1
|
Bagang N, Gupta K, Singh G, Kanuri SH, Mehan S. Protease-activated receptors in kidney diseases: A comprehensive review of pathological roles, therapeutic outcomes and challenges. Chem Biol Interact 2023; 377:110470. [PMID: 37011708 DOI: 10.1016/j.cbi.2023.110470] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/21/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023]
Abstract
Studies have demonstrated that protease-activated receptors (PARs) with four subtypes (PAR1-4) are mainly expressed in the renal epithelial, endothelial, and podocyte cells. Some endogenous and urinary proteases, namely thrombin, trypsin, urokinase, and kallikrein released during diseased conditions, are responsible for activating different subtypes of PARs. Each PAR receptor subtype is involved in kidney disease of distinct aetiology. PAR1 and PAR2 have shown differential therapeutic outcomes in rodent models of type-1 and type-2 diabetic kidney diseases due to the distinct etiological basis of each disease type, however such findings need to be confirmed in other diabetic renal injury models. PAR1 and PAR2 blockers have been observed to abolish drug-induced nephrotoxicity in rodents by suppressing tubular inflammation and fibrosis and preventing mitochondrial dysfunction. Notably, PAR2 inhibition improved autophagy and prevented fibrosis, inflammation, and remodeling in the urethral obstruction model. Only the PAR1/4 subtypes have emerged as a therapeutic target for treating experimentally induced nephrotic syndrome, where their respective antibodies attenuated the podocyte apoptosis induced upon thrombin activation. Strikingly PAR2 and PAR4 subtypes involvement has been tested in sepsis-induced acute kidney injury (AKI) and renal ischemia-reperfusion injury models. Thus, more studies are required to delineate the role of other subtypes in the sepsis-AKI model. Evidence suggests that PARs regulate oxidative, inflammatory stress, immune cell activation, fibrosis, autophagic flux, and apoptosis during kidney diseases.
Collapse
|
2
|
Goyal S, Sood A, Gautam I, Pradhan S, Mondal P, Singh G, Jaura RS, Singh TG, Sibia RS. Serum protease-activated receptor (PAR-1) levels as a potential biomarker for diagnosis of inflammation in type 2 diabetic patients. Inflammopharmacology 2022; 30:1843-1851. [PMID: 35974263 DOI: 10.1007/s10787-022-01049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/03/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Inflammation is a prominent clinical manifestation in type 2 diabetes mellitus (T2DM) patients, often associated with insulin resistance, metabolic dysregulation, and other complications. AIM OF THE STUDY The present study has been designed to check the serum levels of PAR-1 and correlate with various clinical manifestations and inflammatory cytokines levels in type 2 diabetic subjects. MATERIAL AND METHODS The study population was divided into two groups, healthy volunteers (n = 15): normal glycated hemoglobin (HbA1c) (4.26 ± 0.55) and type 2 diabetic subjects (n = 30): HbA1c levels (7.80 ± 2.41). The serum levels of PAR-1 (ELISA method) were studied in both groups and correlated with demographic parameters age, weight, body mass index (BMI), and conventional inflammation biomarkers like C-reactive protein (CRP), interleukin 6 (IL-6), interleukin 8 (IL-8), and tumour necrosis factor-alpha (TNF-α). RESULTS The demographic variables including the body weight (77.38 ± 10.00 vs. controls 55.26 ± 6.99), BMI (29.39 ± 3.61 vs. controls 25.25 ± 4.01), glycemic index HbA1c (7.80 ± 2.41 vs. controls 4.26 ± 0.55) were found to be statistically increased in T2DM subjects than the healthy control group. The levels of various inflammatory biomarkers and PAR-1 were significantly elevated in T2DM groups in comparison to healthy volunteers. The univariate and multivariate regression analysis revealed that elevated PAR-1 levels positively correlated with increased body weight, BMI, HbA1c, and inflammatory cytokines. CONCLUSION Our findings indicate that the elevated serum PAR-1 levels serve as an independent predictor of inflammation in T2DM subjects and might have prognostic value for determining T2DM progression.
Collapse
Affiliation(s)
- Sanjay Goyal
- Government Medical College, Patiala, Punjab, India
| | - Ankita Sood
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway (NH-64), Tehsil, Rajpura District, Patiala, 140401, Punjab, India
| | - Isha Gautam
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway (NH-64), Tehsil, Rajpura District, Patiala, 140401, Punjab, India
| | - Soumyadip Pradhan
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway (NH-64), Tehsil, Rajpura District, Patiala, 140401, Punjab, India
| | - Puskar Mondal
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway (NH-64), Tehsil, Rajpura District, Patiala, 140401, Punjab, India
| | - Gaaminepreet Singh
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway (NH-64), Tehsil, Rajpura District, Patiala, 140401, Punjab, India.
| | - Ravinder Singh Jaura
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway (NH-64), Tehsil, Rajpura District, Patiala, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway (NH-64), Tehsil, Rajpura District, Patiala, 140401, Punjab, India
| | | |
Collapse
|
3
|
The PAR-1 antagonist vorapaxar ameliorates kidney injury and tubulointerstitial fibrosis. Clin Sci (Lond) 2021; 134:2873-2891. [PMID: 33078834 DOI: 10.1042/cs20200923] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/30/2022]
Abstract
Protease-activated receptor (PAR)-1 has emerged as a key profibrotic player in various organs including kidney. PAR-1 activation leads to deposition of extracellular matrix (ECM) proteins in the tubulointerstitium and induction of epithelial-mesenchymal transition (EMT) during renal fibrosis. We tested the anti-fibrotic potential of vorapaxar, a clinically approved PAR-1 antagonist for cardiovascular protection, in an experimental kidney fibrosis model of unilateral ureteral obstruction (UUO) and an AKI-to-chronic kidney disease (CKD) transition model of unilateral ischemia-reperfusion injury (UIRI), and dissected the underlying renoprotective mechanisms using rat tubular epithelial cells. PAR-1 is activated mostly in the renal tubules in both the UUO and UIRI models of renal fibrosis. Vorapaxar significantly reduced kidney injury and ameliorated morphologic changes in both models. Amelioration of kidney fibrosis was evident from down-regulation of fibronectin (Fn), collagen and α-smooth muscle actin (αSMA) in the injured kidney. Mechanistically, inhibition of PAR-1 inhibited MAPK ERK1/2 and transforming growth factor-β (TGF-β)-mediated Smad signaling, and suppressed oxidative stress, overexpression of pro-inflammatory cytokines and macrophage infiltration into the kidney. These beneficial effects were recapitulated in cultured tubular epithelial cells in which vorapaxar ameliorated thrombin- and hypoxia-induced TGF-β expression and ECM accumulation. In addition, vorapaxar mitigated capillary loss and the expression of adhesion molecules on the vascular endothelium during AKI-to-CKD transition. The PAR-1 antagonist vorapaxar protects against kidney fibrosis during UUO and UIRI. Its efficacy in human CKD in addition to CV protection warrants further investigation.
Collapse
|
4
|
Mitsui S, Oe Y, Sekimoto A, Sato E, Hashizume Y, Yamakage S, Kumakura S, Sato H, Ito S, Takahashi N. Dual blockade of protease-activated receptor 1 and 2 additively ameliorates diabetic kidney disease. Am J Physiol Renal Physiol 2020; 318:F1067-F1073. [PMID: 32200667 DOI: 10.1152/ajprenal.00595.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Protease-activated receptors (PARs) are coagulation protease targets, and they increase expression of inflammatory cytokines and chemokines in various diseases. Of all PARs, previous reports have shown that PAR1 or PAR2 inhibition is protective against diabetic glomerular injury. However, how PAR1 and PAR2 cooperatively contribute to diabetic kidney disease (DKD) pathogenesis and whether dual blockade of PARs is more effective in DKD remain elusive. To address this issue, male type I diabetic Akita mice heterozygous for endothelial nitric oxide synthase were used as a model of DKD. Mice (4 mo old) were divided into four treatment groups and administered vehicle, PAR1 antagonist (E5555, 60 mg·kg-1·day-1), PAR2 antagonist (FSLLRY, 3 mg·kg-1·day-1), or E5555 + FSLLRY for 4 wk. The results showed that the urinary albumin creatinine ratio was significantly reduced when both PAR1 and PAR2 were blocked with E5555 + FSLLRY compared with the vehicle-treated group. Dual blockade of PAR1 and PAR2 by E5555 + FSLLRY additively ameliorated histological injury, including mesangial expansion, glomerular macrophage infiltration, and collagen type IV deposition. Marked reduction of inflammation- and fibrosis-related gene expression in the kidney was also observed. In vitro, PAR1 and PAR2 agonists additively increased mRNA expression of macrophage chemoattractant protein 1 or plasminogen activator inhibitor-1 in human endothelial cells. Changes induced by the PAR1 agonist were blocked by a NF-κB inhibitor, whereas those of the PAR2 agonist were blocked by MAPK and/or NF-κB inhibitors. These findings suggest that PAR1 and PAR2 additively contribute to DKD pathogenesis and that dual blockade of both could be a novel therapeutic option for treatment of patients with DKD.
Collapse
Affiliation(s)
- Shohei Mitsui
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Sciences, Sendai, Japan
| | - Yuji Oe
- Department of Community Medical Support, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akiyo Sekimoto
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Sciences, Sendai, Japan
| | - Emiko Sato
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Sciences, Sendai, Japan.,Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yamato Hashizume
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Sciences, Sendai, Japan
| | - Shu Yamakage
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Satoshi Kumakura
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Sato
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Sciences, Sendai, Japan.,Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Sadayoshi Ito
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nobuyuki Takahashi
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Sciences, Sendai, Japan.,Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
5
|
Abstract
Increasing evidence suggests that renal inflammation contributes to the pathogenesis and progression of diabetic kidney disease (DKD) and that anti-inflammatory therapies might have renoprotective effects in DKD. Immune cells and resident renal cells that activate innate immunity have critical roles in triggering and sustaining inflammation in this setting. Evidence from clinical and experimental studies suggests that several innate immune pathways have potential roles in the pathogenesis and progression of DKD. Toll-like receptors detect endogenous danger-associated molecular patterns generated during diabetes and induce a sterile tubulointerstitial inflammatory response via the NF-κB signalling pathway. The NLRP3 inflammasome links sensing of metabolic stress in the diabetic kidney to activation of pro-inflammatory cascades via the induction of IL-1β and IL-18. The kallikrein-kinin system promotes inflammatory processes via the generation of bradykinins and the activation of bradykinin receptors, and activation of protease-activated receptors on kidney cells by coagulation enzymes contributes to renal inflammation and fibrosis in DKD. In addition, hyperglycaemia leads to protein glycation and activation of the complement cascade via recognition of glycated proteins by mannan-binding lectin and/or dysfunction of glycated complement regulatory proteins. Data from preclinical studies suggest that targeting these innate immune pathways could lead to novel therapies for DKD.
Collapse
|
6
|
Schanoski AS, Le TT, Kaiserman D, Rowe C, Prow NA, Barboza DD, Santos CA, Zanotto PMA, Magalhães KG, Aurelio L, Muller D, Young P, Zhao P, Bird PI, Suhrbier A. Granzyme A in Chikungunya and Other Arboviral Infections. Front Immunol 2020; 10:3083. [PMID: 31993061 PMCID: PMC6971054 DOI: 10.3389/fimmu.2019.03083] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/17/2019] [Indexed: 12/23/2022] Open
Abstract
Granzyme A (GzmA) is secreted by cytotoxic lymphocytes and has traditionally been viewed as a mediator of cell death. However, a growing body of data suggests the physiological role of GzmA is promotion of inflammation. Here, we show that GzmA is significantly elevated in the sera of chikungunya virus (CHIKV) patients and that GzmA levels correlated with viral loads and disease scores in these patients. Serum GzmA levels were also elevated in CHIKV mouse models, with NK cells the likely source. Infection of mice deficient in type I interferon responses with CHIKV, Zika virus, or dengue virus resulted in high levels of circulating GzmA. We also show that subcutaneous injection of enzymically active recombinant mouse GzmA was able to mediate inflammation, both locally at the injection site as well as at a distant site. Protease activated receptors (PARs) may represent targets for GzmA, and we show that treatment with PAR antagonist ameliorated GzmA- and CHIKV-mediated inflammation.
Collapse
Affiliation(s)
| | - Thuy T Le
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Dion Kaiserman
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Caitlin Rowe
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Natalie A Prow
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Australian Infectious Disease Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Diego D Barboza
- Bacteriology Laboratory, Butantan Institute, São Paulo, Brazil
| | - Cliomar A Santos
- Health Foundation Parreiras Horta, Central Laboratory of Public Health, State Secretary for Health, Aracajú, Brazil
| | - Paolo M A Zanotto
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Kelly G Magalhães
- Laboratory of Immunology and Inflammation, University of Brasilia, Brasilia, Brazil
| | - Luigi Aurelio
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - David Muller
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Paul Young
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Peishen Zhao
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Phillip I Bird
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Australian Infectious Disease Research Centre, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|