1
|
Guzman SG, Ruggiero SM, Ganesan S, Ellis CA, Harrison AG, Sullivan KR, Stark Z, Brown NJ, Kana SL, Tuttle A, Tenorio J, Lapunzina P, Nevado J, McDonald MT, Jensen C, Wheeler PG, Stange L, Morrison J, Keren B, Heide S, Keating MW, Butler KM, Lyons MA, Jain S, Yeganeh M, Thompson ML, Schroeder M, Nguyen H, Granadillo J, Johnston KM, Murali CN, Bosanko K, Burrow TA, CHOP Birth Defects Biorepository, Penn Medicine BioBank, Morgan S, Watson DJ, Hakonarson H, Helbig I. Variants in BSN, encoding the presynaptic protein Bassoon, result in a distinct neurodevelopmental disorder with a broad phenotypic range. Am J Hum Genet 2025:S0002-9297(25)00172-7. [PMID: 40393460 DOI: 10.1016/j.ajhg.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 05/22/2025] Open
Abstract
Disease-causing variants in synaptic function genes are a common cause of neurodevelopmental disorders (NDDs) and epilepsy. Here, we describe 14 individuals with de novo disruptive variants in BSN, which encodes the presynaptic protein Bassoon. To expand the phenotypic spectrum, we identified 15 additional individuals with protein-truncating variants (PTVs) from large biobanks. Clinical features were standardized using the Human Phenotype Ontology (HPO) across all 29 individuals, which revealed common clinical characteristics including epilepsy (13/29, 45%), febrile seizures (7/29, 25%), generalized tonic-clonic seizures (5/29, 17%), and focal-onset seizures (3/29, 10%). Behavioral phenotypes were present in almost half of all individuals (14/29, 48%), which included ADHD (7/29, 25%) and autistic behavior (5/29, 17%). Additional common features included developmental delay (11/29, 38%), obesity (10/29, 34%), and delayed speech (8/29, 28%). In adults with BSN PTVs, milder features were common, suggesting phenotypic variability, including a range of individuals without obvious neurodevelopmental features (7/29, 24%). To detect gene-specific signatures, we performed association analysis in a cohort of 14,895 individuals with NDDs. A total of 66 clinical features were associated with BSN, including febrile seizures (p = 1.26e-06) and behavioral disinhibition (p = 3.39e-17). Furthermore, individuals carrying BSN variants were phenotypically more similar than expected by chance (p = 0.00014), exceeding phenotypic relatedness in 179/256 NDD-related conditions. In summary, integrating information derived from community-based gene matching and large data repositories through computational phenotyping approaches, we identify BSN variants as the cause of a synaptic disorder with a broad phenotypic range across the age spectrum.
Collapse
Affiliation(s)
- Stacy G Guzman
- Department of Biochemistry, Biophysics, and Chemical Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sarah M Ruggiero
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA 19146, USA; Epilepsy and Neurodevelopmental Disorders Center (ENDD), Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Shiva Ganesan
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA 19146, USA; Epilepsy and Neurodevelopmental Disorders Center (ENDD), Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Colin A Ellis
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Epilepsy and Neurodevelopmental Disorders Center (ENDD), Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Alicia G Harrison
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA 19146, USA; Epilepsy and Neurodevelopmental Disorders Center (ENDD), Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Katie R Sullivan
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA 19146, USA; Epilepsy and Neurodevelopmental Disorders Center (ENDD), Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Zornitza Stark
- Australian Genomics, Melbourne, VIC, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Natasha J Brown
- Australian Genomics, Melbourne, VIC, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Sajel L Kana
- Division of Clinical Genetics, Genomics, and Metabolism, Nicklaus Children's Hospital, Miami, FL, USA
| | | | - Jair Tenorio
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz-IDIPAZ, 28046 Madrid, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Pablo Lapunzina
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz-IDIPAZ, 28046 Madrid, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Julián Nevado
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz-IDIPAZ, 28046 Madrid, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain; ERN-ITHACA-European Reference Network, Madrid, Spain
| | - Marie T McDonald
- Department of Pediatrics, Duke University Medical Center, Duke University, Durham, NC, USA
| | - Courtney Jensen
- Children's Services, Duke University Health Center, Duke University, Durham, NC, USA
| | - Patricia G Wheeler
- Pediatric Genetics Specialty Practice, Arnold Palmer Hospital for Children, Orlando, FL, USA
| | - Lila Stange
- Pediatric Genetics Specialty Practice, Arnold Palmer Hospital for Children, Orlando, FL, USA
| | - Jennifer Morrison
- Pediatric Genetics Specialty Practice, Arnold Palmer Hospital for Children, Orlando, FL, USA
| | - Boris Keren
- Department of Genetics, La Pitié-Salpêtrière Hospital, APHP, Sorbonne University, Paris, France
| | - Solveig Heide
- Cytogenetics Department, Cochin Hospital, Assistance Publique des Hôpitaux de Paris, Sorbonne Paris Cité, Paris Descartes University, Medical School, Paris, France
| | | | | | - Mike A Lyons
- Greenwood Genetics Center, Greenwood, SC, USA; Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State Universitygrid.47894.36, Fort Collins, CO, USA
| | - Shailly Jain
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Mehdi Yeganeh
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine, Centre Hospitalier Universitaire de Québec, Centre Mère-Enfant Soleil Université Laval, Québec City, QC, Canada
| | - Michelle L Thompson
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Molly Schroeder
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA; Division of Molecular and Human Genetics, Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Hoanh Nguyen
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA; Division of Molecular and Human Genetics, Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Jorge Granadillo
- Division of Molecular and Human Genetics, Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Kari M Johnston
- Department of Genetics and Metabolism, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Chaya N Murali
- Department of Genetics and Metabolism, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Katie Bosanko
- Section of Genetics and Metabolism, Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital, Little Rock, AR, USA
| | - T Andrew Burrow
- Section of Genetics and Metabolism, Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital, Little Rock, AR, USA
| | | | | | - Syreeta Morgan
- Center for Applied Genomics, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Deborah J Watson
- Center for Applied Genomics, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ingo Helbig
- Department of Biochemistry, Biophysics, and Chemical Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA 19146, USA; Epilepsy and Neurodevelopmental Disorders Center (ENDD), Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Guzman SG, Ruggiero SM, Ganesan S, Ellis CA, Harrison AG, Sullivan KR, Stark Z, Brown NJ, Kana SL, Tuttle A, Tenorio J, Lapunzina P, Nevado J, McDonald MT, Jensen C, Wheeler PG, Stange L, Morrison J, Keren B, Heide S, Keating MW, Butler KM, Lyons MA, Jain S, Yeganeh M, Thompson ML, Schroeder M, Nguyen H, Granadillo J, Johnston KM, Murali CN, Bosanko K, Burrow TA, CHOP Birth Defects Biorepository, Penn Medicine Biobank, Morgan S, Watson DJ, Hakonarson H, Helbig I. Variants in BSN, encoding the presynaptic protein Bassoon, result in a novel neurodevelopmental disorder with a broad phenotypic range. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.10.25321755. [PMID: 39990563 PMCID: PMC11844618 DOI: 10.1101/2025.02.10.25321755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Disease-causing variants in synaptic function genes are a common cause of neurodevelopmental disorders and epilepsy. Here, we describe 14 individuals with de novo disruptive variants in BSN, which encodes the presynaptic protein Bassoon. To expand the phenotypic spectrum, we identified 15 additional individuals with protein-truncating variants (PTVs) from large biobanks. Clinical features were standardized using the Human Phenotype Ontology (HPO) across all 29 individuals, which revealed common clinical characteristics including epilepsy (13/29 45%), febrile seizures (7/29 25%), generalized tonic-clonic seizures (5/29 17%), and focal onset seizures (3/29 10%). Behavioral phenotypes were present in almost half of all individuals (14/29 48%), which comprised ADHD (7/29 25%) and autistic behavior (5/29 17%). Additional common features included developmental delay (11/29 38%), obesity (10/29 34%), and delayed speech (8/29 28%). In adults with BSN PTVs, milder features were common, suggesting phenotypic variability including a range of individuals without obvious neurodevelopmental features (7/29 24%). To detect gene-specific signatures, we performed association analysis in a cohort of 14,895 individuals with neurodevelopmental disorders (NDDs). A total of 66 clinical features were associated with BSN, including febrile seizures (p=1.26e-06) and behavioral disinhibition (p = 3.39e-17). Furthermore, individuals carrying BSN variants were phenotypically more similar than expected by chance (p=0.00014), exceeding phenotypic relatedness in 179/256 NDD-related conditions. In summary, integrating information derived from community-based gene matching and large data repositories through computational phenotyping approaches, we identify BSN variants as the cause of a new class of synaptic disorder with a broad phenotypic range across the age spectrum.
Collapse
Affiliation(s)
- Stacy G Guzman
- Department of Biochemistry, Biophysics, and Chemical Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Sarah M Ruggiero
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, 19146, USA
- Epilepsy and Neurodevelopmental Disorders Center (ENDD), Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Shiva Ganesan
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, 19146, USA
- Epilepsy and Neurodevelopmental Disorders Center (ENDD), Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Colin A Ellis
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Epilepsy and Neurodevelopmental Disorders Center (ENDD), Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Alicia G Harrison
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, 19146, USA
- Epilepsy and Neurodevelopmental Disorders Center (ENDD), Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Katie R Sullivan
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, 19146, USA
- Epilepsy and Neurodevelopmental Disorders Center (ENDD), Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Zornitza Stark
- Australian Genomics, Melbourne, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Victoria, 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Natasha J Brown
- Australian Genomics, Melbourne, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Victoria, 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Sajel L Kana
- Division of Clinical Genetics, Genomics, and Metabolism, Nicklaus Children's Hospital, Miami, USA
| | | | - Jair Tenorio
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz-IDIPAZ, 28046 Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Pablo Lapunzina
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz-IDIPAZ, 28046 Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Julián Nevado
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz-IDIPAZ, 28046 Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- ERN-ITHACA-European Reference Network
| | - Marie T McDonald
- Department of Pediatrics, Duke University Medical Center, Duke University, Durham, NC, USA
| | - Courtney Jensen
- Children's Services, Duke University Health Center, Duke University, Durham, North Carolina, USA
| | - Patricia G Wheeler
- Pediatric Genetics Specialty Practice, Arnold Palmer Hospital for Children, Orlando, Florida, USA
| | - Lila Stange
- Pediatric Genetics Specialty Practice, Arnold Palmer Hospital for Children, Orlando, Florida, USA
| | - Jennifer Morrison
- Pediatric Genetics Specialty Practice, Arnold Palmer Hospital for Children, Orlando, Florida, USA
| | - Boris Keren
- Department of Genetics, La Pitié-Salpêtrière Hospital, APHP, Sorbonne University, Paris, France
| | - Solveig Heide
- Cytogenetics department, Cochin Hospital, Assistance Publique des Hôpitaux de Paris; Sorbonne Paris Cité, Paris Descartes University, Medical school, Paris, France
| | | | | | - Mike A Lyons
- Greenwood Genetics Center, Greenwood, SC, USA
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State Universitygrid.47894.36, Fort Collins, Colorado, USA
| | - Shailly Jain
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Mehdi Yeganeh
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine, Centre Hospitalier Universitaire de Québec, Centre Mère-Enfant Soleil Université Laval Québec City Québec Canada
| | - Michelle L Thompson
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Molly Schroeder
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Division of Molecular and Human Genetics, Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Hoanh Nguyen
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Division of Molecular and Human Genetics, Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Jorge Granadillo
- Division of Molecular and Human Genetics, Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Kari M Johnston
- Department of Genetics and Metabolism, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Chaya N Murali
- Department of Genetics and Metabolism, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Katie Bosanko
- Section of Genetics and Metabolism, Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital, Little Rock, AR, USA
| | - T Andrew Burrow
- Section of Genetics and Metabolism, Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital, Little Rock, AR, USA
| | | | - Syreeta Morgan
- Center for Applied Genomics, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Deborah J Watson
- Center for Applied Genomics, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States of America
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Hakon Hakonarson
- Center for Applied Genomics, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States of America
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Ingo Helbig
- Department of Biochemistry, Biophysics, and Chemical Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, 19146, USA
- Epilepsy and Neurodevelopmental Disorders Center (ENDD), Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| |
Collapse
|
3
|
Papadopoulos S, Tinschert R, Papadopoulos I, Gerloff X, Schmitz F. Analytical Post-Embedding Immunogold-Electron Microscopy with Direct Gold-Labelled Monoclonal Primary Antibodies against RIBEYE A- and B-Domain Suggests a Refined Model of Synaptic Ribbon Assembly. Int J Mol Sci 2024; 25:7443. [PMID: 39000549 PMCID: PMC11242772 DOI: 10.3390/ijms25137443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Synaptic ribbons are the eponymous specializations of continuously active ribbon synapses. They are primarily composed of the RIBEYE protein that consists of a unique amino-terminal A-domain and carboxy-terminal B-domain that is largely identical to the ubiquitously expressed transcriptional regulator protein CtBP2. Both RIBEYE A-domain and RIBEYE B-domain are essential for the assembly of the synaptic ribbon, as shown by previous analyses of RIBEYE knockout and knockin mice and related investigations. How exactly the synaptic ribbon is assembled from RIBEYE subunits is not yet clear. To achieve further insights into the architecture of the synaptic ribbon, we performed analytical post-embedding immunogold-electron microscopy with direct gold-labelled primary antibodies against RIBEYE A-domain and RIBEYE B-domain for improved ultrastructural resolution. With direct gold-labelled monoclonal antibodies against RIBEYE A-domain and RIBEYE B-domain, we found that both domains show a very similar localization within the synaptic ribbon of mouse photoreceptor synapses, with no obvious differential gradient between the centre and surface of the synaptic ribbon. These data favour a model of the architecture of the synaptic ribbon in which the RIBEYE A-domain and RIBEYE B-domain are located similar distances from the midline of the synaptic ribbon.
Collapse
Affiliation(s)
- Stella Papadopoulos
- Institute of Anatomy, Department of Neuroanatomy, Medical School, Saarland University, 66421 Homburg, Germany; (S.P.); (R.T.)
| | - René Tinschert
- Institute of Anatomy, Department of Neuroanatomy, Medical School, Saarland University, 66421 Homburg, Germany; (S.P.); (R.T.)
| | - Iason Papadopoulos
- Mathematical Institute, University of Bonn, 53115 Bonn, Germany; (I.P.); (X.G.)
| | - Xenia Gerloff
- Mathematical Institute, University of Bonn, 53115 Bonn, Germany; (I.P.); (X.G.)
| | - Frank Schmitz
- Institute of Anatomy, Department of Neuroanatomy, Medical School, Saarland University, 66421 Homburg, Germany; (S.P.); (R.T.)
| |
Collapse
|
4
|
Jimeno D, Lillo C, de la Villa P, Calzada N, Santos E, Fernández-Medarde A. GRF2 Is Crucial for Cone Photoreceptor Viability and Ribbon Synapse Formation in the Mouse Retina. Cells 2023; 12:2574. [PMID: 37947653 PMCID: PMC10650203 DOI: 10.3390/cells12212574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023] Open
Abstract
Using constitutive GRF1/2 knockout mice, we showed previously that GRF2 is a key regulator of nuclear migration in retinal cone photoreceptors. To evaluate the functional relevance of that cellular process for two putative targets of the GEF activity of GRF2 (RAC1 and CDC42), here we compared the structural and functional retinal phenotypes resulting from conditional targeting of RAC1 or CDC42 in the cone photoreceptors of constitutive GRF2KO and GRF2WT mice. We observed that single RAC1 disruption did not cause any obvious morphological or physiological changes in the retinas of GRF2WT mice, and did not modify either the phenotypic alterations previously described in the retinal photoreceptor layer of GRF2KO mice. In contrast, the single ablation of CDC42 in the cone photoreceptors of GRF2WT mice resulted in clear alterations of nuclear movement that, unlike those of the GRF2KO retinas, were not accompanied by electrophysiological defects or slow, progressive cone cell degeneration. On the other hand, the concomitant disruption of GRF2 and CDC42 in the cone photoreceptors resulted, somewhat surprisingly, in a normalized pattern of nuclear positioning/movement, similar to that physiologically observed in GRF2WT mice, along with worsened patterns of electrophysiological responses and faster rates of cell death/disappearance than those previously recorded in single GRF2KO cone cells. Interestingly, the increased rates of cone cell apoptosis/death observed in single GRF2KO and double-knockout GRF2KO/CDC42KO retinas correlated with the electron microscopic detection of significant ultrastructural alterations (flattening) of their retinal ribbon synapses that were not otherwise observed at all in single-knockout CDC42KO retinas. Our observations identify GRF2 and CDC42 (but not RAC1) as key regulators of retinal processes controlling cone photoreceptor nuclear positioning and survival, and support the notion of GRF2 loss-of-function mutations as potential drivers of cone retinal dystrophies.
Collapse
Affiliation(s)
- David Jimeno
- Centro de Investigación del Cáncer-Instituto de Biologıá Molecular y Celular del Cáncer (CSIC–Universidad de Salamanca) and CIBERONC, 37007 Salamanca, Spain
| | | | - Pedro de la Villa
- Departamento de Biología de Sistemas, Universidad de Alcalá, 28871 Alcalá de Henares, and IRYCIS, 28034 Madrid, Spain
| | - Nuria Calzada
- Centro de Investigación del Cáncer-Instituto de Biologıá Molecular y Celular del Cáncer (CSIC–Universidad de Salamanca) and CIBERONC, 37007 Salamanca, Spain
| | - Eugenio Santos
- Centro de Investigación del Cáncer-Instituto de Biologıá Molecular y Celular del Cáncer (CSIC–Universidad de Salamanca) and CIBERONC, 37007 Salamanca, Spain
| | - Alberto Fernández-Medarde
- Centro de Investigación del Cáncer-Instituto de Biologıá Molecular y Celular del Cáncer (CSIC–Universidad de Salamanca) and CIBERONC, 37007 Salamanca, Spain
| |
Collapse
|
5
|
Gierke K, Lux UT, Regus-Leidig H, Brandstätter JH. The first synapse in vision in the aging mouse retina. Front Cell Neurosci 2023; 17:1291054. [PMID: 38026697 PMCID: PMC10654782 DOI: 10.3389/fncel.2023.1291054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Vision is our primary sense, and maintaining it throughout our lifespan is crucial for our well-being. However, the retina, which initiates vision, suffers from an age-related, irreversible functional decline. What causes this functional decline, and how it might be treated, is still unclear. Synapses are the functional hub for signal transmission between neurons, and studies have shown that aging is widely associated with synaptic dysfunction. In this study, we examined the first synapse of the visual system - the rod and cone photoreceptor ribbon synapse - in the mouse retina using light and electron microscopy at 2-3 months, ~1 year, and >2 years of age. We asked, whether age-related changes in key synaptic components might be a driver of synaptic dysfunction and ultimately age-related functional decline during normal aging. We found sprouting of horizontal and bipolar cells, formation of ectopic photoreceptor ribbon synapses, and a decrease in the number of rod photoreceptors and photoreceptor ribbon synapses in the aged retina. However, the majority of the photoreceptors did not show obvious changes in the structural components and protein composition of their ribbon synapses. Noteworthy is the increase in mitochondrial size in rod photoreceptor terminals in the aged retina.
Collapse
Affiliation(s)
| | | | | | - Johann Helmut Brandstätter
- Animal Physiology/Neurobiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
6
|
Stallwitz N, Joachimsthaler A, Kremers J. Single opsin driven white noise ERGs in mice. Front Neurosci 2023; 17:1211329. [PMID: 37583414 PMCID: PMC10423813 DOI: 10.3389/fnins.2023.1211329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/17/2023] [Indexed: 08/17/2023] Open
Abstract
Purpose Electroretinograms elicited by photopigment isolating white noise stimuli (wnERGs) in mice were measured. The dependency of rod- and cone-opsin-driven wnERGs on mean luminance was studied. Methods Temporal white noise stimuli (containing all frequencies up to 20 Hz, equal amplitudes, random phases) that modulated either rhodopsin, S-opsin or L*-opsin, using the double silent substitution technique, were used to record wnERGs in mice expressing a human L*-opsin instead of the native murine M-opsin. Responses were recorded at 4 mean luminances (MLs).Impulse response functions (IRFs) were obtained by cross-correlating the wnERG recordings with the corresponding modulation of the photopigment excitation elicited by the stimulus. So-called modulation transfer functions (MTFs) were obtained by performing a Fourier transform on the IRFs.Potentials of two repeated wnERG recordings at corresponding time points were plotted against each other. The correlation coefficient (r2repr) of the linear regression through these data was used to quantify reproducibility. Another correlation coefficient (r2ML) was used to quantify the correlations of the wnERGs obtained at different MLs with those at the highest (for cone isolating stimuli) or lowest (for rod isolating stimuli) ML. Results IRFs showed an initial negative (a-wave like) trough N1 and a subsequent positive (b-wave like) peak P1. No oscillatory potential-like components were observed. At 0.4 and 1.0 log cd/m2 ML robust L*- and S-opsin-driven IRFs were obtained that displayed similar latencies and dependencies on ML. L*-opsin-driven IRFs were 2.5-3 times larger than S-opsin-driven IRFs. Rhodopsin-driven IRFs were observed at -0.8 and - 0.2 log cd/m2 and decreased in amplitude with increasing ML. They displayed an additional pronounced late negativity (N2), which may be a correlate of retinal ganglion cell activity.R2repr and r2ML values increased for cones with increasing ML whereas they decreased for rods. For rhodopsin-driven MTFs at low MLs and L*-opsin-driven MTFs at high MLs amplitudes decreased with increasing frequency, with much faster decreasing amplitudes for rhodopsin. A delay was calculated from MTF phases showing larger delays for rhodopsin- vs. low delays for L*-opsin-driven responses. Conclusion Opsin-isolating wnERGs in mice show characteristics of different retinal cell types and their connected pathways.
Collapse
Affiliation(s)
- Nina Stallwitz
- Department of Ophthalmology, University Hospital Erlangen, Erlangen, Germany
- Animal Physiology, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Anneka Joachimsthaler
- Department of Ophthalmology, University Hospital Erlangen, Erlangen, Germany
- Animal Physiology, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Jan Kremers
- Department of Ophthalmology, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
7
|
Martínez-Vacas A, Di Pierdomenico J, Gallego-Ortega A, Valiente-Soriano FJ, Vidal-Sanz M, Picaud S, Villegas-Pérez MP, García-Ayuso D. Systemic taurine treatment affords functional and morphological neuroprotection of photoreceptors and restores retinal pigment epithelium function in RCS rats. Redox Biol 2022; 57:102506. [PMID: 36270186 PMCID: PMC9583577 DOI: 10.1016/j.redox.2022.102506] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/21/2022] [Accepted: 10/09/2022] [Indexed: 11/23/2022] Open
Abstract
The aim of our work was to study whether taurine administration has neuroprotective effects in dystrophic Royal College of Surgeons (RCS) rats, suffering retinal degeneration secondary to impaired retinal pigment epithelium phagocytosis caused by a MERTK mutation. Dystrophic RCS-p + female rats (n = 36) were divided into a non-treated group (n = 16) and a treated group (n = 20) that received taurine (0.2 M) in drinking water from postnatal day (P)21 to P45, when they were processed. Retinal function was assessed with electroretinogram. Retinal morphology was assessed in cross-sections using immunohistochemical techniques to label photoreceptors, retinal microglial and macroglial cells, active zones of conventional and ribbon synaptic connections, and oxidative stress. Retinal pigment epithelium function was examined using intraocular fluorogold injections. Our results document that taurine treatment increases taurine plasma levels and photoreceptor survival in dystrophic rats. The number of photoreceptor nuclei rows at P45 was 3-5 and 6-11 in untreated and treated animals, respectively. Electroretinograms showed increases of 70% in the rod response, 400% in the a-wave amplitude, 30% in the b-wave amplitude and 75% in the photopic b-wave response in treated animals. Treated animals also showed decreased numbers of microglial cells in the outer retinal layers, decreased glial fibrillary acidic protein (GFAP) expression in Müller cells, decreased oxidative stress in the outer and inner nuclear layers and improved maintenance of synaptic connections. Treated animals showed increased FG phagocytosis in the retinal pigment epithelium cells. In conclusion, systemic taurine treatment decreases photoreceptor degeneration and increases electroretinographic responses in dystrophic RCS rats and these effects may be mediated through various neuroprotective mechanisms.
Collapse
Affiliation(s)
- Ana Martínez-Vacas
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| | - Johnny Di Pierdomenico
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| | - Alejandro Gallego-Ortega
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| | - Francisco J Valiente-Soriano
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| | - Serge Picaud
- Sorbonne Universités, INSERM, CNRS, Institut de la Vision, Paris, France
| | - María Paz Villegas-Pérez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| | - Diego García-Ayuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain.
| |
Collapse
|
8
|
Shrestha AP, Saravanakumar A, Konadu B, Madireddy S, Gibert Y, Vaithianathan T. Embryonic Hyperglycemia Delays the Development of Retinal Synapses in a Zebrafish Model. Int J Mol Sci 2022; 23:ijms23179693. [PMID: 36077087 PMCID: PMC9456524 DOI: 10.3390/ijms23179693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022] Open
Abstract
Embryonic hyperglycemia negatively impacts retinal development, leading to abnormal visual behavior, altered timing of retinal progenitor differentiation, decreased numbers of retinal ganglion cells and Müller glia, and vascular leakage. Because synaptic disorganization is a prominent feature of many neurological diseases, the goal of the current work was to study the potential impact of hyperglycemia on retinal ribbon synapses during embryonic development. Our approach utilized reverse transcription quantitative PCR (RT-qPCR) and immunofluorescence labeling to compare the transcription of synaptic proteins and their localization in hyperglycemic zebrafish embryos, respectively. Our data revealed that the maturity of synaptic ribbons was compromised in hyperglycemic zebrafish larvae, where altered ribeye expression coincided with the delay in establishing retinal ribbon synapses and an increase in the immature synaptic ribbons. Our results suggested that embryonic hyperglycemia disrupts retinal synapses by altering the development of the synaptic ribbon, which can lead to visual defects. Future studies using zebrafish models of hyperglycemia will allow us to study the underlying mechanisms of retinal synapse development.
Collapse
Affiliation(s)
- Abhishek P. Shrestha
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ambalavanan Saravanakumar
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Program in Biology, Rhodes College, Memphis, TN 38112, USA
| | - Bridget Konadu
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Saivikram Madireddy
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Yann Gibert
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Thirumalini Vaithianathan
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Correspondence: ; Tel.: +1-901-448-2786
| |
Collapse
|
9
|
Montenegro‐Venegas C, Guhathakurta D, Pina‐Fernandez E, Andres‐Alonso M, Plattner F, Gundelfinger ED, Fejtova A. Bassoon controls synaptic vesicle release via regulation of presynaptic phosphorylation and
cAMP. EMBO Rep 2022; 23:e53659. [PMID: 35766170 PMCID: PMC9346490 DOI: 10.15252/embr.202153659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 05/23/2022] [Accepted: 06/01/2022] [Indexed: 11/11/2022] Open
Abstract
Neuronal presynaptic terminals contain hundreds of neurotransmitter‐filled synaptic vesicles (SVs). The morphologically uniform SVs differ in their release competence segregating into functional pools that differentially contribute to neurotransmission. The presynaptic scaffold bassoon is required for neurotransmission, but the underlying molecular mechanisms are unknown. We report that glutamatergic synapses lacking bassoon feature decreased SV release competence and increased resting pool of SVs as assessed by imaging of SV release in cultured neurons. CDK5/calcineurin and cAMP/PKA presynaptic signalling are dysregulated, resulting in an aberrant phosphorylation of their downstream effectors synapsin1 and SNAP25, well‐known regulators of SV release competence. An acute pharmacological restoration of physiological CDK5 and cAMP/PKA activity fully normalises the SV pools in neurons lacking bassoon. Finally, we demonstrate that CDK5‐dependent regulation of PDE4 activity interacts with cAMP/PKA signalling and thereby controls SV release competence. These data reveal that bassoon organises SV pools in glutamatergic synapses via regulation of presynaptic phosphorylation and cAMP homeostasis and indicate a role of CDK5/PDE4/cAMP axis in the control of neurotransmitter release.
Collapse
Affiliation(s)
- Carolina Montenegro‐Venegas
- Department of Neurochemistry and Molecular Biology Leibniz Institute for Neurobiology Magdeburg Germany
- Center for Behavioral Brain Sciences (CBBS) Magdeburg Germany
- Institute for Pharmacology and Toxicology, Medical Faculty Otto von Guericke University Magdeburg Germany
| | - Debarpan Guhathakurta
- Molecular Psychiatry, Department of Psychiatry and Psychotherapy Universitätsklinikum Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Erlangen Germany
| | | | - Maria Andres‐Alonso
- RG Presynaptic Plasticity Leibniz Institute for Neurobiology Magdeburg Germany
| | | | - Eckart D Gundelfinger
- Department of Neurochemistry and Molecular Biology Leibniz Institute for Neurobiology Magdeburg Germany
- Center for Behavioral Brain Sciences (CBBS) Magdeburg Germany
- Institute for Pharmacology and Toxicology, Medical Faculty Otto von Guericke University Magdeburg Germany
| | - Anna Fejtova
- Department of Neurochemistry and Molecular Biology Leibniz Institute for Neurobiology Magdeburg Germany
- Molecular Psychiatry, Department of Psychiatry and Psychotherapy Universitätsklinikum Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Erlangen Germany
- RG Presynaptic Plasticity Leibniz Institute for Neurobiology Magdeburg Germany
| |
Collapse
|
10
|
Grabner CP, Jansen I, Neef J, Weihs T, Schmidt R, Riedel D, Wurm CA, Moser T. Resolving the molecular architecture of the photoreceptor active zone with 3D-MINFLUX. SCIENCE ADVANCES 2022; 8:eabl7560. [PMID: 35857490 PMCID: PMC9286502 DOI: 10.1126/sciadv.abl7560] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Cells assemble macromolecular complexes into scaffoldings that serve as substrates for catalytic processes. Years of molecular neurobiology research indicate that neurotransmission depends on such optimization strategies. However, the molecular topography of the presynaptic active zone (AZ), where transmitter is released upon synaptic vesicle (SV) fusion, remains to be visualized. Therefore, we implemented MINFLUX optical nanoscopy to resolve the AZ of rod photoreceptors. This was facilitated by a novel sample immobilization technique that we name heat-assisted rapid dehydration (HARD), wherein a thin layer of rod synaptic terminals (spherules) was transferred onto glass coverslips from fresh retinal slices. Rod ribbon AZs were readily immunolabeled and imaged in 3D with a precision of a few nanometers. Our 3D-MINFLUX results indicate that the SV release site in rods is a molecular complex of bassoon-RIM2-ubMunc13-2-Cav1.4, which repeats longitudinally on both sides of the ribbon.
Collapse
Affiliation(s)
- Chad P. Grabner
- Institute for Auditory Neuroscience, University Medical Center Göttingen, 37075 Göttingen, Germany
- Auditory Neuroscience and Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
- Collaborative Research Center 1286, University of Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells”, University of Göttingen, 37075 Göttingen, Germany
- Corresponding author. (C.P.G.); (C.A.W.); (T.M.)
| | - Isabelle Jansen
- Abberior Instruments, Hans-Adolf-Krebs-Weg 1, 37077 Göttingen, Germany
| | - Jakob Neef
- Institute for Auditory Neuroscience, University Medical Center Göttingen, 37075 Göttingen, Germany
- Auditory Neuroscience and Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
- Collaborative Research Center 1286, University of Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells”, University of Göttingen, 37075 Göttingen, Germany
| | - Tobias Weihs
- Abberior Instruments, Hans-Adolf-Krebs-Weg 1, 37077 Göttingen, Germany
| | - Roman Schmidt
- Abberior Instruments, Hans-Adolf-Krebs-Weg 1, 37077 Göttingen, Germany
| | - Dietmar Riedel
- Laboratory of Electron Microscopy, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Christian A. Wurm
- Abberior Instruments, Hans-Adolf-Krebs-Weg 1, 37077 Göttingen, Germany
- Corresponding author. (C.P.G.); (C.A.W.); (T.M.)
| | - Tobias Moser
- Institute for Auditory Neuroscience, University Medical Center Göttingen, 37075 Göttingen, Germany
- Auditory Neuroscience and Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
- Collaborative Research Center 1286, University of Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells”, University of Göttingen, 37075 Göttingen, Germany
- Corresponding author. (C.P.G.); (C.A.W.); (T.M.)
| |
Collapse
|
11
|
Di Pierdomenico J, Gallego‐Ortega A, Martínez‐Vacas A, García‐Bernal D, Vidal‐Sanz M, Villegas‐Pérez MP, García‐Ayuso D. Intravitreal and subretinal syngeneic bone marrow mononuclear stem cell transplantation improves photoreceptor survival but does not ameliorate retinal function in two rat models of retinal degeneration. Acta Ophthalmol 2022; 100:e1313-e1331. [PMID: 35514078 DOI: 10.1111/aos.15165] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/07/2022] [Accepted: 04/18/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE To study and compare effects of syngeneic bone marrow mononuclear stem cells (BM-MNCs) transplants on inherited retinal degeneration in two animal models with different etiologies: the RCS and the P23H-1 rats. To compare the safety and efficacy of two methods of intraocular delivery: subretinal and/or intravitreal. METHODS A suspension of BM-MNCs was injected subretinally or intravitreally in the left eyes of P23H-1 and RCS rats at post-natal day (P) 21. At different survival intervals after the injection: 7, 15, 30 or 60 days, the retinas were cross-sectioned, and photoreceptor survival and glial cell responses were investigated using immunodetection of cones (anti-cone arrestin), synaptic connections (anti-bassoon), microglia (anti-Iba-1), astrocytes and Müller cells (anti-GFAP). Electroretinographic function was also assessed longitudinally. RESULTS Intravitreal injections (IVIs) or subretinal injections (SRIs) of BM-MNCs did not produce adverse effects. The transplanted cells survived for up to 15 days but did not penetrate the retina. Both IVIs and SRIs increased photoreceptor survival, decreased synaptic degeneration and glial fibrillary acidic protein (GFAP) expression in Müller cells but did not modify microglial cell activation and migration or the electroretinographic responses. CONCLUSIONS Intravitreal and subretinal syngeneic BM-MNCs transplantation decreases photoreceptor degeneration and shows anti-gliotic effects on Müller cells but does not ameliorate retinal function. Moreover, syngeneic BM-MNCs transplants are more effective than the xenotransplants of these cells. BM-MNC transplantation has potential therapeutic effects that merit further investigation.
Collapse
Affiliation(s)
- Johnny Di Pierdomenico
- Departamento de Oftalmología, Facultad de Medicina Universidad de Murcia Murcia Spain
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB‐Virgen de la Arrixaca) Murcia Spain
| | - Alejandro Gallego‐Ortega
- Departamento de Oftalmología, Facultad de Medicina Universidad de Murcia Murcia Spain
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB‐Virgen de la Arrixaca) Murcia Spain
| | - Ana Martínez‐Vacas
- Departamento de Oftalmología, Facultad de Medicina Universidad de Murcia Murcia Spain
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB‐Virgen de la Arrixaca) Murcia Spain
| | - David García‐Bernal
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB‐Virgen de la Arrixaca) Murcia Spain
- Departamento de Bioquímica, Biología Molecular B e Inmunología, Facultad de Medicina Universidad de Murcia Murcia Spain
| | - Manuel Vidal‐Sanz
- Departamento de Oftalmología, Facultad de Medicina Universidad de Murcia Murcia Spain
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB‐Virgen de la Arrixaca) Murcia Spain
| | - María P. Villegas‐Pérez
- Departamento de Oftalmología, Facultad de Medicina Universidad de Murcia Murcia Spain
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB‐Virgen de la Arrixaca) Murcia Spain
| | - Diego García‐Ayuso
- Departamento de Oftalmología, Facultad de Medicina Universidad de Murcia Murcia Spain
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB‐Virgen de la Arrixaca) Murcia Spain
| |
Collapse
|