1
|
Ostroumova OS, Efimova SS. Lipid-Centric Approaches in Combating Infectious Diseases: Antibacterials, Antifungals and Antivirals with Lipid-Associated Mechanisms of Action. Antibiotics (Basel) 2023; 12:1716. [PMID: 38136750 PMCID: PMC10741038 DOI: 10.3390/antibiotics12121716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
One of the global challenges of the 21st century is the increase in mortality from infectious diseases against the backdrop of the spread of antibiotic-resistant pathogenic microorganisms. In this regard, it is worth targeting antibacterials towards the membranes of pathogens that are quite conservative and not amenable to elimination. This review is an attempt to critically analyze the possibilities of targeting antimicrobial agents towards enzymes involved in pathogen lipid biosynthesis or towards bacterial, fungal, and viral lipid membranes, to increase the permeability via pore formation and to modulate the membranes' properties in a manner that makes them incompatible with the pathogen's life cycle. This review discusses the advantages and disadvantages of each approach in the search for highly effective but nontoxic antimicrobial agents. Examples of compounds with a proven molecular mechanism of action are presented, and the types of the most promising pharmacophores for further research and the improvement of the characteristics of antibiotics are discussed. The strategies that pathogens use for survival in terms of modulating the lipid composition and physical properties of the membrane, achieving a balance between resistance to antibiotics and the ability to facilitate all necessary transport and signaling processes, are also considered.
Collapse
Affiliation(s)
- Olga S. Ostroumova
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg 194064, Russia;
| | | |
Collapse
|
2
|
Picón DF, Skouta R. Unveiling the Therapeutic Potential of Squalene Synthase: Deciphering Its Biochemical Mechanism, Disease Implications, and Intriguing Ties to Ferroptosis. Cancers (Basel) 2023; 15:3731. [PMID: 37509391 PMCID: PMC10378455 DOI: 10.3390/cancers15143731] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/12/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Squalene synthase (SQS) has emerged as a promising therapeutic target for various diseases, including cancers, owing to its pivotal role in the mevalonate pathway and the antioxidant properties of squalene. Primarily, SQS orchestrates the head-to-head condensation reaction, catalyzing the fusion of two farnesyl pyrophosphate molecules, leading to the formation of squalene, which has been depicted as a highly effective oxygen-scavenging agent in in vitro studies. Recent studies have depicted this isoprenoid as a protective layer against ferroptosis due to its potential regulation of lipid peroxidation, as well as its protection against oxidative damage. Therefore, beyond its fundamental function, recent investigations have unveiled additional roles for SQS as a regulator of lipid peroxidation and programmed cell death pathways, such as ferroptosis-a type of cell death characterized by elevated levels of lipid peroxide, one of the forms of reactive oxygen species (ROS), and intracellular iron concentration. Notably, thorough explorations have shed light on the distinctive features that set SQS apart from other members within the isoprenoid synthase superfamily. Its unique biochemical structure, intricately intertwined with its reaction mechanism, has garnered significant attention. Moreover, considerable evidence substantiates the significance of SQS in various disease contexts, and its intriguing association with ferroptosis and lipid peroxidation. The objective of this report is to analyze the existing literature comprehensively, corroborating these findings, and provide an up-to-date perspective on the current understanding of SQS as a prospective therapeutic target, as well as its intricate relationship with ferroptosis. This review aims to consolidate the knowledge surrounding SQS, thereby contributing to the broader comprehension of its potential implications in disease management and therapeutic interventions.
Collapse
Affiliation(s)
| | - Rachid Skouta
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
3
|
Huang J, Zhao B, Liu T, Kang L, Li J, Guo Z, Chen M, Gao S, Wang J, Li Y, Wang J, Xin W. Statins as Potential Preventative Treatment of ETX and Multiple Pore-Forming Toxin-Induced Diseases. Int J Mol Sci 2023; 24:ijms24065414. [PMID: 36982489 PMCID: PMC10048941 DOI: 10.3390/ijms24065414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Epsilon toxin (ETX), produced by type B and D strains of Clostridium perfringens, can cause fatal enterotoxaemia in ruminant animals, particularly sheep, cattle, and goats. Previous studies show that the cytotoxicity of ETX is dependent on the integrity of lipid rafts, the maintenance of which is ensured by cholesterol. Zaragozic acid (ZA) is a statin drug that reduces the synthesis of squalene, which is responsible for cholesterol synthesis. In this study, ZA significantly reduced the toxicity of ETX in Madin–Darby canine kidney (MDCK) cells. We show that ZA does not affect the binding of ETX to MDCK cells, but propidium iodide staining (PI) and Western blotting confirmed that ZA significantly disrupts the ability of ETX to form pores or oligomers in MDCK cells. Additionally, ZA decreased the phosphatidylserine exposure on the plasma membrane and increased the Ca2+ influx of the cells. Results of density gradient centrifugation suggest that ZA decreased the number of lipid rafts in MDCK membranes, which probably contributed to the attenuation of pore-formation. Moreover, ZA protected mice against ETX in vivo. All mice pre-treated with ZA for 48 h before exposure to an absolute lethal dose of ETX (6400 ng/kg) survived. In summary, these findings provide an innovative method to prevent ETX intoxication. Considering many pore-forming toxins require lipid rafts, we tested and found ZA also inhibited the toxicity of other toxins such as Clostridium perfringens Net B and β-toxin (CPB) and Staphylococcus aureus α-hemolysin (Hla). We expect ZA can thus be developed as a broad-spectrum medicine for the treatment of multiple toxins. In addition, other statins, such as lovastatin (LO), also reduced the toxicity of ETX. These findings indicate that statin medicines are potential candidates for preventing and treating multiple toxin-induced diseases.
Collapse
Affiliation(s)
- Jing Huang
- Life Science Institute, Hebei Normal University, Shijiazhuang 050024, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China
| | - Baohua Zhao
- Life Science Institute, Hebei Normal University, Shijiazhuang 050024, China
| | - Tingting Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China
| | - Lin Kang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China
| | - Jiaxin Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China
| | - Zishuo Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China
| | - Ming Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China
| | - Shan Gao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China
| | - Jing Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China
| | - Yanwei Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China
| | - Jinglin Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China
- Correspondence: (J.W.); (W.X.)
| | - Wenwen Xin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China
- Correspondence: (J.W.); (W.X.)
| |
Collapse
|
4
|
Glucocorticoids increase tissue cell protection against pore-forming toxins from pathogenic bacteria. Commun Biol 2023; 6:186. [PMID: 36807406 PMCID: PMC9938277 DOI: 10.1038/s42003-023-04568-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 02/09/2023] [Indexed: 02/19/2023] Open
Abstract
Many species of pathogenic bacteria damage tissue cells by secreting toxins that form pores in plasma membranes. Here we show that glucocorticoids increase the intrinsic protection of tissue cells against pore-forming toxins. Dexamethasone protected several cell types against the cholesterol-dependent cytolysin, pyolysin, from Trueperella pyogenes. Dexamethasone treatment reduced pyolysin-induced leakage of potassium and lactate dehydrogenase, limited actin cytoskeleton alterations, reduced plasma membrane blebbing, and prevented cytolysis. Hydrocortisone and fluticasone also protected against pyolysin-induced cell damage. Furthermore, dexamethasone protected HeLa and A549 cells against the pore-forming toxins streptolysin O from Streptococcus pyogenes, and alpha-hemolysin from Staphylococcus aureus. Dexamethasone cytoprotection was not associated with changes in cellular cholesterol or activating mitogen-activated protein kinase (MAPK) cell stress responses. However, cytoprotection was dependent on the glucocorticoid receptor and 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR). Collectively, our findings imply that glucocorticoids could be exploited to limit tissue damage caused by pathogens secreting pore-forming toxins.
Collapse
|
5
|
Ormsby TJR, Owens SE, Clement L, Mills TJ, Cronin JG, Bromfield JJ, Sheldon IM. Oxysterols Protect Epithelial Cells Against Pore-Forming Toxins. Front Immunol 2022; 13:815775. [PMID: 35154132 PMCID: PMC8825411 DOI: 10.3389/fimmu.2022.815775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/05/2022] [Indexed: 12/25/2022] Open
Abstract
Many species of bacteria produce toxins such as cholesterol-dependent cytolysins that form pores in cell membranes. Membrane pores facilitate infection by releasing nutrients, delivering virulence factors, and causing lytic cell damage - cytolysis. Oxysterols are oxidized forms of cholesterol that regulate cellular cholesterol and alter immune responses to bacteria. Whether oxysterols also influence the protection of cells against pore-forming toxins is unresolved. Here we tested the hypothesis that oxysterols stimulate the intrinsic protection of epithelial cells against damage caused by cholesterol-dependent cytolysins. We treated epithelial cells with oxysterols and then challenged them with the cholesterol-dependent cytolysin, pyolysin. Treating HeLa cells with 27-hydroxycholesterol, 25-hydroxycholesterol, 7α-hydroxycholesterol, or 7β-hydroxycholesterol reduced pyolysin-induced leakage of lactate dehydrogenase and reduced pyolysin-induced cytolysis. Specifically, treatment with 10 ng/ml 27-hydroxycholesterol for 24 h reduced pyolysin-induced lactate dehydrogenase leakage by 88%, and reduced cytolysis from 74% to 1%. Treating HeLa cells with 27-hydroxycholesterol also reduced pyolysin-induced leakage of potassium ions, prevented mitogen-activated protein kinase cell stress responses, and limited alterations in the cytoskeleton. Furthermore, 27-hydroxycholesterol reduced pyolysin-induced damage in lung and liver epithelial cells, and protected against the cytolysins streptolysin O and Staphylococcus aureus α-hemolysin. Although oxysterols regulate cellular cholesterol by activating liver X receptors, cytoprotection did not depend on liver X receptors or changes in total cellular cholesterol. However, oxysterol cytoprotection was partially dependent on acyl-CoA:cholesterol acyltransferase (ACAT) reducing accessible cholesterol in cell membranes. Collectively, these findings imply that oxysterols stimulate the intrinsic protection of epithelial cells against pore-forming toxins and may help protect tissues against pathogenic bacteria.
Collapse
Affiliation(s)
- Thomas J R Ormsby
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Sian E Owens
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Liam Clement
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Tom J Mills
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - James G Cronin
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - John J Bromfield
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Iain Martin Sheldon
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| |
Collapse
|
6
|
Ormsby TJR, Owens SE, Horlock AD, Davies D, Griffiths WJ, Wang Y, Cronin JG, Bromfield JJ, Sheldon IM. Oxysterols protect bovine endometrial cells against pore-forming toxins from pathogenic bacteria. FASEB J 2021; 35:e21889. [PMID: 34569656 PMCID: PMC9272411 DOI: 10.1096/fj.202100036r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/16/2021] [Accepted: 08/16/2021] [Indexed: 11/11/2022]
Abstract
Many species of pathogenic bacteria secrete toxins that form pores in mammalian cell membranes. These membrane pores enable the delivery of virulence factors into cells, result in the leakage of molecules that bacteria can use as nutrients, and facilitate pathogen invasion. Inflammatory responses to bacteria are regulated by the side-chain-hydroxycholesterols 27-hydroxycholesterol and 25-hydroxycholesterol, but their effect on the intrinsic protection of cells against pore-forming toxins is unclear. Here, we tested the hypothesis that 27-hydroxycholesterol and 25-hydroxycholesterol help protect cells against pore-forming toxins. We treated bovine endometrial epithelial and stromal cells with 27-hydroxycholesterol or 25-hydroxycholesterol, and then challenged the cells with pyolysin, which is a cholesterol-dependent cytolysin from Trueperella pyogenes that targets these endometrial cells. We found that treatment with 27-hydroxycholesterol or 25-hydroxycholesterol protected both epithelial and stomal cells against pore formation and the damage caused by pyolysin. The oxysterols limited pyolysin-induced leakage of potassium and lactate dehydrogenase from cells, and reduced cytoskeletal changes and cytolysis. This oxysterol cytoprotection against pyolysin was partially dependent on reducing cytolysin-accessible cholesterol in the cell membrane and on activating liver X receptors. Treatment with 27-hydroxycholesterol also protected the endometrial cells against Staphylococcus aureus α-hemolysin. Using mass spectrometry, we found 27-hydroxycholesterol and 25-hydroxycholesterol in uterine and follicular fluid. Furthermore, epithelial cells released additional 25-hydroxycholesterol in response to pyolysin. In conclusion, both 27-hydroxycholesterol and 25-hydroxycholesterol increased the intrinsic protection of bovine endometrial cells against pore-forming toxins. Our findings imply that side-chain-hydroxycholesterols may help defend the endometrium against pathogenic bacteria.
Collapse
Affiliation(s)
| | - Sian E Owens
- Swansea University Medical School, Swansea University, Swansea, UK
| | | | - Daphne Davies
- Swansea University Medical School, Swansea University, Swansea, UK
| | | | - Yuqin Wang
- Swansea University Medical School, Swansea University, Swansea, UK
| | - James G Cronin
- Swansea University Medical School, Swansea University, Swansea, UK
| | - John J Bromfield
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA
| | - Iain M Sheldon
- Swansea University Medical School, Swansea University, Swansea, UK
| |
Collapse
|