ku, Sendai 980-8575, Japan
| | - Reshma Taneja
- Department of Physiology, Cellular Differentiation and Apoptosis, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Arun Kumar Trivedi
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow 226031, Uttar Pradesh, India
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka, India
| |
Collapse
|