1
|
Zhang D, Xiang W, Liu J, Li W, Qiao Z, Wang K, Shao L. Design, synthesis, and structure-activity relationship of 5,7- dimethylbenzo[d]thiazoles as novel Kv7.2/7.3 activators with antiepileptic effects. Eur J Med Chem 2025; 292:117660. [PMID: 40315730 DOI: 10.1016/j.ejmech.2025.117660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/03/2025] [Accepted: 04/18/2025] [Indexed: 05/04/2025]
Abstract
The activation of neuronal Kv7 channels has emerged as an important therapeutic strategy for epilepsy due to their role in regulating neuronal excitability. Retigabine (RTG), a Kv7.2/7.3 channel activator, was previously approved for epilepsy treatment but was withdrawn in 2017 because of its side effects of ophthalmological and dermatological pigmentation. Despite this setback, Kv7.2/7.3 channel remains a promising target for the development of antiepileptic drugs (AEDs). Previous studies have attributed the toxic metabolic quinone/azaquinone diimines and associated blue discoloration of RTG to its electron-rich tri-amine aromatic scaffold. A common strategy to mitigate this toxicity involves removing the ortho-aniline moiety of RTG. In this study, we designed and synthesized a series of compounds based on dimethylbenzene heterocyclic scaffolds as Kv7.2/7.3 activators. Among them, compound 2c demonstrated improved efficacy in Rb+ efflux assays and exhibited comparable activity in whole-cell patch clamp recordings on Kv7.2/7.3 channels. Moreover, compound 2c was effective in both maximal electroshock seizure (MES) and subcutaneous pentylenetetrazol (sc-PTZ) mouse models, with ED50 values of 4.02 mg/kg and 43.17 mg/kg, respectively. The LD50 value of 2c in acute toxicity experiments was 340.35 mg/kg (95 % CI: 293.68-394.45) in mice. Additionally, 2c exhibited locomotor impairment with at TD50 of 48.93 mg/kg in an open field test and 49.25 mg/kg in a rotarod test. Compound 2c also demonstrated reasonable pharmacokinetic (PK) properties and blood-brain barrier (BBB) penetration, along with good photostability. Site-directed mutagenesis, combined with molecular docking, confirmed that 2c interacted with key residues (W236, F305, and L299) in the Kv7.2 channel. Our findings suggest that compound 2c is a promising lead compound with a novel scaffold as a Kv7.2/7.3 activator for the management of epilepsy.
Collapse
Affiliation(s)
- Denggao Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai, 201203, China
| | - Wei Xiang
- Departments of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, 266073, China
| | - Jie Liu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai, 201203, China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai, 201203, China.
| | - Zhen Qiao
- Shandong Key Laboratory of Neurorehabilitation, School of Life Sciences and Health, University of Health and Rehabilitation Sciences, Qingdao, 266113, China; Qingdao Key Laboratory of Neurorehabilitation, University of Health and Rehabilitation Sciences, Qingdao, 266113, China.
| | - KeWei Wang
- Departments of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, 266073, China; Institute of Innovative Drug Discovery, Qingdao University Medical College, 38 Dengzhou Road, Qingdao, 266021, China.
| | - Liming Shao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai, 201203, China.
| |
Collapse
|
2
|
Qiu Q, Yang M, Gong D, Liang H, Chen T. Potassium and calcium channels in different nerve cells act as therapeutic targets in neurological disorders. Neural Regen Res 2025; 20:1258-1276. [PMID: 38845230 PMCID: PMC11624876 DOI: 10.4103/nrr.nrr-d-23-01766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/18/2024] [Accepted: 04/07/2024] [Indexed: 07/31/2024] Open
Abstract
The central nervous system, information integration center of the body, is mainly composed of neurons and glial cells. The neuron is one of the most basic and important structural and functional units of the central nervous system, with sensory stimulation and excitation conduction functions. Astrocytes and microglia belong to the glial cell family, which is the main source of cytokines and represents the main defense system of the central nervous system. Nerve cells undergo neurotransmission or gliotransmission, which regulates neuronal activity via the ion channels, receptors, or transporters expressed on nerve cell membranes. Ion channels, composed of large transmembrane proteins, play crucial roles in maintaining nerve cell homeostasis. These channels are also important for control of the membrane potential and in the secretion of neurotransmitters. A variety of cellular functions and life activities, including functional regulation of the central nervous system, the generation and conduction of nerve excitation, the occurrence of receptor potential, heart pulsation, smooth muscle peristalsis, skeletal muscle contraction, and hormone secretion, are closely related to ion channels associated with passive transmembrane transport. Two types of ion channels in the central nervous system, potassium channels and calcium channels, are closely related to various neurological disorders, including Alzheimer's disease, Parkinson's disease, and epilepsy. Accordingly, various drugs that can affect these ion channels have been explored deeply to provide new directions for the treatment of these neurological disorders. In this review, we focus on the functions of potassium and calcium ion channels in different nerve cells and their involvement in neurological disorders such as Parkinson's disease, Alzheimer's disease, depression, epilepsy, autism, and rare disorders. We also describe several clinical drugs that target potassium or calcium channels in nerve cells and could be used to treat these disorders. We concluded that there are few clinical drugs that can improve the pathology these diseases by acting on potassium or calcium ions. Although a few novel ion-channel-specific modulators have been discovered, meaningful therapies have largely not yet been realized. The lack of target-specific drugs, their requirement to cross the blood-brain barrier, and their exact underlying mechanisms all need further attention. This review aims to explain the urgent problems that need research progress and provide comprehensive information aiming to arouse the research community's interest in the development of ion channel-targeting drugs and the identification of new therapeutic targets for that can increase the cure rate of nervous system diseases and reduce the occurrence of adverse reactions in other systems.
Collapse
Affiliation(s)
- Qing Qiu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu Province, China
| | - Mengting Yang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu Province, China
| | - Danfeng Gong
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu Province, China
| | - Haiying Liang
- Department of Pharmacy, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian Province, China
| | - Tingting Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu Province, China
| |
Collapse
|
3
|
Lemke J, Mengers N, Schmidt L, Schulig L, König S, Rosendahl P, Bartz FM, Garscha U, Bednarski PJ, Link A. Lead Optimization of Positive Allosteric K V7.2/3 Channel Modulators toward Improved Balance of Lipophilicity and Aqueous Solubility. J Med Chem 2025; 68:8377-8399. [PMID: 40198203 DOI: 10.1021/acs.jmedchem.4c03112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
The voltage-gated potassium channel KV7.2/3 is gaining attention for its association with several medical indications. While recently reported, potent compounds aimed to fill the therapeutic gap left by market-withdrawn activators, key physicochemical parameters did not meet the requirements of potential drug candidates. Targeting the membrane-located channel requires subtly balancing lipophilicity, activity, and aqueous solubility. This publication describes the lead optimization of a highly active compound toward optimized physicochemical parameters. Out of 42 newly synthesized compounds, 30 showed activity on KV7.2/3 channels, and 15 had also an increased solubility compared the to hit compound. The integration of a three-dimensional bulky structure and the probable onset of chameleonic behavior, led to a 20-fold solubility increase (S = 21.7 vs 1.1 μM) and only slightly reduced potency (pEC50 = 7.42 vs 7.96) for the lead. Additionally, the target engagement of the compound was theoretically enhanced by a reduction of membrane retention.
Collapse
Affiliation(s)
- Jana Lemke
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, Greifswald 17489, Germany
| | - Nadine Mengers
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, Greifswald 17489, Germany
| | - Louis Schmidt
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, Greifswald 17489, Germany
| | - Lukas Schulig
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, Greifswald 17489, Germany
| | - Stefanie König
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, Greifswald 17489, Germany
| | - Pascal Rosendahl
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, Greifswald 17489, Germany
| | - Frieda-Marie Bartz
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, Greifswald 17489, Germany
| | - Ulrike Garscha
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, Greifswald 17489, Germany
| | - Patrick J Bednarski
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, Greifswald 17489, Germany
| | - Andreas Link
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, Greifswald 17489, Germany
| |
Collapse
|
4
|
Shi H, Li Q, Hu F, Liu Y, Wang K. A novel role of the antidepressant paroxetine in inhibiting neuronal Kv7/M channels to enhance neuronal excitability. Transl Psychiatry 2025; 15:116. [PMID: 40175331 PMCID: PMC11965407 DOI: 10.1038/s41398-025-03291-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/18/2025] [Accepted: 02/18/2025] [Indexed: 04/04/2025] Open
Abstract
The voltage-gated Kv7/KCNQ/M potassium channels exert inhibitory control over neuronal membrane excitability. The reduction of Kv7 channel function can improve neuronal excitability that defines the fundamental mechanism of learning and memory. This suggests that pharmacological inhibition of Kv7 channels may present a therapeutic strategy for cognitive improvement. Paroxetine, a selective serotonin reuptake inhibitor, is widely used in the treatment of various types of depression with reported improvements in memory and attention. However, the exact mechanism underlying cognitive improvement by paroxetine remains poorly understood. In this study, we demonstrate that paroxetine inhibits whole-cell Kv7.2/Kv7.3 channel currents in a concentration-dependent manner with an IC50 of 3.6 ± 0.2 μΜ. In single-channel recording assay, paroxetine significantly reduces the open probability of Kv7.2/Kv7.3 channels. Moreover, paroxetine exhibits an inhibition of the native M-current and an increase in the firing of action potentials in hippocampal neurons. Taken together, our findings unveil a novel role of the antidepressant paroxetine in inhibiting M-current, providing insights into its pharmacological effects on cognition enhancement.
Collapse
Affiliation(s)
- Huan Shi
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical college, Qingdao, China
| | - Qinqin Li
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical college, Qingdao, China
| | - Fang Hu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical college, Qingdao, China
- Institute of Innovative Drugs, Qingdao University, Qingdao, China
| | - Yani Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical college, Qingdao, China.
- Institute of Innovative Drugs, Qingdao University, Qingdao, China.
| | - KeWei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical college, Qingdao, China.
- Institute of Innovative Drugs, Qingdao University, Qingdao, China.
| |
Collapse
|
5
|
Zheng Y, Chen J. Voltage-gated potassium channels and genetic epilepsy. Front Neurol 2024; 15:1466075. [PMID: 39434833 PMCID: PMC11492950 DOI: 10.3389/fneur.2024.1466075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024] Open
Abstract
Recent advances in exome and targeted sequencing have significantly improved the aetiological diagnosis of epilepsy, revealing an increasing number of epilepsy-related pathogenic genes. As a result, the diagnosis and treatment of epilepsy have become more accessible and more traceable. Voltage-gated potassium channels (Kv) regulate electrical excitability in neuron systems. Mutate Kv channels have been implicated in epilepsy as demonstrated in case reports and researches using gene-knockout mouse models. Both gain and loss-of-function of Kv channels lead to epilepsy with similar phenotypes through different mechanisms, bringing new challenges to the diagnosis and treatment of epilepsy. Research on genetic epilepsy is progressing rapidly, with several drug candidates targeting mutated genes or channels emerging. This article provides a brief overview of the symptoms and pathogenesis of epilepsy associated with voltage-gated potassium ion channels dysfunction and highlights recent progress in treatments. Here, we reviewed case reports of gene mutations related to epilepsy in recent years and summarized the proportion of Kv genes. Our focus is on the progress in precise treatments for specific voltage-gated potassium channel genes linked to epilepsy, including KCNA1, KCNA2, KCNB1, KCNC1, KCND2, KCNQ2, KCNQ3, KCNH1, and KCNH5.
Collapse
Affiliation(s)
| | - Jing Chen
- Department of Neurology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Wei Y, Xu X, Guo Q, Zhao S, Qiu Y, Wang D, Yu W, Liu Y, Wang K. A novel dual serotonin transporter and M-channel inhibitor D01 for antidepression and cognitive improvement. Acta Pharm Sin B 2024; 14:1457-1466. [PMID: 38487010 PMCID: PMC10935023 DOI: 10.1016/j.apsb.2023.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/07/2023] [Accepted: 11/17/2023] [Indexed: 03/17/2024] Open
Abstract
Cognitive dysfunction is a core symptom common in psychiatric disorders including depression that is primarily managed by antidepressants lacking efficacy in improving cognition. In this study, we report a novel dual serotonin transporter and voltage-gated potassium Kv7/KCNQ/M-channel inhibitor D01 (a 2-methyl-3-aryloxy-3-heteroarylpropylamines derivative) that exhibits both anti-depression effects and improvements in cognition. D01 inhibits serotonin transporters (Ki = 30.1 ± 6.9 nmol/L) and M channels (IC50 = 10.1 ± 2.4 μmol/L). D01 also reduces the immobility duration in the mouse FST and TST assays in a dose-dependent manner without a stimulatory effect on locomotion. Intragastric administrations of D01 (20 and 40 mg/kg) can significantly shorten the immobility time in a mouse model of chronic restraint stress (CRS)-induced depression-like behavior. Additionally, D01 dose-dependently improves the cognitive deficit induced by CRS in Morris water maze test and increases the exploration time with novel objects in normal or scopolamine-induced cognitive deficits in mice, but not fluoxetine. Furthermore, D01 reverses the long-term potentiation (LTP) inhibition induced by scopolamine. Taken together, our findings demonstrate that D01, a dual-target serotonin reuptake and M channel inhibitor, is highly effective in the treatment-resistant depression and cognitive deficits, thus holding potential for development as therapy of depression with cognitive deficits.
Collapse
Affiliation(s)
- Yaqin Wei
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiangqing Xu
- Institute of Pharmaceutical Research, Jiangsu Nhwa Pharmaceutical Co., Ltd. & Jiangsu Key Laboratory of Central Nervous System Drug Research and Development, Xuzhou 221116, China
| | - Qiang Guo
- Institute of Pharmaceutical Research, Jiangsu Nhwa Pharmaceutical Co., Ltd. & Jiangsu Key Laboratory of Central Nervous System Drug Research and Development, Xuzhou 221116, China
| | - Song Zhao
- Institute of Pharmaceutical Research, Jiangsu Nhwa Pharmaceutical Co., Ltd. & Jiangsu Key Laboratory of Central Nervous System Drug Research and Development, Xuzhou 221116, China
| | - Yinli Qiu
- Institute of Pharmaceutical Research, Jiangsu Nhwa Pharmaceutical Co., Ltd. & Jiangsu Key Laboratory of Central Nervous System Drug Research and Development, Xuzhou 221116, China
| | - Dongli Wang
- Institute of Pharmaceutical Research, Jiangsu Nhwa Pharmaceutical Co., Ltd. & Jiangsu Key Laboratory of Central Nervous System Drug Research and Development, Xuzhou 221116, China
| | - Wenwen Yu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, China
- Institute of Innovative Drug, Qingdao University, Qingdao 266021, China
| | - Yani Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, China
- Institute of Innovative Drug, Qingdao University, Qingdao 266021, China
| | - KeWei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, China
- Institute of Innovative Drug, Qingdao University, Qingdao 266021, China
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong–Hong Kong–Macao Greater Bay Area, Guangzhou 510515, China
| |
Collapse
|
7
|
Lai H, Gao M, Yang H. The potassium channels: Neurobiology and pharmacology of tinnitus. J Neurosci Res 2024; 102:e25281. [PMID: 38284861 DOI: 10.1002/jnr.25281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 10/27/2023] [Accepted: 11/16/2023] [Indexed: 01/30/2024]
Abstract
Tinnitus is a widespread public health issue that imposes a significant social burden. The occurrence and maintenance of tinnitus have been shown to be associated with abnormal neuronal activity in the auditory pathway. Based on this view, neurobiological and pharmacological developments in tinnitus focus on ion channels and synaptic neurotransmitter receptors in neurons in the auditory pathway. With major breakthroughs in the pathophysiology and research methodology of tinnitus in recent years, the role of the largest family of ion channels, potassium ion channels, in modulating the excitability of neurons involved in tinnitus has been increasingly demonstrated. More and more potassium channels involved in the neural mechanism of tinnitus have been discovered, and corresponding drugs have been developed. In this article, we review animal (mouse, rat, hamster, and guinea-pig), human, and genetic studies on the different potassium channels involved in tinnitus, analyze the limitations of current clinical research on potassium channels, and propose future prospects. The aim of this review is to promote the understanding of the role of potassium ion channels in tinnitus and to advance the development of drugs targeting potassium ion channels for tinnitus.
Collapse
Affiliation(s)
- Haohong Lai
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minqian Gao
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Hearing and Speech-Language Science, Guangzhou Xinhua University, Guangzhou, China
| | - Haidi Yang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Hearing and Speech-Language Science, Guangzhou Xinhua University, Guangzhou, China
| |
Collapse
|
8
|
Huang Y, Ma D, Yang Z, Zhao Y, Guo J. Voltage-gated potassium channels KCNQs: Structures, mechanisms, and modulations. Biochem Biophys Res Commun 2023; 689:149218. [PMID: 37976835 DOI: 10.1016/j.bbrc.2023.149218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
KCNQ (Kv7) channels are voltage-gated, phosphatidylinositol 4,5-bisphosphate- (PIP2-) modulated potassium channels that play essential roles in regulating the activity of neurons and cardiac myocytes. Hundreds of mutations in KCNQ channels are closely related to various cardiac and neurological disorders, such as long QT syndrome, epilepsy, and deafness, which makes KCNQ channels important drug targets. During the past several years, the application of single-particle cryo-electron microscopy (cryo-EM) technique in the structure determination of KCNQ channels has greatly advanced our understanding of their molecular mechanisms. In this review, we summarize the currently available structures of KCNQ channels, analyze their special voltage gating mechanism, and discuss their activation mechanisms by both the endogenous membrane lipid and the exogenous synthetic ligands. These structural studies of KCNQ channels will guide the development of drugs targeting KCNQ channels.
Collapse
Affiliation(s)
- Yuan Huang
- Department of Cardiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Demin Ma
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zhenni Yang
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yiwen Zhao
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050011, China
| | - Jiangtao Guo
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
9
|
Geng D, Li Y, Zheng R, Wang R, Yang B, Zhang H, Zhang Y, Zhang F. Modulation of Kv7 Channel Currents by Echinocystic Acid. Mol Pharmacol 2023; 104:42-50. [PMID: 37280100 DOI: 10.1124/molpharm.122.000640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 05/13/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023] Open
Abstract
Modulation of KCNQ-encoded voltage-gated potassium Kv7/M channel function represents an attractive strategy to treat neuronal excitability disorders such as epilepsy, pain, and depression. The Kv7 channel group includes five subfamily members (Kv7.1-Kv7.5). Pentacyclic triterpenes display extensive pharmacological activities including antitumor, anti-inflammatory, and antidepression effects. In this study, we investigated the effects of pentacyclic triterpenes on Kv7 channels. Our results show that echinocystic acid, ursonic acid, oleanonic acid, demethylzeylasteral, corosolic acid, betulinaldehyde, acetylursolic acid, and α-boswellic acid gradually exert decreasing degrees of Kv7.2/Kv7.3 channel current inhibition. Echinocystic acid was the most potent inhibitor, with a half-maximal inhibitory concentration (IC50) of 2.5 µM. It significantly shifted the voltage-dependent activation curve in a positive direction and slowed the time constant of activation for Kv7.2/Kv7.3 channel currents. Furthermore, echinocystic acid nonselectively inhibited Kv7.1-Kv7.5 channels. Taken together, our findings indicate that echinocystic acid is a novel and potent inhibitor that could be used as a tool to further understand the pharmacological functions of neuronal Kv7 channels. SIGNIFICANCE STATEMENT: Pentacyclic triterpenes reportedly have multiple potential therapeutic uses such as anticancer, anti-inflammatory, antioxidant, and antidepression effects. In the present study, we show that echinocystic acid, ursonic acid, oleanonic acid, and demethylzeylasteral inhibit Kv7.2/Kv7.3 channels to varying degrees. Of these, echinocystic acid was the most potent Kv7.2/Kv7.3 current inhibitor and inhibited Kv7.1-Kv7.5 currents in a nonselective manner.
Collapse
Affiliation(s)
- DanDan Geng
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education (D.D.G., Y.L., R.Z., B.Y., F.Z.), Department of Biochemistry and Molecular Biology (D.D.G., Y.L., R.Z., B.Y., F.Z.), The Core Facilities and Centers (H.Z.), and School of Pharmacy (Y.Z.), Hebei Medical University, Shijiazhuang, China
| | - Yaning Li
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education (D.D.G., Y.L., R.Z., B.Y., F.Z.), Department of Biochemistry and Molecular Biology (D.D.G., Y.L., R.Z., B.Y., F.Z.), The Core Facilities and Centers (H.Z.), and School of Pharmacy (Y.Z.), Hebei Medical University, Shijiazhuang, China
| | - Rong Zheng
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education (D.D.G., Y.L., R.Z., B.Y., F.Z.), Department of Biochemistry and Molecular Biology (D.D.G., Y.L., R.Z., B.Y., F.Z.), The Core Facilities and Centers (H.Z.), and School of Pharmacy (Y.Z.), Hebei Medical University, Shijiazhuang, China
| | - Runmeng Wang
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education (D.D.G., Y.L., R.Z., B.Y., F.Z.), Department of Biochemistry and Molecular Biology (D.D.G., Y.L., R.Z., B.Y., F.Z.), The Core Facilities and Centers (H.Z.), and School of Pharmacy (Y.Z.), Hebei Medical University, Shijiazhuang, China
| | - Bo Yang
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education (D.D.G., Y.L., R.Z., B.Y., F.Z.), Department of Biochemistry and Molecular Biology (D.D.G., Y.L., R.Z., B.Y., F.Z.), The Core Facilities and Centers (H.Z.), and School of Pharmacy (Y.Z.), Hebei Medical University, Shijiazhuang, China
| | - Huaxing Zhang
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education (D.D.G., Y.L., R.Z., B.Y., F.Z.), Department of Biochemistry and Molecular Biology (D.D.G., Y.L., R.Z., B.Y., F.Z.), The Core Facilities and Centers (H.Z.), and School of Pharmacy (Y.Z.), Hebei Medical University, Shijiazhuang, China
| | - Yang Zhang
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education (D.D.G., Y.L., R.Z., B.Y., F.Z.), Department of Biochemistry and Molecular Biology (D.D.G., Y.L., R.Z., B.Y., F.Z.), The Core Facilities and Centers (H.Z.), and School of Pharmacy (Y.Z.), Hebei Medical University, Shijiazhuang, China
| | - Fan Zhang
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education (D.D.G., Y.L., R.Z., B.Y., F.Z.), Department of Biochemistry and Molecular Biology (D.D.G., Y.L., R.Z., B.Y., F.Z.), The Core Facilities and Centers (H.Z.), and School of Pharmacy (Y.Z.), Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
10
|
Henton A, Zhao Y, Tzounopoulos T. A Role for KCNQ Channels on Cell Type-Specific Plasticity in Mouse Auditory Cortex after Peripheral Damage. J Neurosci 2023; 43:2277-2290. [PMID: 36813573 PMCID: PMC10072297 DOI: 10.1523/jneurosci.1070-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Damage to sensory organs triggers compensatory plasticity mechanisms in sensory cortices. These plasticity mechanisms result in restored cortical responses, despite reduced peripheral input, and contribute to the remarkable recovery of perceptual detection thresholds to sensory stimuli. Overall, peripheral damage is associated with a reduction of cortical GABAergic inhibition; however, less is known about changes in intrinsic properties and the underlying biophysical mechanisms. To study these mechanisms, we used a model of noise-induced peripheral damage in male and female mice. We uncovered a rapid, cell type-specific reduction in the intrinsic excitability of parvalbumin-expressing neurons (PVs) in layer (L) 2/3 of auditory cortex. No changes in the intrinsic excitability of either L2/3 somatostatin-expressing or L2/3 principal neurons (PNs) were observed. The decrease in L2/3 PV excitability was observed 1, but not 7, d after noise exposure, and was evidenced by a hyperpolarization of the resting membrane potential, depolarization of the action potential threshold, and reduction in firing frequency in response to depolarizing current. To uncover the underlying biophysical mechanisms, we recorded potassium currents. We found an increase in KCNQ potassium channel activity in L2/3 PVs of auditory cortex 1 d after noise exposure, associated with a hyperpolarizing shift in the minimal voltage activation of KCNQ channels. This increase contributes to the decreased intrinsic excitability of PVs. Our results highlight cell-type- and channel-specific mechanisms of plasticity after noise-induced hearing loss and will aid in understanding the pathologic processes involved in hearing loss and hearing loss-related disorders, such as tinnitus and hyperacusis.SIGNIFICANCE STATEMENT Noise-induced damage to the peripheral auditory system triggers central plasticity that compensates for the reduced peripheral input. The mechanisms of this plasticity are not fully understood. In the auditory cortex, this plasticity likely contributes to the recovery of sound-evoked responses and perceptual hearing thresholds. Importantly, other functional aspects of hearing do not recover, and peripheral damage may also lead to maladaptive plasticity-related disorders, such as tinnitus and hyperacusis. Here, after noise-induced peripheral damage, we highlight a rapid, transient, and cell type-specific reduction in the excitability of layer 2/3 parvalbumin-expressing neurons, which is due, at least in part, to increased KCNQ potassium channel activity. These studies may highlight novel strategies for enhancing perceptual recovery after hearing loss and mitigating hyperacusis and tinnitus.
Collapse
Affiliation(s)
- Amanda Henton
- Pittsburgh Hearing Research Center and Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- Center for Neuroscience, University of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Yanjun Zhao
- Pittsburgh Hearing Research Center and Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Thanos Tzounopoulos
- Pittsburgh Hearing Research Center and Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
11
|
Zhuang XF, Liu YX, Yang ZH, Gao Q, Wang L, Ju C, Wang K. Attenuation of Epileptogenesis and Cognitive Deficits by a Selective and Potent Kv7 Channel Opener in Rodent Models of Seizures. J Pharmacol Exp Ther 2023; 384:315-325. [PMID: 36396352 DOI: 10.1124/jpet.122.001328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/12/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022] Open
Abstract
Targeting neuronal Kv7 channels by pharmacological activation has been proven to be an attractive therapeutic strategy for epilepsy. Here, we show that activation of Kv7 channels by an opener SCR2682 dose-dependently reduces seizure activity and severity in rodent models of epilepsy induced by a GABAa receptor antagonist pentylenetetrazole (PTZ), maximal electroshock, and a glutamate receptor agonist kainic acid (KA). Electroencephalographic recordings of rat cerebral cortex confirm that SCR2682 also decreases epileptiform discharges in KA-induced seizures. Nissl and neuronal nuclei staining further demonstrates that SCR2682 also protects neurons from injury induced by KA. In Morris water maze navigation and Y-maze tests, SCR2682 improves PTZ- and KA-induced cognitive impairment. Taken together, our findings demonstrate that pharmacological activation of Kv7 by novel opener SCR2682 may hold promise for therapy of epilepsy with cognitive impairment. SIGNIFICANCE STATEMENT: A neuronal Kv7 channel opener SCR2682 attenuates epileptogenesis and seizure-induced cognitive impairment in rodent models of seizures, thus possessing a developmental potential for effective therapy of epilepsy with cognitive impairment.
Collapse
Affiliation(s)
- Xiao-Fei Zhuang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College (X.-F.Z., Y.-X.L., Z.-H.Y., Q.G., L.W., C.J., K.W.) and Institute of Innovative Drugs, Qingdao University, Qingdao, China (K.W.)
| | - Yu-Xue Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College (X.-F.Z., Y.-X.L., Z.-H.Y., Q.G., L.W., C.J., K.W.) and Institute of Innovative Drugs, Qingdao University, Qingdao, China (K.W.)
| | - Zhi-Hong Yang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College (X.-F.Z., Y.-X.L., Z.-H.Y., Q.G., L.W., C.J., K.W.) and Institute of Innovative Drugs, Qingdao University, Qingdao, China (K.W.)
| | - Qin Gao
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College (X.-F.Z., Y.-X.L., Z.-H.Y., Q.G., L.W., C.J., K.W.) and Institute of Innovative Drugs, Qingdao University, Qingdao, China (K.W.)
| | - Lei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College (X.-F.Z., Y.-X.L., Z.-H.Y., Q.G., L.W., C.J., K.W.) and Institute of Innovative Drugs, Qingdao University, Qingdao, China (K.W.)
| | - Chuanxia Ju
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College (X.-F.Z., Y.-X.L., Z.-H.Y., Q.G., L.W., C.J., K.W.) and Institute of Innovative Drugs, Qingdao University, Qingdao, China (K.W.)
| | - KeWei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College (X.-F.Z., Y.-X.L., Z.-H.Y., Q.G., L.W., C.J., K.W.) and Institute of Innovative Drugs, Qingdao University, Qingdao, China (K.W.)
| |
Collapse
|
12
|
Jeong DJ, Kim KW, Suh BC. Dual regulation of Kv7.2/7.3 channels by long-chain n-alcohols. J Gen Physiol 2022; 155:213769. [PMID: 36534082 PMCID: PMC9767652 DOI: 10.1085/jgp.202213191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/31/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Normal alcohols (n-alcohols) can induce anesthetic effects by acting on neuronal ion channels. Recent studies have revealed the effects of n-alcohols on various ion channels; however, the underlying molecular mechanisms remain unclear. Here, we provide evidence that long-chain n-alcohols have dual effects on Kv7.2/7.3 channels, resulting in channel activation as the net effect. Using heterologous expression systems, we found that n-alcohols could differentially regulate the Kv7.2/7.3 channel depending on their chain length. Treatment with short-chain ethanol and propanol diminished Kv7.2/7.3 currents, whereas treatment with long-chain hexanol and octanol enhanced the currents. However, the long-chain alcohols failed to potentiate Kv7.2 currents pre-activated by retigabine. Instead, they inhibited the currents, similar to short-chain ethanol. The stimulatory effect of the long-chain n-alcohols was also converted into an inhibitory one in the mutant Kv7.2(W236L) channels, while the inhibitory effect of ethanol did not differ between wild-type Kv7.2 and mutant Kv7.2(W236L). The inhibition of currents by n-alcohols was also seen in Kv7.1 channel which does not have the tryptophan (W) residue in S5. These findings suggest that long-chain n-alcohols exhibit dual effects through independent working sites on the Kv7.2 channel. Finally, we confirmed that the hydroxyl group with a negative electrostatic potential surface is essential for the dual actions of n-alcohol. Together, our data suggest that long-chain n-alcohols regulate Kv7.2/7.3 channels by interacting with both stimulatory and inhibitory sites and that their stimulatory action depends on the conserved tryptophan 236 residue in S5 and could be important for triggering their anesthetic effects.
Collapse
Affiliation(s)
- Da-Jeong Jeong
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Kwon-Woo Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Byung-Chang Suh
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea,Correspondence to Byung-Chang Suh:
| |
Collapse
|
13
|
Combinations of classical and non-classical voltage dependent potassium channel openers suppress nociceptor discharge and reverse chronic pain signs in a rat model of Gulf War illness. Neurotoxicology 2022; 93:186-199. [PMID: 36216193 DOI: 10.1016/j.neuro.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/27/2022] [Accepted: 10/05/2022] [Indexed: 11/15/2022]
Abstract
In a companion paper we examined whether combinations of Kv7 channel openers (Retigabine and Diclofenac; RET, DIC) could be effective modifiers of deep tissue nociceptor activity; and whether such combinations could then be optimized for use as safe analgesics for pain-like signs that developed in a rat model of GWI (Gulf War Illness) pain. In the present report, we examined the combinations of Retigabine/Meclofenamate (RET/MEC) and Meclofenamate/Diclofenac (MEC/DIC). Voltage clamp experiments were performed on deep tissue nociceptors isolated from rat DRG (dorsal root ganglion). In voltage clamp studies, a stepped voltage protocol was applied (-55 to -40 mV; Vh=-60 mV; 1500 msec) and Kv7 evoked currents were subsequently isolated by Linopirdine subtraction. MEC greatly enhanced voltage dependent conductance and produced exceptional maximum sustained currents of 6.01 ± 0.26 pA/pF (EC50: 62.2 ± 8.99 μM). Combinations of RET/MEC, and MEC/DIC substantially amplified resting currents at low concentrations. MEC/DIC also greatly improved voltage dependent conductance. In current clamp experiments, a cholinergic challenge test (Oxotremorine-M, 10 μM; OXO), associated with our GWI rat model, produced powerful action potential (AP) bursts (85 APs). Optimized combinations of RET/MEC (5 and 0.5 μM) and MEC/DIC (0.5 and 2.5 μM) significantly reduced AP discharges to 3 and 7 Aps, respectively. Treatment of pain-like ambulatory behavior in our rat model with a RET/MEC combination (5 and 0.5 mg/kg) successfully rescued ambulation deficits, but could not be fully separated from the effect of RET alone. Further development of this approach is recommended.
Collapse
|
14
|
Gao K, Lin Z, Wen S, Jiang Y. Potassium channels and epilepsy. Acta Neurol Scand 2022; 146:699-707. [PMID: 36225112 DOI: 10.1111/ane.13695] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/16/2022] [Indexed: 01/10/2023]
Abstract
With the development and application of next-generation sequencing technology, the aetiological diagnosis of genetic epilepsy is rapidly becoming easier and less expensive. Additionally, there is a growing body of research into precision therapy based on genetic diagnosis. The numerous genes in the potassium ion channel family constitute the largest family of ion channels: this family is divided into different subtypes. Potassium ion channels play a crucial role in the electrical activity of neurons and are directly involved in the mechanism of epileptic seizures. In China, scientific research on genetic diagnosis and studies of precision therapy for genetic epilepsy are progressing rapidly. Many cases of epilepsy caused by mutation of potassium channel genes have been identified, and several potassium channel gene targets and drug candidates have been discovered. The purpose of this review is to briefly summarize the progress of research on the precise diagnosis and treatment of potassium ion channel-related genetic epilepsy, especially the research conducted in China. Here in, we review several large cohort studies on the genetic diagnosis of epilepsy in China in recent years, summarized the proportion of potassium channel genes. We focus on the progress of precison therapy on some hot epilepsy related potassium channel genes: KCNA1, KCNA2, KCNB1, KCNC1, KCND2, KCNQ2, KCNQ3, KCNMA1, and KCNT1.
Collapse
Affiliation(s)
- Kai Gao
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China.,Children Epilepsy Center, Peking University First Hospital, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Zehong Lin
- Department of Neurology, Affiliated Children's Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Sijia Wen
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China.,Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China.,Children Epilepsy Center, Peking University First Hospital, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China.,Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
15
|
Bloms-Funke P, Bankstahl M, Bankstahl J, Kneip C, Schröder W, Löscher W. The novel dual-mechanism Kv7 potassium channel/TSPO receptor activator GRT-X is more effective than the Kv7 channel opener retigabine in the 6-Hz refractory seizure mouse model. Neuropharmacology 2022; 203:108884. [PMID: 34785163 DOI: 10.1016/j.neuropharm.2021.108884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/16/2022]
Abstract
Epilepsy, one of the most common and most disabling neurological disorders, is characterized by spontaneous recurrent seizures, often associated with structural brain alterations and cognitive and psychiatric comorbidities. In about 30% of patients, the seizures are resistant to current treatments; so more effective treatments are urgently needed. Among the ∼30 clinically approved antiseizure drugs, retigabine (ezogabine) is the only drug that acts as a positive allosteric modulator (or opener) of voltage-gated Kv7 potassium channels, which is particularly interesting for some genetic forms of epilepsy. Here we describe a novel dual-mode-of-action compound, GRT-X (N-[(3-fluorophenyl)-methyl]-1-(2-methoxyethyl)-4-methyl-2-oxo-(7-trifluoromethyl)-1H-quinoline-3-carboxylic acid amide) that activates both Kv7 potassium channels and the mitochondrial translocator protein 18 kDa (TSPO), leading to increased synthesis of brain neurosteroids. TSPO activators are known to exert anti-inflammatory, neuroprotective, anxiolytic, and antidepressive effects, which, together with an antiseizure effect (mediated by Kv7 channels), would be highly relevant for the treatment of epilepsy. This prompted us to compare the antiseizure efficacy of retigabine and GRT-X in six mouse and rat models of epileptic seizures, including the 6-Hz model of difficult-to-treat focal seizures. Furthermore, the tolerability of the two compounds was compared in mice and rats. Potency comparisons were based on both doses and peak plasma concentrations. Overall, GRT-X was more effective than retigabine in three of the six seizure models used here, the most important difference being the high efficacy in the 6-Hz (32 mA) seizure model in mice. Based on drug plasma levels, GRT-X was at least 30 times more potent than retigabine in the latter model. These data indicate that GRT-X is a highly interesting novel anti-seizure drug with a unique (first-in-class) dual-mode mechanism of action.
Collapse
Affiliation(s)
| | - Marion Bankstahl
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Jens Bankstahl
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | | | | | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
16
|
Yang P, Cao Q, Liu Y, Wang K, Zhu W. Small‐molecule‐driven direct reprogramming of Müller cells into bipolar‐like cells. Cell Prolif 2022; 55:e13184. [PMID: 35043487 PMCID: PMC8828256 DOI: 10.1111/cpr.13184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 12/11/2022] Open
Affiliation(s)
- Pang Yang
- Department of Pharmacology School of Pharmacy Qingdao University Qingdao China
| | - Qilong Cao
- Qingdao Haier Biotech Co. Ltd Qingdao China
| | - Yani Liu
- Department of Pharmacology School of Pharmacy Qingdao University Qingdao China
| | - KeWei Wang
- Department of Pharmacology School of Pharmacy Qingdao University Qingdao China
- Institute of Innovative Drugs Qingdao University Qingdao China
| | - Wei Zhu
- Department of Pharmacology School of Pharmacy Qingdao University Qingdao China
- Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine Shen Zhen China
- Beijing Advanced Innovation Center for Big Data‐Based Precision Medicine Beihang University & Capital Medical University Beijing China
| |
Collapse
|
17
|
Yin Z, Peng J, Qiao Z, Zhang Y, Wei N. A fluorogenic probe for TRPA1 channel imaging based on a molecular rotation mechanism. NEW J CHEM 2022. [DOI: 10.1039/d2nj01728h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fluorescent probe for selectively visualizing the TRPA1 channel and rapidly screening its regulators.
Collapse
Affiliation(s)
- Zhengji Yin
- Department of Pharmaceutical Analysis and Pharmacology, School of Pharmacy, Qingdao University Medical College, No. 1 Ningde Road, Qingdao 266073, China
| | - Junli Peng
- Department of Pharmaceutical Analysis and Pharmacology, School of Pharmacy, Qingdao University Medical College, No. 1 Ningde Road, Qingdao 266073, China
| | - Zhen Qiao
- Department of Pharmaceutical Analysis and Pharmacology, School of Pharmacy, Qingdao University Medical College, No. 1 Ningde Road, Qingdao 266073, China
| | - Yanru Zhang
- Department of Pharmaceutical Analysis and Pharmacology, School of Pharmacy, Qingdao University Medical College, No. 1 Ningde Road, Qingdao 266073, China
| | - Ningning Wei
- Department of Pharmaceutical Analysis and Pharmacology, School of Pharmacy, Qingdao University Medical College, No. 1 Ningde Road, Qingdao 266073, China
| |
Collapse
|
18
|
Dwivedi D, Bhalla US. Physiology and Therapeutic Potential of SK, H, and M Medium AfterHyperPolarization Ion Channels. Front Mol Neurosci 2021; 14:658435. [PMID: 34149352 PMCID: PMC8209339 DOI: 10.3389/fnmol.2021.658435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022] Open
Abstract
SK, HCN, and M channels are medium afterhyperpolarization (mAHP)-mediating ion channels. The three channels co-express in various brain regions, and their collective action strongly influences cellular excitability. However, significant diversity exists in the expression of channel isoforms in distinct brain regions and various subcellular compartments, which contributes to an equally diverse set of specific neuronal functions. The current review emphasizes the collective behavior of the three classes of mAHP channels and discusses how these channels function together although they play specialized roles. We discuss the biophysical properties of these channels, signaling pathways that influence the activity of the three mAHP channels, various chemical modulators that alter channel activity and their therapeutic potential in treating various neurological anomalies. Additionally, we discuss the role of mAHP channels in the pathophysiology of various neurological diseases and how their modulation can alleviate some of the symptoms.
Collapse
Affiliation(s)
- Deepanjali Dwivedi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, India.,Department of Neurobiology, Harvard Medical School, Boston, MA, United States.,Stanley Center at the Broad, Cambridge, MA, United States
| | - Upinder S Bhalla
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, India
| |
Collapse
|
19
|
Zhang YM, Xu HY, Hu HN, Tian FY, Chen F, Liu HN, Zhan L, Pi XP, Liu J, Gao ZB, Nan FJ. Discovery of HN37 as a Potent and Chemically Stable Antiepileptic Drug Candidate. J Med Chem 2021; 64:5816-5837. [PMID: 33929863 DOI: 10.1021/acs.jmedchem.0c02252] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We previously reported that P-retigabine (P-RTG), a retigabine (RTG) analogue bearing a propargyl group at the nitrogen atom in the linker of RTG, displayed moderate anticonvulsant efficacy. Recently, our further efforts led to the discovery of HN37 (pynegabine), which demonstrated satisfactory chemical stability upon deleting the ortho liable -NH2 group and installing two adjacent methyl groups to the carbamate motif. HN37 exhibited enhanced activation potency toward neuronal Kv7 channels and high in vivo efficacy in a range of pre-clinical seizure models, including the maximal electroshock test and a 6 Hz model of pharmacoresistant limbic seizures. With its improved chemical stability, strong efficacy, and better safety margin, HN37 has progressed to clinical trial in China for epilepsy treatment.
Collapse
Affiliation(s)
- Yang-Ming Zhang
- Chinese National Center for Drug Screening, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, No. 39, Science and Technology Avenue, High-Tech Industrial Development Zone, Yantai City, Shandong 264000, China
| | - Hai-Yan Xu
- Chinese National Center for Drug Screening, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing City, Jiangsu 210023, China
| | - Hai-Ning Hu
- Chinese National Center for Drug Screening, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Fu-Yun Tian
- Chinese National Center for Drug Screening, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Fei Chen
- Chinese National Center for Drug Screening, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Hua-Nan Liu
- Chinese National Center for Drug Screening, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Li Zhan
- Chinese National Center for Drug Screening, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Xiao-Ping Pi
- Chinese National Center for Drug Screening, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Jie Liu
- Hainan Haiyao Company Ltd., No. 192, Nanhai Road, Xiuying District, Haikou City, Hainan 570311, China
| | - Zhao-Bing Gao
- Chinese National Center for Drug Screening, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing City, Jiangsu 210023, China
| | - Fa-Jun Nan
- Chinese National Center for Drug Screening, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, No. 39, Science and Technology Avenue, High-Tech Industrial Development Zone, Yantai City, Shandong 264000, China
| |
Collapse
|
20
|
Nikitin ES, Vinogradova LV. Potassium channels as prominent targets and tools for the treatment of epilepsy. Expert Opin Ther Targets 2021; 25:223-235. [PMID: 33754930 DOI: 10.1080/14728222.2021.1908263] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION K+ channels are of great interest to epilepsy research as mutations in their genes are found in humans with inherited epilepsy. At the level of cellular physiology, K+ channels control neuronal intrinsic excitability and are the main contributors to membrane repolarization of active neurons. Recently, a genetically modified voltage-dependent K+ channel has been patented as a remedy for epileptic seizures. AREAS COVERED We review the role of potassium channels in excitability, clinical and experimental evidence for the association of potassium channelopathies with epilepsy, the targeting of K+ channels by drugs, and perspectives of gene therapy in epilepsy with the expression of extra K+ channels in the brain. EXPERT OPINION Control over K+ conductance is of great potential benefit for the treatment of epilepsy. Nowadays, gene therapy affecting K+ channels is one of the most promising approaches to treat pharmacoresistant focal epilepsy.
Collapse
Affiliation(s)
- E S Nikitin
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - L V Vinogradova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
21
|
Wang J, Liu Y, Hu F, Yang J, Guo X, Hou X, Ju C, Wang K. Activation of Neuronal Voltage-Gated Potassium Kv7/KCNQ/M-Current by a Novel Channel Opener SCR2682 for Alleviation of Chronic Pain. J Pharmacol Exp Ther 2021; 377:20-28. [PMID: 33431609 DOI: 10.1124/jpet.120.000357] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/06/2021] [Indexed: 03/08/2025] Open
Abstract
Treatment of chronic pain remains an unmet medical need. The neuronal voltage-gated potassium Kv7/KCNQ/M channel has been implicated as a therapeutic target for chronic pain. However, whether pharmacological activation of the Kv7 channel can alleviate pain remains elusive. In this study, we show that selective activation of native M-currents by a novel channel opener SCR2682 reduces repetitive firings of dorsal root ganglia (DRG) sensory neurons. Intraperitoneal administration of SCR2682 relieves mechanical allodynia and thermal hyperalgesia in rat models of pain induced by complete Freund's adjuvant (CFA) or spared nerve injury (SNI) in a dose-dependent manner without affecting locomotor activity. The antinociceptive efficacy of SCR2682 can be reversed by the channel-specific blocker XE991. Furthermore, SCR2682 increases Kv7.2/KCNQ2 mRNA and protein expression in DRG neurons from rats in the SNI model of neuropathic pain. Taken together, pharmacological activation of neuronal Kv7 channels by opener SCR2682 can alleviate pain in rats, thus possessing therapeutic potential for chronic pain or hyperexcitability-related neurologic disorders. SIGNIFICANCE STATEMENT: A novel voltage-gated potassium Kv7 channel opener SCR2682 inhibits action potential firings in dorsal root ganglia sensory neurons and exhibits efficacy in antinociception, thus possessing a developmental potential for treatment of chronic pain or epilepsy.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pharmacology, School of Pharmacy at Qingdao University Medical College, Qingdao, China (J.W., Y.L., F.H., J.Y., X.G., X.H., C.J., K.W.); Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, China (Y.L., K.W.); and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| | - Yani Liu
- Department of Pharmacology, School of Pharmacy at Qingdao University Medical College, Qingdao, China (J.W., Y.L., F.H., J.Y., X.G., X.H., C.J., K.W.); Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, China (Y.L., K.W.); and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| | - Fang Hu
- Department of Pharmacology, School of Pharmacy at Qingdao University Medical College, Qingdao, China (J.W., Y.L., F.H., J.Y., X.G., X.H., C.J., K.W.); Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, China (Y.L., K.W.); and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| | - Jiuyong Yang
- Department of Pharmacology, School of Pharmacy at Qingdao University Medical College, Qingdao, China (J.W., Y.L., F.H., J.Y., X.G., X.H., C.J., K.W.); Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, China (Y.L., K.W.); and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| | - Xiaoyu Guo
- Department of Pharmacology, School of Pharmacy at Qingdao University Medical College, Qingdao, China (J.W., Y.L., F.H., J.Y., X.G., X.H., C.J., K.W.); Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, China (Y.L., K.W.); and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| | - Xingming Hou
- Department of Pharmacology, School of Pharmacy at Qingdao University Medical College, Qingdao, China (J.W., Y.L., F.H., J.Y., X.G., X.H., C.J., K.W.); Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, China (Y.L., K.W.); and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| | - Chuanxia Ju
- Department of Pharmacology, School of Pharmacy at Qingdao University Medical College, Qingdao, China (J.W., Y.L., F.H., J.Y., X.G., X.H., C.J., K.W.); Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, China (Y.L., K.W.); and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| | - KeWei Wang
- Department of Pharmacology, School of Pharmacy at Qingdao University Medical College, Qingdao, China (J.W., Y.L., F.H., J.Y., X.G., X.H., C.J., K.W.); Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, China (Y.L., K.W.); and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| |
Collapse
|
22
|
Liu Y, Bian X, Wang K. Pharmacological Activation of Neuronal Voltage-Gated Kv7/KCNQ/M-Channels for Potential Therapy of Epilepsy and Pain. Handb Exp Pharmacol 2021; 267:231-251. [PMID: 33837465 DOI: 10.1007/164_2021_458] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Native M-current is a low-threshold, slowly activating potassium current that exerts an inhibitory control over neuronal excitability. The M-channel is primarily co-assembled by heterotetrameric Kv7.2/KCNQ2 and Kv7.3/KCNQ3 subunits that are specifically expressed in the brain and peripheral nociceptive and visceral sensory neurons in the spinal cord. Reduction of M-channel function leads to neuronal hyperexcitability that defines the fundamental mechanism of neurological disorders such as epilepsy and pain, indicating that pharmacological activation of Kv7/KCNQ/M-channels may serve the basis for the therapy. The well-known KCNQ opener retigabine (ezogabine or Potiga) was approved by FDA in 2011 as an anticonvulsant used for an adjunctive treatment of partial epilepsies. Unfortunately, retigabine was discontinued in 2017 due to its side effects of blue-colored appearance of the skin and eyes after prolonged intake. In addition, flupirtine, a structural derivative of retigabine and a centrally acting non-opioid analgesic, was also withdrawn in 2018 for liver toxicity. Fortunately, these side effects are compound-structures related and can be avoided. Thus, further identification and development of novel potent and selective Kv7 channel openers may lead to an effective therapy with improved safety window for anti-epilepsy and anti-nociception.
Collapse
Affiliation(s)
- Yani Liu
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Xiling Bian
- Department of Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing, China
| | - KeWei Wang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China. .,Institute of Innovative Drugs Qingdao University, Qingdao, China.
| |
Collapse
|
23
|
Malysz J, Petkov GV. Detrusor Smooth Muscle K V7 Channels: Emerging New Regulators of Urinary Bladder Function. Front Physiol 2020; 11:1004. [PMID: 33041840 PMCID: PMC7526500 DOI: 10.3389/fphys.2020.01004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/23/2020] [Indexed: 01/21/2023] Open
Abstract
Relaxation and contraction of the urinary bladder smooth muscle, also known as the detrusor smooth muscle (DSM), facilitate the micturition cycle. DSM contractility depends on cell excitability, which is established by the synchronized activity of multiple diverse ion channels. K+ channels, the largest family of channels, control DSM excitability by maintaining the resting membrane potential and shaping the action potentials that cause the phasic contractions. Among the members of the voltage-gated K+ (KV) channel superfamily, KV type 7 (KV7) channels - KV7.1-KV7.5 members encoded by KCNQ1-KCNQ5 genes - have been recently identified as functional regulators in various cell types including vascular, cardiac, and neuronal cells. Their regulatory roles in DSM, however, are just now emerging and remain to be elucidated. To address this gap, our research group has initiated the systematic investigation of human DSM KV7 channels in collaboration with clinical urologists. In this comprehensive review, we summarize the current understanding of DSM Kv7 channels and highlight recent discoveries in the field. We describe KV7 channel expression profiles at the mRNA and protein levels, and further elaborate on functional effects of KV7 channel selective modulators on DSM excitability, contractility, and intracellular Ca2+ dynamics in animal species along with in vivo studies and the limited data on human DSM. Within each topic, we highlight the main observations, current gaps in knowledge, and most pressing questions and concepts in need of resolution. We emphasize the lack of systematic studies on human DSM KV7 channels that are now actively ongoing in our laboratory.
Collapse
Affiliation(s)
- John Malysz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Georgi V. Petkov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Urology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
24
|
Wilenkin B, Burris KD, Eastwood BJ, Sher E, Williams AC, Priest BT. Development of an Electrophysiological Assay for Kv7 Modulators on IonWorks Barracuda. Assay Drug Dev Technol 2020; 17:310-321. [PMID: 31634018 DOI: 10.1089/adt.2019.942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Relief from chronic pain continues to represent a large unmet need. The voltage-gated potassium channel Kv7.2/7.3, also known as KCNQ2/3, is a key contributor to the control of resting membrane potential and excitability in nociceptive neurons and represents a promising target for potential therapeutics. In this study, we present a medium throughput electrophysiological assay for the identification and characterization of modulators of Kv7.2/7.3 channels, using the IonWorks Barracuda™ automated voltage clamp platform. The assay combines a family of voltage steps used to construct conductance curves with a unique analysis method. Kv7.2/7.3 modulators shift the activation voltage and/or change the maximal conductance of the current, and both parameters have been used to quantify compound mediated effects. Both effects are expected to modulate neuronal excitability in vivo. The analysis method described assigns a single potency value that combines changes in activation voltage and maximal conductance and is expected to predict compound mediated changes in excitability.
Collapse
Affiliation(s)
- Benjamin Wilenkin
- Department of Quantitative Biology, Eli Lilly and Company, Indianapolis, Indiana
| | - Kevin D Burris
- Department of Quantitative Biology, Eli Lilly and Company, Indianapolis, Indiana
| | - Brian J Eastwood
- Department of Statistics, Eli Lilly and Company, Indianapolis, Indiana
| | - Emanuele Sher
- Department of Discovery Pain Group, Eli Lilly and Company, Indianapolis, Indiana
| | - Andrew C Williams
- Department of Medicinal Chemistry, Eli Lilly and Company, Indianapolis, Indiana
| | - Birgit T Priest
- Department of Quantitative Biology, Eli Lilly and Company, Indianapolis, Indiana
| |
Collapse
|
25
|
Liu Y, Wang K. Exploiting the Diversity of Ion Channels: Modulation of Ion Channels for Therapeutic Indications. Handb Exp Pharmacol 2019; 260:187-205. [PMID: 31820177 DOI: 10.1007/164_2019_333] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ion channels are macromolecular proteins that form water-filled pores in cell membranes and they are critical for a variety of physiological and pharmacological functions. Dysfunctional ion channels can cause diseases known as channelopathies. Ion channels are encoded by approximately 400 genes, representing the second largest class of proven drug targets for therapeutic areas including neuropsychiatric disorders, cardiovascular and metabolic diseases, immunological diseases, nephrological diseases, gastrointestinal diseases, pulmonary/respiratory diseases, and many cancers. With more ion channel structures are being solved and functional robust assays are being developed, there are tremendous opportunities for identifying specific modulators targeting ion channels for new therapy.
Collapse
Affiliation(s)
- Yani Liu
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - KeWei Wang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China.
| |
Collapse
|