1
|
Singh N, Chattopadhyay G, Sundaramoorthy NS, Varadarajan R, Singh R. Understanding the physiological role and cross-interaction network of VapBC35 toxin-antitoxin system from Mycobacterium tuberculosis. Commun Biol 2025; 8:327. [PMID: 40016306 PMCID: PMC11868609 DOI: 10.1038/s42003-025-07663-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 02/04/2025] [Indexed: 03/01/2025] Open
Abstract
The VapBC toxin-antitoxin (TA) system, composed of VapC toxin and VapB antitoxin, has gained attention due to its relative abundance in members of the M. tuberculosis complex. Here, we have functionally characterised VapBC35 TA system from M. tuberculosis. We show that ectopic expression of VapC35 inhibits M. smegmatis growth in a bacteriostatic manner. Also, an increase in the VapB35 antitoxin to VapC35 toxin ratio results in a stronger binding affinity of the complex with the promoter-operator DNA. We show that VapBC35 is necessary for M. tuberculosis adaptation in oxidative stress conditions but is dispensable for M. tuberculosis growth in guinea pigs. Further, using a combination of co-expression studies and biophysical methods, we report that VapC35 also interacts with non-cognate antitoxin VapB3. Taken together, the present study advances our understanding of cross-interaction networks among VapBC TA systems from M. tuberculosis.
Collapse
Affiliation(s)
- Neelam Singh
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India
| | | | - Niranjana Sri Sundaramoorthy
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Ramandeep Singh
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India.
| |
Collapse
|
2
|
Hollingshead S, McVicker G, Nielsen MR, Zhang Y, Pilla G, Jones RA, Thomas JC, Johansen SEH, Exley RM, Brodersen DE, Tang CM. Shared mechanisms of enhanced plasmid maintenance and antibiotic tolerance mediated by the VapBC toxin:antitoxin system. mBio 2025; 16:e0261624. [PMID: 39704502 PMCID: PMC11796401 DOI: 10.1128/mbio.02616-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/12/2024] [Indexed: 12/21/2024] Open
Abstract
Toxin:antitoxin (TA) systems are widespread in bacteria and were first identified as plasmid addiction systems that kill bacteria lacking a TA-encoding plasmid following cell division. TA systems have also been implicated in bacterial persistence and antibiotic tolerance, which can be precursors of antibiotic resistance. Here, we identified a clinical isolate of Shigella sonnei (CS14) with a remarkably stable pINV virulence plasmid; pINV is usually frequently lost from S. sonnei, but plasmid loss was not detected from CS14. We found that the plasmid in CS14 is stabilized by a single nucleotide polymorphism (SNP) in its vapBC TA system. VapBC TA systems are the most common Type II TA system in bacteria, and consist of a VapB antitoxin and VapC PIN domain-containing toxin. The plasmid stabilizing SNP leads to a Q12L substitution in the DNA-binding domain of VapB, which reduces VapBC binding to its own promoter, impairing vapBC autorepression. However, VapBL12C mediates high-level plasmid stabilization because VapBL12 is more prone to degradation by Lon than wild-type VapB; this liberates VapC to efficiently kill bacteria that no longer contain a plasmid. Of note, mutations that confer tolerance to antibiotics in Escherichia coli also map to the DNA-binding domain of VapBC encoded by the chromosomally integrated F plasmid. We demonstrate that the tolerance mutations also enhance plasmid stabilization by the same mechanism as VapBL12. Our findings highlight the links between plasmid maintenance and antibiotic tolerance, both of which can promote the development of antimicrobial resistance. IMPORTANCE Our work addresses two processes, the maintenance of plasmids and antibiotic tolerance; both contribute to the development of antimicrobial resistance in bacteria that cause human disease. Here, we found a single nucleotide change in the vapBC toxin:antitoxin system that stabilizes the large virulence plasmid of Shigella sonnei. The mutation is in the vapB antitoxin gene and makes the antitoxin more likely to be degraded, releasing the VapC toxin to efficiently kill cells without the plasmid (and thus unable to produce more antitoxin as an antidote). We found that vapBC mutations in E. coli that lead to antibiotic tolerance (a precursor to resistance) also operate by the same mechanism (i.e., generating VapB that is prone to cleavage); free VapC during tolerance will arrest bacterial growth and prevent susceptibility to antibiotics. This work shows the mechanistic links between plasmid maintenance and tolerance, and has applications in biotech and in the design and evaluation of vaccines against shigellosis.
Collapse
Affiliation(s)
- Sarah Hollingshead
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Gareth McVicker
- Department of Biosciences, Nottingham Trent University, Nottingham, United Kingdom
| | - Maria R. Nielsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - YuGeng Zhang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Giulia Pilla
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Rebekah A. Jones
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Jonathan C. Thomas
- Department of Biosciences, Nottingham Trent University, Nottingham, United Kingdom
| | - Sarah E. H. Johansen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Rachel M. Exley
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Ditlev E. Brodersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Christoph M. Tang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Zhang S, Sun A, Qian JM, Lin S, Xing W, Yang Y, Zhu HZ, Zhou XY, Guo YS, Liu Y, Meng Y, Jin SL, Song W, Li CP, Li Z, Jin S, Wang JH, Dong MQ, Gao C, Chen C, Bai Y, Liu JJG. Pro-CRISPR PcrIIC1-associated Cas9 system for enhanced bacterial immunity. Nature 2024; 630:484-492. [PMID: 38811729 DOI: 10.1038/s41586-024-07486-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/29/2024] [Indexed: 05/31/2024]
Abstract
The CRISPR system is an adaptive immune system found in prokaryotes that defends host cells against the invasion of foreign DNA1. As part of the ongoing struggle between phages and the bacterial immune system, the CRISPR system has evolved into various types, each with distinct functionalities2. Type II Cas9 is the most extensively studied of these systems and has diverse subtypes. It remains uncertain whether members of this family can evolve additional mechanisms to counter viral invasions3,4. Here we identify 2,062 complete Cas9 loci, predict the structures of their associated proteins and reveal three structural growth trajectories for type II-C Cas9. We found that novel associated genes (NAGs) tended to be present within the loci of larger II-C Cas9s. Further investigation revealed that CbCas9 from Chryseobacterium species contains a novel β-REC2 domain, and forms a heterotetrameric complex with an NAG-encoded CRISPR-Cas-system-promoting (pro-CRISPR) protein of II-C Cas9 (PcrIIC1). The CbCas9-PcrIIC1 complex exhibits enhanced DNA binding and cleavage activity, broader compatibility for protospacer adjacent motif sequences, increased tolerance for mismatches and improved anti-phage immunity, compared with stand-alone CbCas9. Overall, our work sheds light on the diversity and 'growth evolutionary' trajectories of II-C Cas9 proteins at the structural level, and identifies many NAGs-such as PcrIIC1, which serves as a pro-CRISPR factor to enhance CRISPR-mediated immunity.
Collapse
Affiliation(s)
- Shouyue Zhang
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ao Sun
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jing-Mei Qian
- State Key Laboratory of Plant Genomics, CAS-JIC Centre of Excellence for Plant and Microbial Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuo Lin
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wenjing Xing
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yun Yang
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Han-Zhou Zhu
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xin-Yi Zhou
- State Key Laboratory of Plant Genomics, CAS-JIC Centre of Excellence for Plant and Microbial Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yan-Shuo Guo
- State Key Laboratory of Plant Genomics, CAS-JIC Centre of Excellence for Plant and Microbial Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yun Liu
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yu Meng
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shu-Lin Jin
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wenhao Song
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Cheng-Ping Li
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhaofu Li
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shuai Jin
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Jian-Hua Wang
- National Institute of Biological Sciences, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Caixia Gao
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Chunlai Chen
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Yang Bai
- State Key Laboratory of Plant Genomics, CAS-JIC Centre of Excellence for Plant and Microbial Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, China.
| | - Jun-Jie Gogo Liu
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
4
|
Syska C, Kiers A, Rancurel C, Bailly-Bechet M, Lipuma J, Alloing G, Garcia I, Dupont L. VapC10 toxin of the legume symbiont Sinorhizobium meliloti targets tRNASer and controls intracellular lifestyle. THE ISME JOURNAL 2024; 18:wrae015. [PMID: 38365913 PMCID: PMC10945364 DOI: 10.1093/ismejo/wrae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/05/2024] [Accepted: 01/25/2024] [Indexed: 02/18/2024]
Abstract
The soil bacterium Sinorhizobium meliloti can establish a nitrogen-fixing symbiosis with the model legume Medicago truncatula. The rhizobia induce the formation of a specialized root organ called nodule, where they differentiate into bacteroids and reduce atmospheric nitrogen into ammonia. Little is known on the mechanisms involved in nodule senescence onset and in bacteroid survival inside the infected plant cells. Although toxin-antitoxin (TA) systems have been shown to promote intracellular survival within host cells in human pathogenic bacteria, their role in symbiotic bacteria was rarely investigated. S. meliloti encodes several TA systems, mainly of the VapBC family. Here we present the functional characterization, through a multidisciplinary approach, of the VapBC10 TA system of S. meliloti. Following a mapping by overexpression of an RNase in Escherichia coli (MORE) RNA-seq analysis, we demonstrated that the VapC10 toxin is an RNase that cleaves the anticodon loop of two tRNASer. Thereafter, a bioinformatics approach was used to predict VapC10 targets in bacteroids. This analysis suggests that toxin activation triggers a specific proteome reprogramming that could limit nitrogen fixation capability and viability of bacteroids. Accordingly, a vapC10 mutant induces a delayed senescence in nodules, associated to an enhanced bacteroid survival. VapBC10 TA system could contribute to S. meliloti adaptation to symbiotic lifestyle, in response to plant nitrogen status.
Collapse
Affiliation(s)
- Camille Syska
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech (ISA), Sophia Antipolis 06903, France
| | - Aurélie Kiers
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech (ISA), Sophia Antipolis 06903, France
| | - Corinne Rancurel
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech (ISA), Sophia Antipolis 06903, France
| | - Marc Bailly-Bechet
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech (ISA), Sophia Antipolis 06903, France
| | | | - Geneviève Alloing
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech (ISA), Sophia Antipolis 06903, France
| | - Isabelle Garcia
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech (ISA), Sophia Antipolis 06903, France
| | - Laurence Dupont
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech (ISA), Sophia Antipolis 06903, France
| |
Collapse
|
7
|
Lv F, Wang W, Luo Y, Wang H, Zhi T, Li X, Guo Z, Zhao Z. Genome-Based Analysis of a Multidrug-Resistant Hypervirulent Klebsiella pneumoniae. Microb Drug Resist 2022; 28:853-860. [PMID: 35972766 DOI: 10.1089/mdr.2021.0307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Reports on multidrug-resistant hypervirulent Klebsiella pneumoniae (MDR-hvKP) in recent years indicate the wide-spreading trend of MDR-hvKP. The co-occurrence of hypervirulence and drug resistance poses a great challenge to clinical treatment. In this study, molecular characteristics of an MDR strain hvKP247 and 30 clinically isolated hvKP strains were characterized. The whole genome of hvKP247 belonging to sequence type (ST) 5214 and capsule serotype K1 was sequenced and analyzed. Conjugation experiments were performed to evaluate transferability of the plasmids in hvKP247. We found two new STs among our isolates, ST5570 and ST5571. The ST5214 hvKP247 contained two transferable plasmids: a hybrid virulence plasmid (pHvKP247-vir) carrying transfer-related modules that had self-transferable ability, and a drug-resistant plasmid (pHvKP247-MDR) that could be indirectly transferred with the help of pHvKP247-vir. The virulence-related genes were located on the pHvKP247-vir and chromosomal ICEKp1 mobile genetic element. In conclusion, the hybrid virulence plasmid and the drug-resistant plasmid are co-transferred, which emphasizes the importance of raising public awareness of the simultaneous spread of virulence and resistance genes of MDR-hvKP strains.
Collapse
Affiliation(s)
- Fei Lv
- Department of Microbiology and Immunology of Basical Medicine, Guangdong Medical University, Dongguan, Guangdong, China
- Department of Clinical Laboratory, Dongguan Tungwah Hospital, Dongguan, Guangdong, China
| | - Weiqi Wang
- Department of Microbiology and Immunology of Basical Medicine, Guangdong Medical University, Dongguan, Guangdong, China
| | - Yi Luo
- Department of Microbiology and Immunology of Basical Medicine, Guangdong Medical University, Dongguan, Guangdong, China
| | - Heping Wang
- Department of Respiratory Diseases, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Tingting Zhi
- Department of Microbiology and Immunology of Basical Medicine, Guangdong Medical University, Dongguan, Guangdong, China
| | - Xuemeng Li
- Department of Microbiology and Immunology of Basical Medicine, Guangdong Medical University, Dongguan, Guangdong, China
| | - Zhusheng Guo
- Department of Clinical Laboratory, Dongguan Tungwah Hospital, Dongguan, Guangdong, China
| | - Zuguo Zhao
- Department of Microbiology and Immunology of Basical Medicine, Guangdong Medical University, Dongguan, Guangdong, China
| |
Collapse
|