1
|
Maisat W, Yuki K. Volatile anesthetic isoflurane exposure facilitates Enterococcus biofilm infection. FASEB J 2023; 37:e23186. [PMID: 37665578 PMCID: PMC10495085 DOI: 10.1096/fj.202301128r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
Enterococcus faecalis (E. faecalis) is one of the major pathogenic bacteria responsible for surgical site infections. Biofilm infections are major hospital-acquired infections. Previous studies suggested that ions could regulate biofilm formation in microbes. Volatile anesthetics, frequently administered in surgical setting, target ion channels. Here, we investigated the role of ion channels/transporters and volatile anesthetics in the biofilm formation by E. faecalis MMH594 strain and its ion transporter mutants. We found that a chloride transporter mutant significantly reduced biofilm formation compared to the parental strain. Downregulation of teichoic acid biosynthesis in the chloride transporter mutant impaired biofilm matrix formation and cellular adhesion, leading to mitigated biofilm formation. Among anesthetics, isoflurane exposure enhanced biofilm formation in vitro and in vivo. The upregulation of de novo purine biosynthesis pathway by isoflurane exposure potentially enhanced biofilm formation, an essential process for DNA, RNA, and ATP synthesis. We also demonstrated that isoflurane exposure to E. faecalis increased cyclic-di-AMP and extracellular DNA production, consistent with the increased purine biosynthesis. We further showed that isoflurane enhanced the enzymatic activity of phosphoribosyl pyrophosphate synthetase (PRPP-S). With the hypothesis that isoflurane directly bound to PRPP-S, we predicted isoflurane binding site on it using rigid docking. Our study provides a better understanding of the underlying mechanisms of E. faecalis biofilm formation and highlights the potential impact of an ion transporter and volatile anesthetic on this process. These findings may lead to the development of novel strategies for preventing E. faecalis biofilm formation and improving patient outcomes in clinical settings.
Collapse
Affiliation(s)
- Wiriya Maisat
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children’s Hospital, Boston, MA, USA
- Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Anesthesiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Koichi Yuki
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children’s Hospital, Boston, MA, USA
- Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| |
Collapse
|
2
|
Zhu Y, Chen X, Liao Y. Mesenchymal Stem Cells-Derived Apoptotic Extracellular Vesicles (ApoEVs): Mechanism and Application in Tissue Regeneration. Stem Cells 2023; 41:837-849. [PMID: 37338056 DOI: 10.1093/stmcls/sxad046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/10/2023] [Indexed: 06/21/2023]
Abstract
Mesenchymal stem cells (MSCs) are commonly used as a source for cellular therapy owing to their strong immunosuppressive and regenerative effects. However, MSCs undergo extensive apoptosis within a short period after transplantation. During apoptosis, MSCs generate several apoptotic extracellular vesicles (MSCs-ApoEVs). MSCs-ApoEVs are rich in miRNomes, metabolites, and proteomes. They are critical intercellular communication mediators that can exert different regulatory effects on recipient cells. MSCs-ApoEVs have been shown to promote regeneration in the skin, hair, bone, muscle, and vascular system, etc. This review describes the production, release, isolation, and functionality of ApoEVs in detail. Furthermore, we summarize the existing mechanisms of MSCs-ApoEVs used for tissue regeneration and evaluate the possible strategies for their clinical application.
Collapse
Affiliation(s)
- Yufan Zhu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xihang Chen
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yunjun Liao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
3
|
Tang H, Luo H, Zhang Z, Yang D. Mesenchymal Stem Cell-Derived Apoptotic Bodies: Biological Functions and Therapeutic Potential. Cells 2022; 11:cells11233879. [PMID: 36497136 PMCID: PMC9737101 DOI: 10.3390/cells11233879] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are non-hematopoietic progenitor cells with self-renewal ability and multipotency of osteogenic, chondrogenic, and adipogenic differentiation. MSCs have appeared as a promising approach for tissue regeneration and immune therapies, which are attributable not only to their differentiation into the desired cells but also to their paracrine secretion. MSC-sourced secretome consists of soluble components including growth factors, chemokines, cytokines, and encapsulated extracellular vesicles (EVs). Apoptotic bodies (ABs) are large EVs (diameter 500𠀓2000 nm) harboring a variety of cellular components including microRNA, mRNA, DNA, protein, and lipids related to the characteristics of the originating cell, which are generated during apoptosis. The released ABs as well as the genetic information they carry are engulfed by target cells such as macrophages, dendritic cells, epithelial cells, and fibroblasts, and subsequently internalized and degraded in the lysosomes, suggesting their ability to facilitate intercellular communication. In this review, we discuss the current understanding of the biological functions and therapeutic potential of MSC-derived ABs, including immunomodulation, tissue regeneration, regulation of inflammatory response, and drug delivery system.
Collapse
Affiliation(s)
| | | | | | - Di Yang
- Correspondence: ; Tel.: +86-24-31927705
| |
Collapse
|
4
|
Koutsogiannaki S, Hou L, Okuno T, Shibamura-Fujiogi M, Luo HR, Yuki K. αDβ2 as a novel target of experimental polymicrobial sepsis. Front Immunol 2022; 13:1059996. [PMID: 36466931 PMCID: PMC9716080 DOI: 10.3389/fimmu.2022.1059996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 10/17/2022] [Indexed: 11/19/2022] Open
Abstract
Since sepsis was defined three decades ago, it has been a target of intensive study. However, there is no specific sepsis treatment available, with its high mortality and morbidity. αDβ2 (CD11d/CD18) is one of the four β2 integrin members. Its role in sepsis has been limitedly studied. Using an experimental polymicrobial sepsis model, we found that the deficiency of αDβ2 was associated with less lung injury and better outcome, which was in sharp contrast to other β2 integrin member αLβ2 (CD11a/CD18), and αMβ2 (CD11b/CD18). This phenotype was supported by a reduction of bacterial loads in αDβ2 knockout mice. Further analysis showed that the deficiency of αDβ2 led to a reduction of neutrophil cell death as well as an increase in neutrophil phagocytosis in both murine and human systems. Our data showed a unique role of αDβ2 among the β2 integrin members, which would serve as a potential target to improve the outcome of sepsis.
Collapse
Affiliation(s)
- Sophia Koutsogiannaki
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children’s Hospital, Boston, MA, United States
- Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
- Department of Immunology, Harvard Medical School, Boston, MA, United States
| | - Lifei Hou
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children’s Hospital, Boston, MA, United States
- Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
- Department of Immunology, Harvard Medical School, Boston, MA, United States
| | - Toshiaki Okuno
- Department of Biochemistry, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Miho Shibamura-Fujiogi
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children’s Hospital, Boston, MA, United States
- Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
- Department of Immunology, Harvard Medical School, Boston, MA, United States
| | - Hongbo R. Luo
- Department of Pathology, Boston Children’s Hospital, Boston, MA, United States
| | - Koichi Yuki
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children’s Hospital, Boston, MA, United States
- Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
- Department of Immunology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
5
|
Chen Y, Xie Y, Ni H. Effects of overexpression of Hsp70 in neural stem cells on neurotoxicity and cognitive dysfunction in neonatal mice under sevoflurane exposure. Exp Brain Res 2022; 240:3207-3216. [PMID: 36271938 DOI: 10.1007/s00221-022-06490-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/16/2022] [Indexed: 11/26/2022]
Abstract
As one of the commonly used inhalation anesthetics in clinical practice, sevoflurane is currently widely applied in surgery for children and the elderly due to its safety and efficacy. However, the neurotoxicity and cognitive impairment induced by sevoflurane exposure cannot be ignored. A recombinant adenovirus with green fluorescent protein-labeled heat shock protein 70 (Hsp70) was constructed and used to infect neural stem cells (NSCs) separated from neonatal mice. Quantitative real-time PCR and Western blot assays were used to evaluate the expression of certain genes. 5‑Ethynyl‑2'‑deoxyuridine staining and cell counting kit assay were used to detect the proliferation and differentiation ability of NSCs. The Morris water maze experiment was used to test the cognitive abilities of mice. Adv-Hsp70 induced the overexpression of Hsp70 in mouse NSCs. Upregulation of Hsp70 promoted the proliferation ability and differentiation of mouse NSCs. NSCs that overexpressed Hsp70 attenuated sevoflurane-induced neurotoxicity and protected cognitive dysfunction in mice under sevoflurane exposure. In summary, our findings demonstrate the potential of overexpression of Hsp70 in NSCs against sevoflurane-induced impairments.
Collapse
Affiliation(s)
- Yijia Chen
- Department of Anesthesiology, Longyan People's Hospital, No. 72 Denggao West Road, Xinluo District, Longyan, 364000, Fujian, China.
| | - Yongxiang Xie
- Department of Anesthesiology, Longyan People's Hospital, No. 72 Denggao West Road, Xinluo District, Longyan, 364000, Fujian, China
| | - Honghu Ni
- Department of Anesthesiology, Longyan People's Hospital, No. 72 Denggao West Road, Xinluo District, Longyan, 364000, Fujian, China
| |
Collapse
|
6
|
Ou Q, Tan L, Shao Y, Lei F, Huang W, Yang N, Qu Y, Cao Z, Niu L, Liu Y, Kou X, Shi S. Electrostatic Charge-Mediated Apoptotic Vesicle Biodistribution Attenuates Sepsis by Switching Neutrophil NETosis to Apoptosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200306. [PMID: 35481721 DOI: 10.1002/smll.202200306] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/08/2022] [Indexed: 05/16/2023]
Abstract
Mesenchymal stem cell (MSC) therapy can attenuate organ damage and reduce mortality in sepsis; however, the detailed mechanism is not fully elucidated. In this study, it is shown that MSC-derived apoptotic vesicles (apoVs) can ameliorate multiple organ dysfunction and improve survival in septic mice. Mechanistically, it is found that tail vein-infused apoVs mainly accumulate in the bone marrow of septic mice via electrostatic charge interactions with positively charged neutrophil extracellular traps (NETs). Moreover, apoVs switch neutrophils NETosis to apoptosis via the apoV-Fas ligand (FasL)-activated Fas pathway. In summary, these findings uncover a previously unknown role of apoVs in sepsis treatment and an electrostatic charge-directed target therapeutic mechanism, suggesting that cell death is associated with disease development and therapy.
Collapse
Affiliation(s)
- Qianmin Ou
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| | - Lingping Tan
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| | - Yiting Shao
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| | - Fangcao Lei
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| | - Weiying Huang
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| | - Ning Yang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang, 110122, P. R. China
| | - Yan Qu
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| | - Zeyuan Cao
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| | - Luhan Niu
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| | - Yao Liu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang, 110122, P. R. China
| | - Xiaoxing Kou
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
- Key Laboratory of Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| | - Songtao Shi
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
- Key Laboratory of Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| |
Collapse
|
7
|
Sevoflurane Offers Neuroprotection in a Cerebral Ischemia/Reperfusion Injury Rat Model Through the E2F1/EZH2/TIMP2 Regulatory Axis. Mol Neurobiol 2022; 59:2219-2231. [PMID: 35064540 DOI: 10.1007/s12035-021-02602-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/15/2021] [Indexed: 10/19/2022]
Abstract
Cerebral ischemia/reperfusion (I/R) injury contributes considerably to the poor prognosis in patients with ischemic stroke. This study is aimed to delineate the molecular mechanistic actions by which sevoflurane protects against cerebral I/R injury. A rat model of cerebral I/R injury was established and pre-treated with sevoflurane, in which hippocampal neuron apoptosis was found to be repressed and the level of E2F transcription factor 1 (E2F1) was observed to be down-regulated. Then, the up-regulated expression of E2F1 was validated in rats with cerebral I/R injury, responsible for stimulated neuron apoptosis. Further, the binding of E2F1 to enhancer of zeste homolog 2 (EZH2) and EZH2 to tissue inhibitor of metalloproteinases-2 (TIMP2) was identified. The stimulative effect of the E2F1/EZH2/TIMP2 regulatory axis on neuron apoptosis was subsequently demonstrated through functional assays. After that, it was substantiated in vivo that sevoflurane suppressed the apoptosis of hippocampal neurons in rats with cerebral I/R injury by down-regulating E2F1 to activate the EZH2/TIMP2 axis. Taken together, our data elucidated that sevoflurane reduced neuron apoptosis through mediating the E2F1/EZH2/TIMP2 regulatory axis, thus protecting rats against cerebral I/R injury.
Collapse
|
8
|
Gao Y, Dai P, Shi L, Chen W, Bao W, He L, Tan Y. Effects of ultrasound-guided brachial plexus block combined with laryngeal mask sevoflurane general anesthesia on inflammation and stress response in children undergoing upper limb fracture surgery. Minerva Pediatr (Torino) 2021; 74:385-387. [PMID: 34931514 DOI: 10.23736/s2724-5276.21.06740-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yi Gao
- Department of Anaesthesiology, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Pengqi Dai
- Department of Anaesthesiology, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China -
| | - Lei Shi
- Department of Anaesthesiology, Children's Hospital of Hebei Province, Shijiazhuang, China
| | - Wenjing Chen
- Department of Anaesthesiology, Children's Hospital of Hebei Province, Shijiazhuang, China
| | - Wenjuan Bao
- Department of Anaesthesiology, Children's Hospital of Hebei Province, Shijiazhuang, China
| | - Lanlan He
- Department of Pediatrics, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Yongpan Tan
- Department of Ultrasound, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| |
Collapse
|
9
|
Dhaya I, Griton M, Konsman JP. Magnetic resonance imaging under isoflurane anesthesia alters cortical cyclooxygenase-2 expression and glial cell morphology during sepsis-associated neurological dysfunction in rats. Animal Model Exp Med 2021; 4:249-260. [PMID: 34557651 PMCID: PMC8446714 DOI: 10.1002/ame2.12167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/19/2021] [Indexed: 01/31/2023] Open
Abstract
Background Magnetic resonance imaging (MRI) of rodents combined with histology allows to determine what mechanisms underlie functional and structural brain changes during sepsis-associated encephalopathy. However, the effects of MRI performed in isoflurane-anesthetized rodents on modifications of the blood-brain barrier and the production of vasoactive prostaglandins and glia cells, which have been proposed to mediate sepsis-associated brain dysfunction, are unknown. Methods This study addressed the effect of MRI under isoflurane anesthesia on blood-brain barrier integrity, cyclooxygenase-2 expression, and glial cell activation during cecal ligature and puncture-induced sepsis-associated brain dysfunction in rats. Results Cecal ligature and puncture reduced food intake and the righting reflex. MRI under isoflurane anesthesia reduced blood-brain barrier breakdown, decreased circularity of white matter astrocytes, and increased neuronal cyclooxygenase-2 immunoreactivity in the cortex 24 hours after laparotomy. In addition, it annihilated cecal ligature and puncture-induced increased circularity of white matter microglia. MRI under isoflurane anesthesia, however, did not alter sepsis-associated perivascular cyclooxygenase-2 induction. Conclusion These findings indicate that MRI under isoflurane anesthesia of rodents can modify neurovascular and glial responses and should, therefore, be interpreted with caution.
Collapse
Affiliation(s)
- Ibtihel Dhaya
- INCIAInstitut de Neurosciences Cognitives et Intégratives d'AquitaineCNRS UMR 5287BordeauxFrance
- Univ. BordeauxINCIAUMR 5287BordeauxFrance
- Laboratoire de Neurophysiologie Fonctionnelle et PathologiesUR/11ES09Faculté des Sciences MathématiquesPhysiques et NaturellesUniversité de Tunis El ManarTunisTunisie
| | - Marion Griton
- INCIAInstitut de Neurosciences Cognitives et Intégratives d'AquitaineCNRS UMR 5287BordeauxFrance
- Univ. BordeauxINCIAUMR 5287BordeauxFrance
- Service de Réanimation Anesthésie NeurochirurgicaleCentre Hospitalier Universitaire (CHU) de BordeauxBordeauxFrance
| | - Jan Pieter Konsman
- INCIAInstitut de Neurosciences Cognitives et Intégratives d'AquitaineCNRS UMR 5287BordeauxFrance
- Univ. BordeauxINCIAUMR 5287BordeauxFrance
| |
Collapse
|
10
|
Li XF, Hu JR, Wu Y, Chen Y, Zhang MQ, Yu H. Comparative Effect of Propofol and Volatile Anesthetics on Postoperative Pulmonary Complications After Lung Resection Surgery: A Randomized Clinical Trial. Anesth Analg 2021; 133:949-957. [PMID: 33410611 DOI: 10.1213/ane.0000000000005334] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The effect of general anesthetics (propofol and volatile anesthetics) on pulmonary outcome after lung resection surgery with one-lung ventilation (OLV) is yet undetermined. We evaluated the effect of intravenous anesthesia (propofol) and volatile anesthesia (sevoflurane or desflurane) regimens on postoperative pulmonary complications (PPCs) in patients undergoing lung resection surgery. METHODS This prospective, randomized controlled trial enrolled 555 adult patients scheduled for lung resection surgery with OLV. Participants were randomized to 1 of 3 general anesthetic regimens (propofol, sevoflurane, or desflurane). Standard anesthesia and ventilation protocols were followed in all groups. The primary outcome was a composite of PPCs in the first 7 postoperative days. Secondary outcomes included the severity of PPCs and major postoperative complications classification. Intergroup difference in the primary outcome was assessed for significance using the Pearson χ2 test. RESULTS Of 837 patients who were assessed for eligibility, 555 were randomized and 545 were analyzed. One hundred and seventy-nine patients were assigned to the propofol group, 182 in the sevoflurane group, and 184 in the desflurane group. The incidence of PPCs did not differ between the combined volatile anesthetics (sevoflurane and desflurane) group and the propofol group (21.9% vs 24.0%; odds ratio, 0.89; 95% confidence interval, 0.58-1.35; P = .570). The PPCs grade and Clavien-Dindo scores did not differ significantly across groups. CONCLUSIONS In patients undergoing lung resection surgery with OLV, general anesthesia with volatile anesthetics (sevoflurane or desflurane) did not reduce PPCs compared with propofol. No difference in secondary outcomes was observed.
Collapse
Affiliation(s)
- Xue-Fei Li
- From the Department of Anesthesiology, West China Hospital, Sichuan University & The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu, China
| | - Jian-Rong Hu
- Anesthesia Operating Center, West China Hospital, Sichuan University/West China School of Nursing, Chengdu, China
| | - Yan Wu
- From the Department of Anesthesiology, West China Hospital, Sichuan University & The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu, China
| | - Ying Chen
- From the Department of Anesthesiology, West China Hospital, Sichuan University & The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu, China
| | - Meng-Qiu Zhang
- From the Department of Anesthesiology, West China Hospital, Sichuan University & The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu, China
| | - Hai Yu
- From the Department of Anesthesiology, West China Hospital, Sichuan University & The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu, China
| |
Collapse
|
11
|
Effects of Hericium erinaceus polysaccharide on immunity and apoptosis of the main immune organs in Muscovy duck reovirus-infected ducklings. Int J Biol Macromol 2021; 171:448-456. [PMID: 33421472 DOI: 10.1016/j.ijbiomac.2020.12.222] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 01/16/2023]
Abstract
To investigate the effects of Hericium erinaceus polysaccharide (HEP) on immunity in Muscovy duck reovirus (MDRV)-infected ducklings and explore its mechanism of action, an MDRV contact-infection model was established. Then, we investigated the influence of HEP on morphology of main immune organs in MDRV-infected ducklings by HE staining, while antioxidant capacity (T-AOC, MDA), serum protein levels (TP, ALB, GLO), complement levels (C3, C4) and antibody levels (IgA, IgM, IgG) were detected. Apoptotic indexes (apoptosisi rate and FAS-L) were also quantified by TUNEL method and immunohistochemical staining. Meanwhile, FADD and CytC (apoptosis-related genes), were tested by quantitative RT-PCR. Results showed that HEP could reduce the injuries of immune organs caused by MDRV. Additionally, HEP markedly diminished MDA (p < 0.01), while significantly increased T-AOC, TP, ALB, GLO, C3, C4, IgA, IgM and IgG (p < 0.01 or p < 0.05). Then, HEP shifted apoptosis time to an early MDRV-infected stage and reduced apoptosis at later MDRV-infected stage. This was associated with changes of FADD and CytC. Collectively, our data suggested that HEP could reduce the immunesuppression by many ways, such as decreasing organs' injuries, improving antioxidant capacity, serum proteins levels, antibody levels and complement levels, while diminish the apoptosis by lowering the FADD and CytC.
Collapse
|
12
|
Shibamura-Fujiogi M, Koutsogiannaki S, Hou L, Yuki K. The Microbial Flora in an Experimental Polymicrobial Abdominal Sepsis Model Probed by 16S rRNA Sequencing. TRANSLATIONAL PERIOPERATIVE AND PAIN MEDICINE 2020; 8:305-311. [PMID: 33521166 PMCID: PMC7840154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cecal ligation and puncture (CLP) surgery is a widely used preclinical model to induce and study sepsis because it is considered to recapitulate the course of human sepsis the most. This model is highly dependent on the polymicrobial gut flora and represents polymicrobial abdominal sepsis. While the majority of studies using CLP model have focused on the delineation of host immune responses, a limited number of reports have described the composition of microbial strains in this model, although microbial composition can significantly affect the outcome of sepsis in general. METHODS CLP surgery was performed in mice on C57BL6/J from the Jackson laboratory. We examined the composition of microbes at the peritoneal cavity using 16S rRNA sequencing after CLP surgery at 12 and 24 hours. Baseline cecal microbial flora was also analyzed. RESULTS The bacteria strains from the initial cecum flora consisted of mixed aerobic and anaerobic flora. There was a significant change of bacteria flora from the peritoneal cavity between 12 and 24 hours following CLP surgery. Particularly a significantly increased proportion of anaerobic microbes were noted at 24 hours after CLP surgery. We also tested bacterial composition of cecal flora of mice on the same background from the same vendor 6 months later. Baseline cecal microbial flora was different from earlier mice, showing that baseline cecal flora could be different depending on the batch of mice. CONCLUSION There was a dynamical chance of peritoneal microbes during CLP sepsis. Potential difference in baseline cecal flora should be kept in mind upon CLP surgery even when using mice from the same vendor.
Collapse
Affiliation(s)
- Miho Shibamura-Fujiogi
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, USA
- Department of Anaesthesia, Harvard Medical School, USA
| | - Sophia Koutsogiannaki
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, USA
- Department of Anaesthesia, Harvard Medical School, USA
| | - Lifei Hou
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, USA
- Department of Anaesthesia, Harvard Medical School, USA
| | - Koichi Yuki
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, USA
- Department of Anaesthesia, Harvard Medical School, USA
| |
Collapse
|
13
|
Margraf A, Ludwig N, Zarbock A, Rossaint J. Systemic Inflammatory Response Syndrome After Surgery: Mechanisms and Protection. Anesth Analg 2020; 131:1693-1707. [PMID: 33186158 DOI: 10.1213/ane.0000000000005175] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The immune system is an evolutionary hallmark of higher organisms that defends the host against invading pathogens and exogenous infections. This defense includes the recruitment of immune cells to the site of infection and the initiation of an inflammatory response to contain and eliminate pathogens. However, an inflammatory response may also be triggered by noninfectious stimuli such as major surgery, and, in case of an overshooting, still not comprehensively understood reaction, lead to tissue destruction and organ dysfunction. Unfortunately, in some cases, the immune system may not effectively distinguish between stimuli elicited by major surgery, which ideally should only require a modest inflammatory response, and those elicited by trauma or pathogenic infection. Surgical procedures thus represent a potential trigger for systemic inflammation that causes the secretion of proinflammatory cytokines, endothelial dysfunction, glycocalyx damage, activation of neutrophils, and ultimately tissue and multisystem organ destruction. In this review, we discuss and summarize currently available mechanistic knowledge on surgery-associated systemic inflammation, demarcation toward other inflammatory complications, and possible therapeutic options. These options depend on uncovering the underlying mechanisms and could include pharmacologic agents, remote ischemic preconditioning protocols, cytokine blockade or clearance, and optimization of surgical procedures, anesthetic regimens, and perioperative inflammatory diagnostic assessment. Currently, a large gap between basic science and clinically confirmed data exists due to a limited evidence base of translational studies. We thus summarize important steps toward the understanding of the precise time- and space-regulated processes in systemic perioperative inflammation.
Collapse
Affiliation(s)
- Andreas Margraf
- From the Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | | | | | | |
Collapse
|
14
|
Koutsogiannaki S, Bu W, Hou L, Shibamura-Fujiogi M, Ishida H, Ohto U, Eckenhoff RG, Yuki K. The effect of anesthetics on toll like receptor 9. FASEB J 2020; 34:14645-14654. [PMID: 32901993 DOI: 10.1096/fj.202000791rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022]
Abstract
Toll like receptors (TLRs) are critical receptors to respond to danger signals, and their functions are relevant in the perioperative period. We previously reported that volatile anesthetics directly bound to TLR2 and TLR4 and attenuated their functions. Given that TLR9 can respond to mitochondrial DNA, a danger signal that is released upon tissue injury, we examined the role of anesthetics on TLR9 function. Our reporter assay showed that volatile anesthetics isoflurane and sevoflurane increased the activation of TLR9, while propofol attenuated it. TLR9 activation occurs via its dimerization. The dimerization is facilitated by unmethylated cytosine-phosphate-guanine (CpG) DNA as well as DNA containing cytosine at the second position from 5'-end (5'-xCx DNA). Our structural analysis using photoactivable anesthetics and rigid docking simulation showed that isoflurane and sevoflurane bound to both TLR9 dimer interface and 5'-xCx DNA binding site. Propofol bound to the TLR9 antagonist binding site. This is the first illustration that anesthetics can affect the binding of nucleic acids to their receptor. This study sets the foundation for the effect of anesthetics on TLR9 and will pave the way for future studies to determine the significance of such interactions in the clinical setting.
Collapse
Affiliation(s)
- Sophia Koutsogiannaki
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, Boston, MA, USA.,Department of Anaesthesia, Harvard Medical School, Boston, MA, USA.,Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Weiming Bu
- Department of Anesthesia and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Lifei Hou
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, Boston, MA, USA.,Department of Anaesthesia, Harvard Medical School, Boston, MA, USA.,Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Miho Shibamura-Fujiogi
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, Boston, MA, USA.,Department of Anaesthesia, Harvard Medical School, Boston, MA, USA.,Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Hanako Ishida
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Umeharu Ohto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Roderic G Eckenhoff
- Department of Anesthesia and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Koichi Yuki
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, Boston, MA, USA.,Department of Anaesthesia, Harvard Medical School, Boston, MA, USA.,Department of Immunology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Mitsui Y, Hou L, Huang X, Odegard KC, Pereira LM, Yuki K. Volatile Anesthetic Sevoflurane Attenuates Toll-Like Receptor 1/2 Activation. Anesth Analg 2020; 131:631-639. [PMID: 32149756 DOI: 10.1213/ane.0000000000004741] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Although immunomodulatory effects of anesthetics have been increasingly recognized, their underlying molecular mechanisms are not completely understood. Toll-like receptors (TLRs) are one of the major receptors to recognize invading pathogens and danger signals from damaged host tissues to initiate immune responses. Among the TLR family, TLR2 and TLR4 recognize a wide range of ligands and are considered to be important players in perioperative pathophysiology. Based on our recent finding that volatile anesthetics modulate TLR4 function, we tested our hypothesis that they would also modulate TLR2 function. METHODS The effect of anesthetics isoflurane, sevoflurane, propofol, and dexmedetomidine on TLR2 activation was examined by reporter assays. An anesthetic that affected the activation was subjected to in silico rigid docking simulation on TLR2. To test our prediction that sevoflurane and a TLR1/TLR2 ligand Pam3CSK4 would compete for the same pocket of TLR2, we performed Pam3CSK4 competitive binding assay to TLR2 using HEK cells stably transfected with TLR2 (HEK-TLR2) with or without sevoflurane. We examined the effect of different anesthetics on the functions of human neutrophils stimulated with TLR2 ligands. Kruskal-Wallis test and Mann-Whitney U test were used for statistical analysis. RESULTS We observed that the attenuation of TLR1/TLR2 activation was seen on sevoflurane exposure but not on isoflurane, propofol, or dexmedetomidine exposure. The attenuation of TLR2/TLR6 activation was not seen in any of the anesthetics tested. The rigid docking simulation predicted that sevoflurane and Pam3CSK4 bound to the same pocket of TLR1/TLR2 complex. The binding of Pam3CSK4 to HEK-TLR2 cells was impaired in the presence of sevoflurane, indicating that sevoflurane and Pam3CSK4 competed for the pocket, as predicted in silico. The stimulation of neutrophils with Pam3CSK4 induced L-selection shedding but did not affect phagocytosis and reactive oxygen species production. L-selectin shedding from neutrophils was attenuated only by sevoflurane, consistent with the result of our reporter assays. CONCLUSIONS We found that TLR1/TLR2 activation was attenuated by sevoflurane, but we found no evidence for attenuation by isoflurane, propofol, or dexmedetomidine at clinically relevant concentrations. Our structural analysis and competition assay supported that sevoflurane directly bound to TLR2 at the interphase of the TLR1/TLR2 complex. Sevoflurane attenuated neutrophil L-selectin shedding, an important step for neutrophil migration.
Collapse
Affiliation(s)
- Yusuke Mitsui
- From the Department of Anesthesia, Harvard Medical School.,Cardiac Anesthesia Division, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts.,Department of Anesthesiology and Intensive Care Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Lifei Hou
- From the Department of Anesthesia, Harvard Medical School.,Cardiac Anesthesia Division, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Xiayi Huang
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Kirsten C Odegard
- From the Department of Anesthesia, Harvard Medical School.,Cardiac Anesthesia Division, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Luis M Pereira
- From the Department of Anesthesia, Harvard Medical School.,Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Koichi Yuki
- From the Department of Anesthesia, Harvard Medical School.,Cardiac Anesthesia Division, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts
| |
Collapse
|
16
|
Zhang E, Zhao X, MA H, Luo D, Hu Y, Hou L, Luo Z. A subanesthetic dose of sevoflurane combined with oxygen exerts bactericidal effects and prevents lung injury through the nitric oxide pathway during sepsis. Pharmacotherapy 2020; 127:110169. [DOI: 10.1016/j.biopha.2020.110169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/06/2020] [Accepted: 04/13/2020] [Indexed: 10/24/2022]
|
17
|
Abstract
Sepsis remains medically challenging, with high morbidity and mortality. A novel intervention is urgently needed in the absence of specific, targeted therapy. Neutrophils act as double-edged swords in sepsis; they can help to eradicate microbes, but they also contribute to tissue injury. β2 integrins are critical adhesion molecules that regulate a number of neutrophil functions. β2 integrins consist of four members, namely, αLβ2, αMβ2, αXβ2, and αDβ2. Here, we review the role of each β2 integrin in neutrophils and sepsis and consider future direction for therapeutic intervention.
Collapse
|
18
|
Sevoflurane, a sigh of relief in COVID-19? Br J Anaesth 2020; 125:118-121. [PMID: 32416995 PMCID: PMC7252148 DOI: 10.1016/j.bja.2020.04.076] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 12/20/2022] Open
|