1
|
Costantini D, Messina S, Sebastiano M, Marasco V. Life at new extremes: Integrating stress physiology and the bio-exposome in the Anthropocene. Ann N Y Acad Sci 2025. [PMID: 40369708 DOI: 10.1111/nyas.15355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Conventional physiological research has focused on elucidating the endogenous mechanisms that underly the adaptations of species to life in extreme habitats, such as polar regions or deserts. In this review article, we argue that even habitats that are not considered extremes are facing unpredictable, rapid, and strong modifications due to human activities that expose animals to novel extreme conditions. Thus, physiological research on these animals can offer insight on the role of physiological plasticity in driving their resilience and adaptation. To this end, we discuss how stress physiology (with a particular focus on oxidative stress) has a central role in mediating the interaction between the exposome (measure of all the environmental exposures of an individual in a lifetime) and cellular processes (bio-exposome) in the contexts of relevant extreme anthropogenic changes to the habitat conditions. We also provide concrete examples on the relationship between oxidative stress and the bio-exposome in free-living animals, and how this research can be relevant to human health. Finally, we propose future research directions integrating the bio-exposome and the One Health framework to achieve a holistic understanding of the proximate mechanisms underlying individual responses to extreme anthropogenic environmental changes.
Collapse
Affiliation(s)
- David Costantini
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università snc, Viterbo, Italy
| | - Simone Messina
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università snc, Viterbo, Italy
| | - Manrico Sebastiano
- Behavioural Ecology & Ecophysiology Group, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Valeria Marasco
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
2
|
Rajkumar RP. Telomere Dynamics in Post-Traumatic Stress Disorder: A Critical Synthesis. Biomedicines 2025; 13:507. [PMID: 40002919 PMCID: PMC11853385 DOI: 10.3390/biomedicines13020507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/03/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Post-traumatic stress disorder (PTSD), a mental disorder caused by exposure to traumatic stress, affects 5-10% of the world's population. There is some evidence that PTSD is associated with accelerated cellular aging, leading to an increased risk of medical and neurodegenerative comorbidities. Alterations in telomere length (TL) and telomerase enzyme activity have been proposed as biomarkers of this process. This hypothesis was seemingly confirmed in preliminary research, but more recent studies have yielded mixed results. The current narrative review was conducted to provide a critical synthesis of existing research on telomere length and telomerase in PTSD. Data from 26 clinical studies suggest that TL in PTSD is highly variable and may be influenced by methodological, demographic, trauma-related, and psychosocial factors. There is no evidence for altered telomerase activity in PTSD. In contrast, animal research suggests that exposure to traumatic stress does lead to TL shortening. Overall, it is likely that TL is not, by itself, a reliable biomarker of cellular aging in PTSD. Other markers of cellular senescence, such as epigenetic changes, may prove to be more specific in measuring this process in patients with PTSD.
Collapse
Affiliation(s)
- Ravi Philip Rajkumar
- Department of Psychiatry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry 605006, India
| |
Collapse
|
3
|
Westneat DF, Young RC, Cones AG, Kucera AC, Anacleto A, Heidinger BJ. Early-life telomeres are influenced by environments acting at multiple temporal and spatial scales. Mol Ecol 2023; 32:5959-5970. [PMID: 37837282 DOI: 10.1111/mec.17166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
An individual's telomere length early in life may reflect or contribute to key life-history processes sensitive to environmental variation. Yet, the relative importance of genetic and environmental factors in shaping early-life telomere length is not well understood as it requires samples collected from multiple generations with known developmental histories. We used a confirmed pedigree and conducted an animal model analysis of telomere lengths obtained from nestling house sparrows (Passer domesticus) sampled over a span of 22 years. We found significant additive genetic variation for early-life telomere length, but it comprised a small proportion (9%) of the total biological variation. Three sources of environmental variation were important: among cohorts, among-breeding attempts within years, and among nestmates. The magnitude of variation among breeding attempts and among nestmates also differed by cohort, suggesting that interactive effects of environmental factors across time or spatial scales were important, yet we were unable to identify the specific causes of these interactions. The mean amount of precipitation during the breeding season positively predicted telomere length, but neither weather during a given breeding attempt nor date in the breeding season contributed to an offspring's telomere length. At the level of individual nestlings, offspring sex, size and mass at 10 days of age also did not predict telomere length. Environmental effects appear especially important in shaping early-life telomere length in some species, and more focus on how environmental factors that interact across scales may help to explain some of the variation observed among studies.
Collapse
Affiliation(s)
- David F Westneat
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Rebecca C Young
- Department of Biology, North Dakota State University, Fargo, North Dakota, USA
| | - Alexandra G Cones
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Aurelia C Kucera
- Department of Biology, North Dakota State University, Fargo, North Dakota, USA
| | - Angelo Anacleto
- Department of Biology, North Dakota State University, Fargo, North Dakota, USA
| | - Britt J Heidinger
- Department of Biology, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
4
|
Bossu CM, Rodriguez M, Rayne C, Chromczak DA, Higgins PG, Trulio LA, Ruegg KC. Genomic approaches to mitigating genetic diversity loss in declining populations. Mol Ecol 2023; 32:5228-5240. [PMID: 37610278 DOI: 10.1111/mec.17109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/17/2023] [Accepted: 08/04/2023] [Indexed: 08/24/2023]
Abstract
The accelerating pace of global biodiversity loss is exacerbated by habitat fragmentation and subsequent inbreeding in small populations. To address this problem, conservation practitioners often turn to assisted breeding programmes with the aim of enhancing genetic diversity in declining populations. Although genomic information is infrequently included in these efforts, it has the potential to significantly enhance the success of such programmes. In this study, we showcase the value of genomic approaches for increasing genetic diversity in assisted breeding efforts, specifically focusing on a highly inbred population of Western burrowing owls. To maximize genetic diversity in the resulting offspring, we begin by creating an optimal pairing decision tree based on sex, kinship and patterns of homozygosity across the genome. To evaluate the effectiveness of our strategy, we compare genetic diversity, brood size and nestling success rates between optimized and non-optimized pairs. Additionally, we leverage recently discovered correlations between telomere length and fitness across species to investigate whether genomic optimization could have long-term fitness benefits. Our results indicate that pairing individuals with contrasting patterns of homozygosity across the genome is an effective way to increase genetic diversity in offspring. Although short-term field-based metrics of success did not differ significantly between optimized and non-optimized pairs, offspring from optimized pairs had significantly longer telomeres, suggesting that genetic optimization can help reduce the risk of inbreeding depression. These findings underscore the importance of genomic tools for informing efforts to preserve the adaptive potential of small, inbred populations at risk of further decline.
Collapse
Affiliation(s)
- Christen M Bossu
- Department of Biology, Colorado State University, Colorado, Fort Collins, USA
| | - Marina Rodriguez
- Department of Biology, Colorado State University, Colorado, Fort Collins, USA
| | - Christine Rayne
- Department of Biology, Colorado State University, Colorado, Fort Collins, USA
| | - Debra A Chromczak
- Burrowing Owl Researcher & Consultant, Riegelsville, Pennsylvania, USA
| | | | - Lynne A Trulio
- Department of Environmental Studies, San José State University, San Jose, California, USA
| | - Kristen C Ruegg
- Department of Biology, Colorado State University, Colorado, Fort Collins, USA
| |
Collapse
|
5
|
Lynn SE, Lungu T, Lee SY. Unpredictable fasting transiently alters corticosterone and feeding behavior but not body mass or later HPA axis function in zebra finches (Taeniopygia guttata). Comp Biochem Physiol A Mol Integr Physiol 2023; 281:111434. [PMID: 37068728 DOI: 10.1016/j.cbpa.2023.111434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 04/19/2023]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis is commonly activated in response to unpredictable conditions, including unstable or inadequate food supply. Extended exposure to unpredictable food resources can alter HPA axis function, with the potential for negative fitness consequences. We addressed the interrelationships of unpredictable food resources, HPA axis activity, and food intake in adult and juvenile zebra finches (Taeniopygia guttata). Finches exposed to prolonged periods of unpredictable food elevate corticosterone (the primary avian glucocorticoid) when food is unavailable; however, whether they experience chronic elevation in baseline corticosterone during periods of unpredictability, even when food is available, is unclear. We subjected adults and juveniles to an extended period of temporally unpredictable food (consisting of a random daily fast) or predictable food supply. We investigated baseline corticosterone under fed conditions and in response to an acute fast (mimicking the daily fasting periods in the unpredictable treatment), and assessed differences in body mass, food intake, and corticosterone responses to restraint. Regardless of sex and age, individuals in both treatment groups elevated corticosterone when fasted, and baseline corticosterone under fed conditions was indistinguishable between groups. Thus, corticosterone levels were not persistently elevated in the unpredictably fed group. Treatment groups did not differ in body mass or corticosterone responses to restraint, but unpredictably fed birds consumed food more rapidly when food was available. Our findings suggest that the unpredictably fed birds experienced repeated, moderate elevations in corticosterone. Such elevations may aid birds in coping with unpredictable food sources, in part by activating compensatory changes in foraging behavior.
Collapse
Affiliation(s)
- Sharon E Lynn
- The College of Wooster, Department of Biology, 931 College Mall, Wooster, OH 44691, USA.
| | - Tudor Lungu
- The College of Wooster, Department of Biology, 931 College Mall, Wooster, OH 44691, USA
| | - Seung Yeon Lee
- The College of Wooster, Department of Biology, 931 College Mall, Wooster, OH 44691, USA
| |
Collapse
|
6
|
Pepke ML, Kvalnes T, Ranke PS, Araya‐Ajoy YG, Wright J, Sæther B, Jensen H, Ringsby TH. Causes and consequences of variation in early-life telomere length in a bird metapopulation. Ecol Evol 2022; 12:e9144. [PMID: 35923948 PMCID: PMC9339764 DOI: 10.1002/ece3.9144] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/24/2022] [Accepted: 07/01/2022] [Indexed: 11/07/2022] Open
Abstract
Environmental conditions during early-life development can have lasting effects shaping individual heterogeneity in fitness and fitness-related traits. The length of telomeres, the DNA sequences protecting chromosome ends, may be affected by early-life conditions, and telomere length (TL) has been associated with individual performance within some wild animal populations. Thus, knowledge of the mechanisms that generate variation in TL, and the relationship between TL and fitness, is important in understanding the role of telomeres in ecology and life-history evolution. Here, we investigate how environmental conditions and morphological traits are associated with early-life blood TL and if TL predicts natal dispersal probability or components of fitness in 2746 wild house sparrow (Passer domesticus) nestlings from two populations sampled across 20 years (1994-2013). We retrieved weather data and we monitored population fluctuations, individual survival, and reproductive output using field observations and genetic pedigrees. We found a negative effect of population density on TL, but only in one of the populations. There was a curvilinear association between TL and the maximum daily North Atlantic Oscillation index during incubation, suggesting that there are optimal weather conditions that result in the longest TL. Dispersers tended to have shorter telomeres than non-dispersers. TL did not predict survival, but we found a tendency for individuals with short telomeres to have higher annual reproductive success. Our study showed how early-life TL is shaped by effects of growth, weather conditions, and population density, supporting that environmental stressors negatively affect TL in wild populations. In addition, shorter telomeres may be associated with a faster pace-of-life, as individuals with higher dispersal rates and annual reproduction tended to have shorter early-life TL.
Collapse
Affiliation(s)
- Michael Le Pepke
- Department of Biology, Centre for Biodiversity Dynamics (CBD)Norwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Thomas Kvalnes
- Department of Biology, Centre for Biodiversity Dynamics (CBD)Norwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Peter Sjolte Ranke
- Department of Biology, Centre for Biodiversity Dynamics (CBD)Norwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Yimen G. Araya‐Ajoy
- Department of Biology, Centre for Biodiversity Dynamics (CBD)Norwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Jonathan Wright
- Department of Biology, Centre for Biodiversity Dynamics (CBD)Norwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Bernt‐Erik Sæther
- Department of Biology, Centre for Biodiversity Dynamics (CBD)Norwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Henrik Jensen
- Department of Biology, Centre for Biodiversity Dynamics (CBD)Norwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Thor Harald Ringsby
- Department of Biology, Centre for Biodiversity Dynamics (CBD)Norwegian University of Science and Technology (NTNU)TrondheimNorway
| |
Collapse
|
7
|
Marasco V, Smith S, Angelier F. How does early-life adversity shape telomere dynamics during adulthood? Problems and paradigms. Bioessays 2022; 44:e2100184. [PMID: 35122449 DOI: 10.1002/bies.202100184] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 01/06/2023]
Abstract
Although early-life adversity has been associated with negative consequences during adulthood, growing evidence shows that such adversity can also lead to subsequent stress resilience and positive fitness outcomes. Telomere dynamics are relevant in this context because of the link with developmental conditions and longevity. However, few studies have assessed whether the effects of early-life adversity on developmental telomere dynamics may relate to adult telomere dynamics. We propose that the potential links between early-life adversity and adult telomere dynamics could be driven by developmental constraints (the Constraint hypothesis), by the nature/severity of developmental adversity (the Resilience hypothesis), or by developmental-mediated changes in individual life-history strategies (the Pace of Life hypothesis). We discuss these non-mutually exclusive hypotheses, explore future research directions, and propose specific studies to test these hypotheses. Our article aims to expand our understanding of the evolutionary role of developmental conditions on adult telomere dynamics, stress resilience and ageing.
Collapse
Affiliation(s)
- Valeria Marasco
- Konrad Lorenz Institute of Ethology (KLIVV), University of Veterinary Medicine Vienna, Vienna, Austria
| | - Steve Smith
- Konrad Lorenz Institute of Ethology (KLIVV), University of Veterinary Medicine Vienna, Vienna, Austria
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, Centre National de la Recherche Scientifique (CNRS)-La Rochelle Université (LRU), UMR 7372, Villiers en Bois, France
| |
Collapse
|