1
|
Ji Y, Jiang Q, Chen B, Chen X, Li A, Shen D, Shen Y, Liu H, Qian X, Yao X, Sun H. Endoplasmic reticulum stress and unfolded protein response: Roles in skeletal muscle atrophy. Biochem Pharmacol 2025; 234:116799. [PMID: 39952329 DOI: 10.1016/j.bcp.2025.116799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/18/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Skeletal muscle atrophy is commonly present in various pathological states, posing a huge burden on society and patients. Increased protein hydrolysis, decreased protein synthesis, inflammatory response, oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress (ERS) and unfolded protein response (UPR) are all important molecular mechanisms involved in the occurrence and development of skeletal muscle atrophy. The potential mechanisms of ERS and UPR in skeletal muscle atrophy are extremely complex and have not yet been fully elucidated. This article elucidates the molecular mechanisms of ERS and UPR, and discusses their effects on different types of muscle atrophy (muscle atrophy caused by disuse, cachexia, chronic kidney disease (CKD), diabetes mellitus (DM), amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), spinal and bulbar muscular atrophy (SBMA), aging, sarcopenia, obesity, and starvation), and explores the preventive and therapeutic strategies targeting ERS and UPR in skeletal muscle atrophy, including inhibitor therapy and drug therapy. This review aims to emphasize the importance of endoplasmic reticulum (ER) in maintaining skeletal muscle homeostasis, which helps us further understand the molecular mechanisms of skeletal muscle atrophy and provides new ideas and insights for the development of effective therapeutic drugs and preventive measures for skeletal muscle atrophy.
Collapse
Affiliation(s)
- Yanan Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Quan Jiang
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Nantong, Jiangsu Province 226600, PR China
| | - Bingqian Chen
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu, Jiangsu Province 215500, PR China
| | - Xin Chen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Aihong Li
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Dingding Shen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Hua Liu
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Nantong, Jiangsu Province 226600, PR China
| | - Xiaowei Qian
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province 226001, PR China.
| | - Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province 226001, PR China.
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province 226001, PR China; Research and Development Center for E-Learning, Ministry of Education, Beijing 100816, PR China.
| |
Collapse
|
2
|
Mishra S, Welch N, Singh SS, Singh KD, Bellar A, Kumar A, Deutz LN, Hanlon MD, Kant S, Dastidar S, Patel H, Agrawal V, Attaway AH, Musich R, Stark GR, Tedesco FS, Truskey GA, Weiner ID, Karnik SS, Dasarathy S. Ammonia transporter RhBG initiates downstream signaling and functional responses by activating NFκB. Proc Natl Acad Sci U S A 2024; 121:e2314760121. [PMID: 39052834 PMCID: PMC11294993 DOI: 10.1073/pnas.2314760121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 06/19/2024] [Indexed: 07/27/2024] Open
Abstract
Transceptors, solute transporters that facilitate intracellular entry of molecules and also initiate intracellular signaling events, have been primarily studied in lower-order species. Ammonia, a cytotoxic endogenous metabolite, is converted to urea in hepatocytes for urinary excretion in mammals. During hyperammonemia, when hepatic metabolism is impaired, nonureagenic ammonia disposal occurs primarily in skeletal muscle. Increased ammonia uptake in skeletal muscle is mediated by a membrane-bound, 12 transmembrane domain solute transporter, Rhesus blood group-associated B glycoprotein (RhBG). We show that in addition to its transport function, RhBG interacts with myeloid differentiation primary response-88 (MyD88) to initiate an intracellular signaling cascade that culminates in activation of NFκB. We also show that ammonia-induced MyD88 signaling is independent of the canonical toll-like receptor-initiated mechanism of MyD88-dependent NFκB activation. In silico, in vitro, and in situ experiments show that the conserved cytosolic J-domain of the RhBG protein interacts with the Toll-interleukin-1 receptor (TIR) domain of MyD88. In skeletal muscle from human patients, human-induced pluripotent stem cell-derived myotubes, and myobundles show an interaction of RhBG-MyD88 during hyperammonemia. Using complementary experimental and multiomics analyses in murine myotubes and mice with muscle-specific RhBG or MyD88 deletion, we show that the RhBG-MyD88 interaction is essential for the activation of NFkB but not ammonia transport. Our studies show a paradigm of substrate-dependent regulation of transceptor function with the potential for modulation of cellular responses in mammalian systems by decoupling transport and signaling functions of transceptors.
Collapse
Affiliation(s)
- Saurabh Mishra
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH44195
| | - Nicole Welch
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH44195
- Gastroenterology and Hepatology, Lerner Research Institute, Cleveland, OH44195
| | - Shashi Shekhar Singh
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH44195
| | | | - Annette Bellar
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH44195
| | - Avinash Kumar
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH44195
| | - Lars N. Deutz
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH44195
| | - Maxmillian D. Hanlon
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH44195
| | - Sashi Kant
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH44195
| | - Sumitava Dastidar
- Department of Cell and Developmental Biology, University College London & The Francis Crick Institute, LondonWC1E6DE, UK
| | - Hailee Patel
- Duke Biomedical Engineering, Duke University, Durham, NC27708
| | - Vandana Agrawal
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH44195
| | - Amy H. Attaway
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH44195
- Pulmonary Medicine, Lerner Research Institute, Cleveland, OH44195
| | - Ryan Musich
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH44195
| | - George R. Stark
- Cancer Biology, Lerner Research Institute, Cleveland, OH44195
| | - Francesco Saverio Tedesco
- Department of Cell and Developmental Biology, University College London & The Francis Crick Institute, LondonWC1E6DE, UK
| | | | - I. David Weiner
- Division of Nephrology Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL32610
- Nephrology and Hypertension Section, Gainesville, FL32610
| | - Sadashiva S. Karnik
- Cardiovascular and Metabolic Diseases, Lerner Research Institute, Cleveland, OH44195
| | - Srinivasan Dasarathy
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH44195
- Gastroenterology and Hepatology, Lerner Research Institute, Cleveland, OH44195
| |
Collapse
|
3
|
Olie CS, O'Brien DP, Jones HB, Liang Z, Damianou A, Sur-Erdem I, Pinto-Fernández A, Raz V, Kessler BM. Deubiquitinases in muscle physiology and disorders. Biochem Soc Trans 2024; 52:1085-1098. [PMID: 38716888 PMCID: PMC11346448 DOI: 10.1042/bst20230562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 06/27/2024]
Abstract
In vivo, muscle and neuronal cells are post-mitotic, and their function is predominantly regulated by proteostasis, a multilayer molecular process that maintains a delicate balance of protein homeostasis. The ubiquitin-proteasome system (UPS) is a key regulator of proteostasis. A dysfunctional UPS is a hallmark of muscle ageing and is often impacted in neuromuscular disorders (NMDs). Malfunction of the UPS often results in aberrant protein accumulation which can lead to protein aggregation and/or mis-localization affecting its function. Deubiquitinating enzymes (DUBs) are key players in the UPS, controlling protein turnover and maintaining the free ubiquitin pool. Several mutations in DUB encoding genes are linked to human NMDs, such as ATXN3, OTUD7A, UCHL1 and USP14, whilst other NMDs are associated with dysregulation of DUB expression. USP5, USP9X and USP14 are implicated in synaptic transmission and remodeling at the neuromuscular junction. Mice lacking USP19 show increased maintenance of lean muscle mass. In this review, we highlight the involvement of DUBs in muscle physiology and NMDs, particularly in processes affecting muscle regeneration, degeneration and inflammation following muscle injury. DUBs have recently garnered much respect as promising drug targets, and their roles in muscle maturation, regeneration and degeneration may provide the framework for novel therapeutics to treat muscular disorders including NMDs, sarcopenia and cachexia.
Collapse
Affiliation(s)
- Cyriel S. Olie
- Department of Human Genetics, Leiden University Medical Centre, 2333ZC Leiden, The Netherlands
| | - Darragh P. O'Brien
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
| | - Hannah B.L. Jones
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
| | - Zhu Liang
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, U.K
| | - Andreas Damianou
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, U.K
| | - Ilknur Sur-Erdem
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford OX3 9DU, U.K
| | - Adán Pinto-Fernández
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, U.K
| | - Vered Raz
- Department of Human Genetics, Leiden University Medical Centre, 2333ZC Leiden, The Netherlands
| | - Benedikt M. Kessler
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, U.K
| |
Collapse
|
4
|
Roy A, Narkar VA, Kumar A. Emerging role of TAK1 in the regulation of skeletal muscle mass. Bioessays 2023; 45:e2300003. [PMID: 36789559 PMCID: PMC10023406 DOI: 10.1002/bies.202300003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/02/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023]
Abstract
Maintenance of skeletal muscle mass and strength throughout life is crucial for heathy living and longevity. Several signaling pathways have been implicated in the regulation of skeletal muscle mass in adults. TGF-β-activated kinase 1 (TAK1) is a key protein, which coordinates the activation of multiple signaling pathways. Recently, it was discovered that TAK1 is essential for the maintenance of skeletal muscle mass and myofiber hypertrophy following mechanical overload. Forced activation of TAK1 in skeletal muscle causes hypertrophy and attenuates denervation-induced muscle atrophy. TAK1-mediated signaling in skeletal muscle promotes protein synthesis, redox homeostasis, mitochondrial health, and integrity of neuromuscular junctions. In this article, we have reviewed the role and potential mechanisms through which TAK1 regulates skeletal muscle mass and growth. We have also proposed future areas of research that could be instrumental in exploring TAK1 as therapeutic target for improving muscle mass in various catabolic conditions and diseases.
Collapse
Affiliation(s)
- Anirban Roy
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX 77204, USA
| | - Vihang A. Narkar
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, Texas, USA
| | - Ashok Kumar
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX 77204, USA
| |
Collapse
|
5
|
Zhang M, Chen M, Li Y, Rao M, Wang D, Wang Z, Zhang L, Yin P, Tang P. Delayed denervation-induced muscle atrophy in Opg knockout mice. Front Physiol 2023; 14:1127474. [PMID: 36909232 PMCID: PMC9992212 DOI: 10.3389/fphys.2023.1127474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Recent evidence has shown a crucial role for the osteoprotegerin/receptor activator of nuclear factor κ-B ligand/RANK (OPG/RANKL/RANK) signaling axis not only in bone but also in muscle tissue; however, there is still a lack of understanding of its effects on muscle atrophy. Here, we found that denervated Opg knockout mice displayed better functional recovery and delayed muscle atrophy, especially in a specific type IIB fiber. Moreover, OPG deficiency promoted milder activation of the ubiquitin-proteasome pathway, which further verified the protective role of Opg knockout in denervated muscle damage. Furthermore, transcriptome sequencing indicated that Opg knockout upregulated the expression of Inpp5k, Rbm3, and Tet2 and downregulated that of Deptor in denervated muscle. In vitro experiments revealed that satellite cells derived from Opg knockout mice displayed a better differentiation ability than those acquired from wild-type littermates. Higher expression levels of Tet2 were also observed in satellite cells derived from Opg knockout mice, which provided a possible mechanistic basis for the protective effects of Opg knockout on muscle atrophy. Taken together, our findings uncover the novel role of Opg in muscle atrophy process and extend the current understanding in the OPG/RANKL/RANK signaling axis.
Collapse
Affiliation(s)
- Mingming Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Ming Chen
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Yi Li
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Man Rao
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Duanyang Wang
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhongqi Wang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Licheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Pengbin Yin
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Peifu Tang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| |
Collapse
|
6
|
Inflammaging: Implications in Sarcopenia. Int J Mol Sci 2022; 23:ijms232315039. [PMID: 36499366 PMCID: PMC9740553 DOI: 10.3390/ijms232315039] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
In a world in which life expectancy is increasing, understanding and promoting healthy aging becomes a contemporary demand. In the elderly, a sterile, chronic and low-grade systemic inflammation known as "inflammaging" is linked with many age-associated diseases. Considering sarcopenia as a loss of strength and mass of skeletal muscle related to aging, correlations between these two terms have been proposed. Better knowledge of the immune system players in skeletal muscle would help to elucidate their implications in sarcopenia. Characterizing the activators of damage sensors and the downstream effectors explains the inference with skeletal muscle performance. Sarcopenia has also been linked to chronic diseases such as diabetes, metabolic syndrome and obesity. Implications of inflammatory signals from these diseases negatively affect skeletal muscle. Autophagic mechanisms are closely related with the inflammasome, as autophagy eliminates stress signaling sent by damage organelles, but also acts with an immunomodulatory function affecting immune cells and cytokine release. The use of melatonin, an antioxidant, ROS scavenger and immune and autophagy modulator, or senotherapeutic compounds targeting senescent cells could represent strategies to counteract inflammation. This review aims to present the many factors regulating skeletal muscle inflammaging and their major implications in order to understand the molecular mechanisms involved in sarcopenia.
Collapse
|
7
|
Kny M, Fielitz J. Hidden Agenda - The Involvement of Endoplasmic Reticulum Stress and Unfolded Protein Response in Inflammation-Induced Muscle Wasting. Front Immunol 2022; 13:878755. [PMID: 35615361 PMCID: PMC9124858 DOI: 10.3389/fimmu.2022.878755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Critically ill patients at the intensive care unit (ICU) often develop a generalized weakness, called ICU-acquired weakness (ICUAW). A major contributor to ICUAW is muscle atrophy, a loss of skeletal muscle mass and function. Skeletal muscle assures almost all of the vital functions of our body. It adapts rapidly in response to physiological as well as pathological stress, such as inactivity, immobilization, and inflammation. In response to a reduced workload or inflammation muscle atrophy develops. Recent work suggests that adaptive or maladaptive processes in the endoplasmic reticulum (ER), also known as sarcoplasmic reticulum, contributes to this process. In muscle cells, the ER is a highly specialized cellular organelle that assures calcium homeostasis and therefore muscle contraction. The ER also assures correct folding of proteins that are secreted or localized to the cell membrane. Protein folding is a highly error prone process and accumulation of misfolded or unfolded proteins can cause ER stress, which is counteracted by the activation of a signaling network known as the unfolded protein response (UPR). Three ER membrane residing molecules, protein kinase R-like endoplasmic reticulum kinase (PERK), inositol requiring protein 1a (IRE1a), and activating transcription factor 6 (ATF6) initiate the UPR. The UPR aims to restore ER homeostasis by reducing overall protein synthesis and increasing gene expression of various ER chaperone proteins. If ER stress persists or cannot be resolved cell death pathways are activated. Although, ER stress-induced UPR pathways are known to be important for regulation of skeletal muscle mass and function as well as for inflammation and immune response its function in ICUAW is still elusive. Given recent advances in the development of ER stress modifying molecules for neurodegenerative diseases and cancer, it is important to know whether or not therapeutic interventions in ER stress pathways have favorable effects and these compounds can be used to prevent or treat ICUAW. In this review, we focus on the role of ER stress-induced UPR in skeletal muscle during critical illness and in response to predisposing risk factors such as immobilization, starvation and inflammation as well as ICUAW treatment to foster research for this devastating clinical problem.
Collapse
Affiliation(s)
- Melanie Kny
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Jens Fielitz
- Department of Molecular Cardiology, DZHK (German Center for Cardiovascular Research), Partner Site, Greifswald, Germany
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
8
|
Lv B, Shen N, Cheng Z, Chen Y, Ding H, Yuan J, Zhao K, Zhang Y. Strategies for Biomaterial-Based Spinal Cord Injury Repair via the TLR4-NF-κB Signaling Pathway. Front Bioeng Biotechnol 2022; 9:813169. [PMID: 35600111 PMCID: PMC9116428 DOI: 10.3389/fbioe.2021.813169] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/13/2021] [Indexed: 12/23/2022] Open
Abstract
The repair and motor functional recovery after spinal cord injury (SCI) has remained a clinical challenge. Injury-induced gliosis and inflammation lead to a physical barrier and an extremely inhibitory microenvironment, which in turn hinders the recovery of SCI. TLR4-NF-κB is a classic implant-related innate immunomodulation signaling pathway and part of numerous biomaterial-based treatment strategies for SCI. Numerous experimental studies have demonstrated that the regulation of TLR4-NF-κB signaling pathway plays an important role in the alleviation of inflammatory responses, the modulation of autophagy, apoptosis and ferroptosis, and the enhancement of anti-oxidative effect post-SCI. An increasing number of novel biomaterials have been fabricated as scaffolds and carriers, loaded with phytochemicals and drugs, to inhibit the progression of SCI through regulation of TLR4-NF-κB. This review summarizes the empirical strategies for the recovery after SCI through individual or composite biomaterials that mediate the TLR4-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Bin Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Naiting Shen
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhangrong Cheng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Ding
- Department of Orthopedics, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Jishan Yuan
- Department of Orthopedics, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Kangchen Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Walter LA, Blake LP, Gallot YS, Arends CJ, Sozio RS, Onifer SM, Bohnert KR. Effect of Denervation on XBP1 in Skeletal Muscle and the Neuromuscular Junction. Int J Mol Sci 2021; 23:ijms23010169. [PMID: 35008595 PMCID: PMC8745577 DOI: 10.3390/ijms23010169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/30/2022] Open
Abstract
Denervation of skeletal muscle is a debilitating consequence of injury of the peripheral nervous system, causing skeletal muscle to experience robust atrophy. However, the molecular mechanisms controlling the wasting of skeletal muscle due to denervation are not well understood. Here, we demonstrate that transection of the sciatic nerve in Sprague–Dawley rats induced robust skeletal muscle atrophy, with little effect on the neuromuscular junction (NMJ). Moreover, the following study indicates that all three arms of the unfolded protein response (UPR) are activated in denervated skeletal muscle. Specifically, ATF4 and ATF6 are elevated in the cytoplasm of skeletal muscle, while XBP1 is elevated in the nuclei of skeletal muscle. Moreover, XBP1 is expressed in the nuclei surrounding the NMJ. Altogether, these results endorse a potential role of the UPR and, specifically, XBP1 in the maintenance of both skeletal muscle and the NMJ following sciatic nerve transection. Further investigations into a potential therapeutic role concerning these mechanisms are needed.
Collapse
Affiliation(s)
- Lisa A. Walter
- Department of Kinesiology, St. Ambrose University, Davenport, IA 52803, USA; (L.A.W.); (L.P.B.)
| | - Lauren P. Blake
- Department of Kinesiology, St. Ambrose University, Davenport, IA 52803, USA; (L.A.W.); (L.P.B.)
| | - Yann S. Gallot
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025 Evry, France;
| | - Charles J. Arends
- Palmer Center for Chiropractic Research, Palmer College of Chiropractic, Davenport, IA 52803, USA; (C.J.A.); (R.S.S.); (S.M.O.)
| | - Randall S. Sozio
- Palmer Center for Chiropractic Research, Palmer College of Chiropractic, Davenport, IA 52803, USA; (C.J.A.); (R.S.S.); (S.M.O.)
| | - Stephen M. Onifer
- Palmer Center for Chiropractic Research, Palmer College of Chiropractic, Davenport, IA 52803, USA; (C.J.A.); (R.S.S.); (S.M.O.)
| | - Kyle R. Bohnert
- Department of Kinesiology, St. Ambrose University, Davenport, IA 52803, USA; (L.A.W.); (L.P.B.)
- Correspondence: ; Tel.: +1-563-333-5743
| |
Collapse
|
10
|
Roy A, Tomaz da Silva M, Bhat R, Bohnert KR, Iwawaki T, Kumar A. The IRE1/XBP1 signaling axis promotes skeletal muscle regeneration through a cell non-autonomous mechanism. eLife 2021; 10:e73215. [PMID: 34812145 PMCID: PMC8635982 DOI: 10.7554/elife.73215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle regeneration is regulated by coordinated activation of multiple signaling pathways. The unfolded protein response (UPR) is a major mechanism that detects and alleviates protein-folding stresses in the endoplasmic reticulum. However, the role of individual arms of the UPR in skeletal muscle regeneration remain less understood. In the present study, we demonstrate that IRE1α (also known as ERN1) and its downstream target, XBP1, are activated in skeletal muscle of mice upon injury. Myofiber-specific ablation of IRE1α or XBP1 in mice diminishes skeletal muscle regeneration that is accompanied with reduced number of satellite cells. Ex vivo cultures of myofiber explants demonstrate that ablation of IRE1α reduces the proliferative capacity of myofiber-associated satellite cells. Myofiber-specific ablation of IRE1α dampens Notch signaling and canonical NF-κB pathway in skeletal muscle of adult mice. Finally, targeted ablation of IRE1α also reduces Notch signaling, abundance of satellite cells, and skeletal muscle regeneration in the mdx mice, a model of Duchenne muscular dystrophy. Collectively, our experiments suggest that the IRE1α-mediated signaling promotes muscle regeneration through augmenting the proliferation of satellite cells in a cell non-autonomous manner.
Collapse
Affiliation(s)
- Anirban Roy
- Department of Pharmacological and Pharmaceutical Sciences, University of HoustonHoustonUnited States
| | - Meiricris Tomaz da Silva
- Department of Pharmacological and Pharmaceutical Sciences, University of HoustonHoustonUnited States
| | - Raksha Bhat
- Department of Pharmacological and Pharmaceutical Sciences, University of HoustonHoustonUnited States
| | - Kyle R Bohnert
- Kinesiology Department, St Ambrose UniversityDavenportUnited States
| | - Takao Iwawaki
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical UniversityUchinadaJapan
| | - Ashok Kumar
- Department of Pharmacological and Pharmaceutical Sciences, University of HoustonHoustonUnited States
| |
Collapse
|