1
|
Lu JQ, Luo ZY, Sun C, Wang SM, Sun D, Huang RJ, Yang X, Ding Y, Wang G. Baicalin administration could rescue high glucose-induced craniofacial skeleton malformation by regulating neural crest development. Front Pharmacol 2024; 15:1295356. [PMID: 38515837 PMCID: PMC10955141 DOI: 10.3389/fphar.2024.1295356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
Hyperglycemia in pregnancy can increase the risk of congenital disorders, but little is known about craniofacial skeleton malformation and its corresponding medication. Our study first used meta-analysis to review the previous findings. Second, baicalin, an antioxidant, was chosen to counteract high glucose-induced craniofacial skeleton malformation. Its effectiveness was then tested by exposing chicken embryos to a combination of high glucose (HG, 50 mM) and 6 μM baicalin. Third, whole-mount immunofluorescence staining and in situ hybridization revealed that baicalin administration could reverse HG-inhibited neural crest cells (NCC) delamination and migration through upregulating the expression of Pax7 and Foxd3, and mitigate the disordered epithelial-mesenchymal transition (EMT) process by regulating corresponding adhesion molecules and transcription factors (i.e., E-cadherin, N-cadherin, Cadherin 6B, Slug and Msx1). Finally, through bioinformatic analysis and cellular thermal shift assay, we identified the AKR1B1 gene as a potential target. In summary, these findings suggest that baicalin could be used as a therapeutic agent for high glucose-induced craniofacial skeleton malformation.
Collapse
Affiliation(s)
- Jia-Qi Lu
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development and Prenatal Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Zhi-Yan Luo
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development and Prenatal Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Chengyang Sun
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development and Prenatal Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Si-Miao Wang
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development and Prenatal Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Dixiang Sun
- Department of Pathology, Mengyin County Hospital of Traditional Chinese Medicine, Linyi, China
| | - Ruo-Jing Huang
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Xuesong Yang
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development and Prenatal Medicine, School of Medicine, Jinan University, Guangzhou, China
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, Jinan University, Guangzhou, China
| | - Yong Ding
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Guang Wang
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development and Prenatal Medicine, School of Medicine, Jinan University, Guangzhou, China
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, Jinan University, Guangzhou, China
| |
Collapse
|